CN116272967A - 一种二氧化钛单原子Pt催化剂及其制备方法和应用 - Google Patents

一种二氧化钛单原子Pt催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN116272967A
CN116272967A CN202310309178.3A CN202310309178A CN116272967A CN 116272967 A CN116272967 A CN 116272967A CN 202310309178 A CN202310309178 A CN 202310309178A CN 116272967 A CN116272967 A CN 116272967A
Authority
CN
China
Prior art keywords
catalyst
titanium dioxide
monoatomic
preparation
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310309178.3A
Other languages
English (en)
Inventor
郭彦炳
罗竹
黄发军
潘传奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central China Normal University
Original Assignee
Central China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central China Normal University filed Critical Central China Normal University
Priority to CN202310309178.3A priority Critical patent/CN116272967A/zh
Publication of CN116272967A publication Critical patent/CN116272967A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种二氧化钛单原子Pt催化剂及其制备方法和应用,所述催化剂的制备方法为:将二氧化钛粉末加入水中分散,并于搅拌条件下滴加可溶性Pt盐溶液进行反应,将产物干燥后再于300~500℃煅烧1~5h即得;所述Pt盐溶液添加量使得Pt与所述二氧化钛载体质量比为(0.15~0.20):100。本发明通过简单的浸渍、煅烧方法在不同晶相二氧化钛表面成功负载高分散Pt单原子,且所得催化剂不仅具有低温催化氧化丙烯活性与稳定性,同时也具有较好的丙烷催化氧化性能和耐高温稳定性。

Description

一种二氧化钛单原子Pt催化剂及其制备方法和应用
技术领域
本发明属于催化材料技术领域,具体涉及一种二氧化钛单原子Pt催化剂和其制备方法,以及其在催化氧化丙烯、丙烷中的应用。
背景技术
目前,挥发性有机化合物(VOCs)是造成空气污染的主要因素之一,其主要来源是移动源交通运输和固定源石油精炼、石化加工等各种工业排放。绝大多数VOCs包括烷烃、烯烃和芳烃,具有致癌性和致畸性,直接威胁人类健康。更严重的是,高活性烯烃和芳烃是对流层和地面臭氧(O3)的主要前驱体,其引发的光化学烟雾可导致严重的环境问题,例如与温室效应相关的全球气候变化、农作物作物减产等;同时可引发人类健康问题如慢性呼吸道疾病。
丙烯是丙烷以及其他长链碳氢化合物氧化分解过程中一种常见的中间产物。同时,丙烯也是机动车和工业电厂尾气的成分之一。丙烯由于具有较高的光化学臭氧生成潜力(POCP),被认为是最活泼的VOCs物种之一,可促进对流层O3和光化学烟雾的形成。因此,减少丙烯的排放对于抑制对流层O3和光化学烟雾的形成具有重要意义,有助于保护人类健康,实现环境可持续性发展。
催化氧化效率高、无二次污染,并且工作温度窗口较大,是目前被广泛研究的一种高效降解丙烯、丙烷的方法。负载型贵金属Pt催化剂是典型的丙烯、丙烷催化氧化催化剂。为了缓解贵金属催化剂高成本、资源短缺的压力,开发负载低量贵金属同时保证高效稳定催化氧化丙烯、丙烷催化剂仍然是本领域的技术人员亟待解决的技术问题之一。
发明内容
有鉴于此,本发明的目的在于提供一种能够用于丙烯和丙烷高效稳定催化氧化的、低负载量贵金属的二氧化钛单原子Pt催化剂及其制备。
为了实现上述目的,本发明的技术方案具体如下:
本发明首先提供了一种氧化钛单原子Pt催化剂的制备方法,该方法的具体步骤为:将二氧化钛粉末加入水中分散,并于搅拌条件下滴加可溶性Pt盐溶液进行反应,将产物干燥后再于300~500℃煅烧1~5h;所述Pt盐溶液添加量使得Pt与所述二氧化钛载体质量比为(0.15~0.20):100。
在上述制备方法中,二氧化钛粉末可以由锐钛矿型(anatase)、板钛矿型(brookite)或金红石型(rutile)二氧化钛研磨得到10~100nm范围内的纳米二氧化钛。
在上述制备方法中,可溶性Pt盐溶液为四氨合硝酸铂溶液和/或氯铂酸溶液,可溶性Pt盐与二氧化钛载体的反应时间为4~8h。
