CN116272874A - 一种基于废塑料再利用的塑料炭材料及制备方法与应用 - Google Patents

一种基于废塑料再利用的塑料炭材料及制备方法与应用 Download PDF

Info

Publication number
CN116272874A
CN116272874A CN202310504063.XA CN202310504063A CN116272874A CN 116272874 A CN116272874 A CN 116272874A CN 202310504063 A CN202310504063 A CN 202310504063A CN 116272874 A CN116272874 A CN 116272874A
Authority
CN
China
Prior art keywords
plastic
carbon material
waste
adsorption
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310504063.XA
Other languages
English (en)
Other versions
CN116272874B (zh
Inventor
何欢
柴秋云
潘学军
黄斌
来超超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202310504063.XA priority Critical patent/CN116272874B/zh
Publication of CN116272874A publication Critical patent/CN116272874A/zh
Application granted granted Critical
Publication of CN116272874B publication Critical patent/CN116272874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于废塑料再利用的塑料炭材料及制备方法与应用,属于废水处理技术领域。所述塑料炭材料的制备方法包括如下步骤:将处理过的废塑料颗粒与三氯化铁混合,加入水后冷冻干燥;然后将冷冻干燥后的混合物进行热解,得到塑料炭材料;废塑料颗粒为聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚甲基丙烯酸甲酯中的至少一种。所述制备方法简单、工艺步骤少,不仅成本低、产物收率高、对双酚A吸附性能好,而且过程中无需使用有毒的试剂或有机溶剂,实现了废弃塑料的资源再利用和环境的保护。