在上述制备方法中,产物干燥的方法具体可以为:待反应结束后,将反应混合液在水浴加热条件下旋蒸再真空干燥,且旋蒸的温度为60~90℃,真空干燥的时间为10~12h。
在上述制备方法中,水优选为蒸馏水,可以采用常温超声将二氧化钛粉末分散到水中,超声时间优选20min以上。
在本发明的一些具体的实施例中,煅烧是在空气条件下进行。
根据上述制备方法制备得到的二氧化钛单原子Pt催化剂也属于本发明的保护范围。
在本发明制备的二氧化钛单原子Pt催化剂中,可以选择不同晶相二氧化钛为载体,且Pt在催化剂表面以单原子高分散形式存在,具体以Pt2+和Pt4+共存,并且Pt占据钛位点,强烈锚定在催化剂表面。
将本发明制备的二氧化钛单原子Pt催化剂用于丙烯、丙烷的催化氧化时,具有高催化活性与高稳定性。如实验表明,在恒温700℃下丙烷完全氧化反应24h,丙烷活性依然保持100%的转化率。
本发明的有益效果为:本发明利用二氧化钛载体表面上存在的一些缺陷(包括载体本身结构上的缺陷以及后续煅烧过程中不可避免会产生的一些缺陷),在负载铂时对Pt进行锚定,另外在煅烧过程中可能会存在二氧化钛晶格畸变从而锚定Pt;本发明同时控制Pt的低负载量,使得其呈原子级分散于催化剂表面,避免Pt载量高而团聚形成Pt纳米颗粒,从而使得催化剂中的Pt占据钛位点并强烈锚定在催化剂表面,赋予了催化剂的高催化活性和高稳定性。而且,本发明的制备方案简单,成本低,利于产业化生产和推广应用。
附图说明
图1为实施例1制备的不同晶相二氧化钛基催化剂的XRD图;
图2为实施例1制备的不同晶相二氧化钛基催化剂的XPS图;
图3为实施例1制备的不同晶相二氧化钛基催化剂的CO吸附红外图;
图4为实施例1催化剂的HAADF-STEM图;
图5为实施例4中催化剂的丙烯活性及稳定性图;
图6为实施例4中催化剂的丙烷活性及稳定性图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下述实施例中,若无特殊说明,均为常规方法;所述试剂和材料,若无特殊说明,均可从商业途径获得。
实施例1
本实施例通过以下步骤合成不同晶相的二氧化钛单原子Pt催化剂:
称取研磨充分的200mg锐钛矿二氧化钛粉于茄形瓶中加入20ml蒸馏水中,超声分散20min以上。磁力搅拌下,再用移液枪取12ml、50ug/ml四氨合硝酸铂溶液逐滴加入上述瓶中,使得Pt/载体质量比为0.15%,搅拌4h。在70℃下旋蒸至干,转移到真空干燥箱中在60℃下干燥12h。最后将干燥所得的粉体在空气下400℃煅烧4h,即得催化剂,并将其命名为Pt1-TiO2-A。
再分别使用板钛矿二氧化钛粉和金红石二氧化钛粉替换锐钛矿二氧化钛粉,保持其他合成条件一致,得到催化剂Pt1-TiO2-B。Pt1-TiO2-R其他合成条件一致,煅烧温度为300℃煅烧1h。
实施例2
与实施例1不一致的是,旋蒸温度为75℃,且煅烧温度为450℃,其他同实施例1。
实施例3
与实施例1不一致的是,旋蒸温度为80℃,且煅烧温度为500℃,其他同实施例1。
针对实施例1所制备的不同晶相二氧化钛基催化剂,其相关的表征结果如图1~4所示。从表征结果得出单原子Pt-TiO2催化剂被成功制备出来。XRD表征结果表明三种晶相二氧化钛基催化剂的成功制备,XPS表征结果表明三种晶相二氧化钛基催化剂表面Pt物种以离子态形式存在,CO吸附原位红外光谱进一步证明了单原子Pt-TiO2催化剂的成功制备。
通过球差高角环形暗场扫描电子显微镜(HAADF-STEM)表征结果(图4)可以直接观察到单原子Pt位点比周围Ti原子点更亮,直接证明了单原子Pt存在于三种催化剂表面,并且占据钛位点,能够强烈锚定在催化剂表面。
实施例4
本例将实施例1制备的不同晶相二氧化钛单原子Pt催化剂用于C3H6、C3H8的催化氧化,并检测了催化活性:
在一个直径为6mm石英玻璃管,在大气压力下使用50毫克催化剂,流量50毫升每分钟,气体空速(S.V.)的60000毫升每克每小时。丙烯气体由1000ppm C3H6、12% O2和N2平衡气组成;丙烷气体由2000ppm C3H8、2% O2和N2平衡气组成。
测试丙烯气体时,催化剂从30℃被加热到280℃。测试结果如图5中a所示,单原子Pt-TiO2催化剂具有优异的丙烯低温催化氧化活性,90%的丙烯转化率Pt1-TiO2-A催化剂只需要158℃,Pt1-TiO2-B催化剂179℃,Pt1-TiO2-B催化剂199℃。在240℃以下都100%完全氧化。丙烯稳定性测试选取的100%转化率所对应的温度240℃进行测试,测试气氛与活性测试条件保持一致,测试时间为24h。测试结果如图5中b所示,单原子Pt-TiO2催化剂具有优异的稳定性,24h后转化率依然保持在100%。
测试丙烷气体时,催化剂从30℃被加热到700℃。丙烷稳定性测试在700℃下进行24h稳定性测试。测试结果如图6中a所示,在三种不同晶相二氧化钛基催化剂中Pt-TiO2-B催化剂具有最佳的丙烷活性,丙烷在430℃就转化了90%。进一步在反应气氛下700℃测试催化剂的稳定性,测试结果如图6中b所示,可以发现Pt-TiO2-B催化剂24h稳定性非常出色,活性并没有下降,转化率依然保持在100%。
综上所述,本发明提供的不同晶相二氧化钛基催化剂的表面负载有高分散、高稳定的Pt单原子,使得所述催化剂在低Pt负载量的情况下,对丙烯和丙烷仍具有高的催化氧化活性以及优异的热稳定性,提高了催化剂的经济效益。而且本发明制备上述催化剂的方法简单且便于操作,有利于催化剂的生产和推广。
本发明通过上述实施例来说明本发明的详细实施方式,但本发明并不局限于上述详细实施方式,即不意味着本发明必须依赖上述实施方式才能实施,所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品的等效替换及添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (8)

1.一种二氧化钛单原子Pt催化剂的制备方法,其特征在于,具体为:将二氧化钛粉末加入水中分散,并于搅拌条件下滴加可溶性Pt盐溶液进行反应,将产物干燥后再于300~500℃煅烧1~5h即得;所述Pt盐溶液添加量使得Pt与所述二氧化钛载体质量比为(0.15~0.20):100。
2.根据权利要求1所述二氧化钛单原子Pt催化剂的制备方法,其特征在于,所述二氧化钛粉末为锐钛矿型、板钛矿型或金红石型,所述可溶性Pt盐溶液为四氨合硝酸铂溶液和/或氯铂酸溶液。
3.根据权利要求1所述二氧化钛单原子Pt催化剂的制备方法,其特征在于,所述干燥具体为:将反应混合液在水浴加热条件下旋蒸再真空干燥,且所述旋蒸的温度为60~90℃。
4.根据权利要求1所述二氧化钛单原子Pt催化剂的制备方法,其特征在于,所述分散为超声分散。
5.根据权利要求1所述二氧化钛单原子Pt催化剂的制备方法,其特征在于,所述煅烧在空气条件下进行。
6.根据权利要求1~5任一项制备的二氧化钛单原子Pt催化剂。
7.根据权利要求6所述的二氧化钛单原子Pt催化剂,其特征在于,所述催化剂中的Pt以Pt2+和Pt4+共存。
8.权利要求6所述的二氧化钛单原子Pt催化剂在丙烯和/或丙烷氧化催化中的应用。
CN202310309178.3A 2023-03-28 2023-03-28 一种二氧化钛单原子Pt催化剂及其制备方法和应用 Pending CN116272967A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310309178.3A CN116272967A (zh) 2023-03-28 2023-03-28 一种二氧化钛单原子Pt催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310309178.3A CN116272967A (zh) 2023-03-28 2023-03-28 一种二氧化钛单原子Pt催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116272967A true CN116272967A (zh) 2023-06-23

Family

ID=86835957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310309178.3A Pending CN116272967A (zh) 2023-03-28 2023-03-28 一种二氧化钛单原子Pt催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116272967A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005531A (ja) * 2008-06-26 2010-01-14 Toyota Central R&D Labs Inc 白金族元素の担持方法及びその方法により得られる触媒
CN107649124A (zh) * 2016-07-25 2018-02-02 中国科学院大连化学物理研究所 一种单原子分散贵金属催化剂及其应用
CN110237840A (zh) * 2019-07-04 2019-09-17 中国科学院大连化学物理研究所 一种铂单原子催化剂的制备及其在丙烷脱氢制丙烯反应中的应用
US20200030774A1 (en) * 2017-06-02 2020-01-30 University Of Connecticut Low-Temperature Diesel Oxidation Catalysts Using TiO2 Nanowire Arrays Integrated on a Monolithic Substrate
KR20200041532A (ko) * 2018-10-12 2020-04-22 충남대학교산학협력단 복합 산화물 지지체와 단원자로 이루어진 복합 삼원계 촉매 및 이의 제조 방법
KR20210158118A (ko) * 2020-06-23 2021-12-30 한국과학기술원 백금 단일 원자 촉매 및 이의 제조 방법
CN114471540A (zh) * 2022-02-22 2022-05-13 北京化工大学 一种亚纳米Pt选择性加氢催化剂、制备方法及其应用
CN114471539A (zh) * 2022-02-21 2022-05-13 南京大学 一种高性能铂钛单原子催化剂及其制备方法和应用