Description

一种基于废塑料再利用的塑料炭材料及制备方法与应用
技术领域
本发明属于废水处理技术领域,具体涉及一种基于废塑料再利用的塑料炭材料及制备方法与应用。
背景技术
内分泌干扰物(EDCs)是一种广泛存在于人类生活中的环境污染物,通过环境暴露或饮食摄入等途径对人体内分泌系统造成影响,干扰机体用于维持内环境稳态所需的内分泌激素的合成、分泌乃至最终代谢消除的一种物质。作为EDCs之一的BPA广泛用于聚碳酸酯、环氧树脂等塑料制品的制造,据报道BPA在土壤、空气、沉积物和水中分布广泛,难以被生物降解且高度耐化学降解,还能通过食物链累积进入生物体,对生态环境和人类健康构成严重威胁。目前,EDCs的去除技术主要包括吸附法、高级氧化法和生物法。其中吸附技术因具有操作简单、能耗低、高效且无二次污染等优点被认为是去除水中有机污染物最直接、应用最广泛、最有效、最经济的方法之一。碳材料由于其成本较低,一直被认为是一种理想的固体吸附剂。
塑料是工业生产和人们日常生活中最重要的基础合成材料。全球塑料产量从上世纪50年代的150万吨增加到2016年的3.35亿吨,到2017年已高达3.48亿吨,且每年增长率约5%。研究显示,未得到有效处理的塑料制品占比高达79%,最终会被释放到垃圾填埋场或自然环境中。塑料废物的难降解性及焚烧处理等给水、大气、土壤、海洋等带来严重污染,直接危害人类健康。
专利CN201610363150公开了利用塑料或废旧塑料炭化制备吸附材料的方法,将塑料或废旧塑料溶解于有机溶剂中,在催化剂的作用下热解炭化得到吸附材料,但上述专利引入有机溶剂,存在污染环境的风险,并且仅针对含有氰基的废旧塑料的炭化处理。
鉴于以上,从水体中去除BPA和塑料垃圾的问题都亟待解决。
发明内容
针对上述现有技术的缺点,本发明提供一种基于废塑料再利用的塑料炭材料及制备方法与应用。本发明使用水代替有环境风险的有机溶剂,将聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚甲基丙烯酸甲酯等废旧塑料进行炭化处理得到的塑料炭材料具有高产率,强吸附性的优势。
为实现上述目的,本发明采取的技术方案为:
一种基于废塑料再利用的塑料炭材料的制备方法,包括如下步骤:将处理过的废塑料颗粒与三氯化铁混合,加入水后冷冻干燥;然后将冷冻干燥后的混合物进行热解,得到塑料炭材料;废塑料颗粒为聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚甲基丙烯酸甲酯中的至少一种。
作为本发明的优选实施方式,所述废塑料颗粒与三氯化铁的质量比为1-5:1。
塑料颗粒与FeCl3以不同重量比混合会对热解的过程有不同的影响,热解后的塑料炭的石墨化程度随着铁添加量的减小而增加,进而导致材料吸附性能下降。
更优选的,所述废塑料颗粒与三氯化铁的质量比为1:1。
本发明所述制备方法中添加水的量能够将三氯化铁和塑料颗粒浸没即可。
作为本发明的优选实施方式,处理过的废塑料颗粒为经过水清洗过然后干燥的废塑料颗粒,干燥的温度为60℃。
作为本发明的优选实施方式,热解的温度为700℃,时间为4小时,升温速率为5℃/min,在氮气氛围下进行热解。
作为本发明的优选实施方式,热解在管式炉中进行。
作为本发明的优选实施方式,热解后依次经过研磨,过200目筛网过滤。
本发明还要求保护所述基于废塑料再利用的塑料炭材料的制备方法制备的塑料炭材料。
本发明所述塑料炭材料在吸附水体中双酚A的应用。
所述三氯化铁在塑料炭材料制备的作用原理:
本发明使用三氯化铁对塑料颗粒进行热解,一方面,塑料颗粒表面形态被破坏,热解温度保持在700℃,片状物质消失并形成花状结构,这大大增加了塑料炭材料的比表面积且在其表面很容易观察到一些Fe晶体簇状颗粒的形成,说明Fe与塑料颗粒的结合力强。另一方面,铁的存在减少了强烈吸收带的数量,但出现了可归于芳香族C=C、C=O或C=O的羧基、C-O和C-O-C和Fe=O键的吸收带,说明Fe加速官能团的归一化。基于上述两方面,三氯化铁是通过与塑化炭表面的表面的官能团的相互作用结合到塑化炭表面,促使塑料炭材料的产率高以及对双酚A的吸附性强。
与现有技术相比,本发明的有益效果为:本发明基于废塑料再利用的塑料炭材料的制备方法简单易操作、工艺步骤少,不仅材料来源广、成本低、产物收率高、对双酚A吸附性能好,而且过程中无需使用有毒的试剂或有机溶剂,实现了废弃塑料的资源再利用和环境的保护。
附图说明
图1为本发明实施例1-6所制备的塑料炭材料的扫描电镜图;其中(a)为实施例1所制备的塑料炭材料,记为PE-Fe;(b)为实施例2所制备的塑料炭材料,记为PP-Fe;(c)为实施例3所制备的塑料炭材料,记为PET-Fe;(d)为实施例4所制备的塑料炭材料,记为PMMA-Fe;(e)为实施例5所制备的塑料炭材料,记为混合炭-Fe。
图2为不同吸附时间下实施例1-5所述塑料炭材料对双酚A的吸附容量及拟一级、拟二级动力学模型拟合曲线。
图3为实施例1-5所述塑料炭材料对不同初始浓度双酚A吸附容量的变化以及Langmuir等温线模型和Freundlich等温线模型拟合曲线。
具体实施方式
为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
实施例1
本实施例一种基于废塑料再利用的塑料炭材料的制备方法,包括如下步骤:
(1)将废聚乙烯塑料颗粒使用超纯水清洗数次,然后在60℃下干燥;
(2)将步骤(1)处理过的废聚乙烯塑料颗粒与三氯化铁按照质量比为1:1混合,加入超纯水混合连续搅拌24h,然后在-40℃下进行冷冻干燥72h;
(3)将冷冻干燥后的混合物在氮气氛围下以5℃/min的升温速率升温至700℃热解4h后,研磨并使用200目筛网进行过筛得到塑料炭材料,标号为PE-Fe。
实施例2
本实施例所述基于废塑料再利用的塑料炭材料的制备方法与实施例1唯一不同的是:将步骤(1)中的废聚乙烯塑料颗粒替换为聚乙烯塑料颗粒,得到的塑料炭材料,标号为PP-Fe。
实施例3
本实施例所述基于废塑料再利用的塑料炭材料的制备方法与实施例1唯一不同的是:将步骤(1)中的废聚乙烯塑料颗粒替换为聚对苯二甲酸乙二醇酯塑料颗粒,得到的塑料炭材料,标号为PET-Fe。