CN114618476A (zh) * 2022-02-16 2022-06-14 中国科学院大连化学物理研究所 一种单原子铂基催化剂及其制备方法和应用
CN115555013A (zh) * 2022-10-24 2023-01-03 华中师范大学 一种Pt/硅改性氧化铝基催化剂及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005531A (ja) * 2008-06-26 2010-01-14 Toyota Central R&D Labs Inc 白金族元素の担持方法及びその方法により得られる触媒
CN107649124A (zh) * 2016-07-25 2018-02-02 中国科学院大连化学物理研究所 一种单原子分散贵金属催化剂及其应用
US20200030774A1 (en) * 2017-06-02 2020-01-30 University Of Connecticut Low-Temperature Diesel Oxidation Catalysts Using TiO2 Nanowire Arrays Integrated on a Monolithic Substrate
KR20200041532A (ko) * 2018-10-12 2020-04-22 충남대학교산학협력단 복합 산화물 지지체와 단원자로 이루어진 복합 삼원계 촉매 및 이의 제조 방법
CN110237840A (zh) * 2019-07-04 2019-09-17 中国科学院大连化学物理研究所 一种铂单原子催化剂的制备及其在丙烷脱氢制丙烯反应中的应用
KR20210158118A (ko) * 2020-06-23 2021-12-30 한국과학기술원 백금 단일 원자 촉매 및 이의 제조 방법
CN114618476A (zh) * 2022-02-16 2022-06-14 中国科学院大连化学物理研究所 一种单原子铂基催化剂及其制备方法和应用
CN114471539A (zh) * 2022-02-21 2022-05-13 南京大学 一种高性能铂钛单原子催化剂及其制备方法和应用
CN114471540A (zh) * 2022-02-22 2022-05-13 北京化工大学 一种亚纳米Pt选择性加氢催化剂、制备方法及其应用
CN115555013A (zh) * 2022-10-24 2023-01-03 华中师范大学 一种Pt/硅改性氧化铝基催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. DESSAL ET AL.,: "Influence of Pt particle size and reaction phase on the photocatalytic performances of ultradispersed Pt/TiO2 catalysts for hydrogen evolution", 《JOURNAL OF CATALYSIS》, vol. 375, 13 June 2019 (2019-06-13), pages 155, XP085785005, DOI: 10.1016/j.jcat.2019.05.033 *
方亚蓉: "TiO2基纳米催化剂催化氧化CO、CHx的性能研究", 《万方数据》, 4 January 2013 (2013-01-04) *

Similar Documents

Publication Publication Date Title
Chen et al. A facile strategy of enhancing interaction between cerium and manganese oxides for catalytic removal of gaseous organic contaminants
Zhu et al. SiO2 promoted Pt/WOx/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1, 3-propanediol
Hu et al. In situ DRIFTs investigation of the low-temperature reaction mechanism over Mn-doped Co3O4 for the selective catalytic reduction of NO x with NH3
CN108671917B (zh) 一种低温高效催化VOCs废气降解的催化剂及其制备方法
Tang et al. Synergistic effects in porous Mn–Co mixed oxide nanorods enhance catalytic deep oxidation of benzene
Yan et al. Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO
Azalim et al. Washcoating of cordierite honeycomb with Ce–Zr–Mn mixed oxides for VOC catalytic oxidation