实施例4
本实施例所述基于废塑料再利用的塑料炭材料的制备方法与实施例1唯一不同的是:将步骤(1)中的废聚乙烯塑料颗粒替换为聚甲基丙烯酸甲酯塑料颗粒,得到的塑料炭材料,标号为PMMA-Fe。
实施例5
本实施例所述基于废塑料再利用的塑料炭材料的制备方法与实施例1唯一不同的是:将步骤(1)中的废聚乙烯塑料颗粒替换为聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚甲基丙烯酸甲酯的四种塑料颗粒混合物聚混合塑料颗粒,得到的塑料炭材料,标号为混合炭-Fe;聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚甲基丙烯酸甲酯的质量比为1:1:1:1。
实施例6
本实施例所述基于废塑料再利用的塑料炭材料的制备方法与实施例1唯一不同的是:步骤(2)中,将步骤(1)处理过的废聚乙烯塑料颗粒与三氯化铁按照质量比为5:1混合,得到塑料炭材料,标号为PE-Fe-0。
对比例1
本对比例所述基于废塑料再利用的塑料炭材料的制备方法与实施例1唯一不同的是:将步骤(1)中的废聚乙烯塑料颗粒替换为ABS塑料,得到的塑料炭材料,标号为ABS-Fe;ABS塑料是丙烯腈、丁二烯、苯乙烯三种单体的三元共聚物。
对比例2
本对比例所述基于废塑料再利用的塑料炭材料的制备方法与实施例1唯一不同的是:将步骤(2)中的三氯化铁替换为氯化锌,得到的塑料炭材料,标号为PE-Zn。
对比例3
本对比例所述基于废塑料再利用的塑料炭材料的制备方法,包括如下步骤:
(1)将废聚乙烯塑料颗粒使用超纯水清洗数次,然后在60℃下干燥;
(2)将步骤(1)处理过的废聚乙烯塑料颗粒与三氯化铁按照质量比为1:1混合,加入超纯水混合连续搅拌24h,然后60℃下干燥;
(3)将干燥后的混合物在氮气氛围下以5℃/min的升温速率升温至700℃热解4h后,研磨并使用200目筛网进行过筛得到塑料炭材料,标号为PE-Fe-1。
对比例4
本对比例所述基于废塑料再利用的塑料炭材料的制备方法,包括如下步骤:
(1)将废聚乙烯塑料颗粒使用超纯水清洗数次,然后在60℃下干燥。
(2)将步骤(1)处理过的废聚乙烯塑料颗粒与三氯化铁按照质量比为1:1混合得到混合物。
(3)将混合物在氮气氛围下以5℃/min的升温速率升温至700℃热解4h后,研磨并使用200目筛网进行过筛得到塑料炭材料,标号为PE-Fe-2。
对比例5
本对比例所述基于废塑料再利用的塑料炭材料的制备方法与实施例1唯一不同的是:步骤(2)中,将步骤(1)处理过的废聚乙烯塑料颗粒与三氯化铁按照质量比为6:1混合,得到塑料炭材料,标号为PE-Fe-3。
试验例1
为探索塑料炭材料不同吸附时间吸附量及吸附平衡时间,本试验例将实施例1-6和对比例1-5所得到的塑料炭材料应用于水中吸附双酚A中,具体包括如下步骤:
S1:配制浓度为10mg/L的双酚A溶液,并添加0.1M的NaOH、0.1M的HCl调节pH为7。
S2:称取实施例1-6和对比例1-5所制备的塑料炭材料各5mg,放入棕色玻璃瓶中,不同吸附时间下分别设置三个平行样。
S3:向S2中放置样品的棕色玻璃瓶中加入50ml双酚A溶液,放入25℃摇床中震荡吸附,吸附时间为0、1、2、4、6、20、14、24h,转速为180rpm。
S4:吸附结束后,取1ml吸附后溶液在16000rpm条件下离心5min,取上清液用高效液相色皮进行检测,由标准曲线的带吸附后溶液的浓度,然后根据吸附前后溶液浓度的变化,利用公式(1)计算塑料炭材料不同吸附时间对双酚A的吸附量。
Figure BDA0004214993680000061
式(1)中,t为吸附时间,单位为h;Qt为t时单位质量吸附剂的吸附量,单位为mg·g-1;C0和Ct分别为溶液中双酚A的初始浓度和t时的浓度,单位为mg·L-1;V为溶液体积,单位为L;m为塑料炭材料的投加量,单位为g。
S5:使用准一级动力学方程、准二级动力学方程对动力学数据进行拟合:
准一级动力学方程:
Figure BDA0004214993680000071
准二级动力学方程:
Figure BDA0004214993680000072
式(2)和(3)中,t为吸附时间,单位为h;Qe为吸附平衡时单位质量吸附剂的吸附量,单位为mg·g-1;Qt为t时间内的吸附量,单位为mg·L-1;k1、k2分别为准一级动力学方程和准二级动力学方程的吸附速率常数,k1单位为h-1,k2单位为g·mg-1·h-1
图1中可以看出塑料炭材料表面不均匀,凹凸不平呈粗糙状,有明显的皱纹和层状结构且分布较为密集,为吸附反应的发生提供相当数量的吸附位点。
根据图2可知,塑料炭材料对双酚A的吸附作用大约在接触24h后基本达到吸附平衡。并且准一级和准二级方程非线性拟合曲线如图2和表1所示,由计算可知,塑料炭材料对双酚A的准二级吸附动力学方程相关系数(R2)均大于准一级动力学,可见用准二级吸附动力学方程来模拟分析塑料炭材料对双酚A的去除速率是可靠的。
表1实施例1-5塑料炭材料吸附双酚A的准一级和准二级方程非线性拟合曲线数据
Figure BDA0004214993680000073
表2实施例1-6和对比例1-5塑料炭材料的的24小时单位质量吸附剂的吸附量及所述制备制备塑料炭材料的产率对比
Figure BDA0004214993680000081
根据表2可知,实施例1-6塑料炭材料的产率和吸附量优于对比例所制备的材料,说明本发明所述制备方法产率较高,且制备方法简单,可大规模生产,结合对双酚A吸附效果较佳的效果,可以将废塑料再利用与水体中双酚A去除相结合,对环境做出较大贡献。
试验例2
为探索塑料炭材料对不同双酚A溶液浓度的吸附情况,本试验例将实施例1-6和对比例1-5所得到的塑料炭材料应用于水中吸附双酚A中,具体包括如下步骤:
S1:配制不同浓度的双酚A溶液,并添加0.1M的NaOH、0.1M的HCl调节pH为7;双酚A溶液浓度分别为5、10、15、25、50、75mg/L。
S2:称取实施例1-6和对比例1-5所制备的塑料炭材料各5mg,放入棕色玻璃瓶