Asgari et al. Synthesis and physicochemical characterization of nanostructured CeO2/clinoptilolite for catalytic total oxidation of xylene at low temperature
Barrera et al. Highly active MoS2 on wide-pore ZrO2–TiO2 mixed oxides
WO2014045570A1 (ja) PdRu固溶体型合金微粒子を用いた触媒
Jia et al. Crystal-plane effects of anatase TiO2 on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts
WO2006002582A1 (en) Catalytic material and method of production thereof
Fu et al. Pt loaded manganese oxide nanoarray-based monolithic catalysts for catalytic oxidation of acetone
Zheng et al. Mechanism of CeO2 synthesized by thermal decomposition of Ce-MOF and its performance of benzene catalytic combustion
Pérez-Alonso et al. Relevance in the Fischer− Tropsch synthesis of the formation of Fe− O− Ce interactions on iron− cerium mixed oxide systems
Li et al. Formation of subnanometer Zr-WOx clusters within mesoporous W–Zr mixed oxides as strong solid acid catalysts for Friedel–Crafts alkylation
Ye et al. Mn-Ce oxide nanoparticles supported on nitrogen-doped reduced graphene oxide as low-temperature catalysts for selective catalytic reduction of nitrogen oxides
EP2986378A1 (en) An improved method of preparation of nanoparticular metal oxide catalysts
Lei et al. Mesoporous Co3O4 derived from facile calcination of octahedral Co-MOFs for toluene catalytic oxidation
Guo et al. Highly efficient and selective Ru and Ce modified ZSM-5 catalysts for catalytic oxidation of toluene
Tran et al. TiO 2-supported gold catalysts in the catalytic wet air oxidation of succinic acid: influence of the preparation, the storage and the pre-treatment conditions
Hao et al. Hierarchically porous silica supported ceria and platinum nanoparticles for catalytic combustion of toluene
Meng et al. Selective oxidation of amino alcohols to amino acids over au supported on monoclinic ZrO2: dominant active sites and kinetic study
Bhat et al. Improving the thermal stability and n-butanol oxidation activity of Ag-TiO2 catalysts by controlling the catalyst architecture and reaction conditions
Wu et al. Imine synthesis by benzylamine self-coupling catalyzed by cerium-doped MnO2 under mild conditions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination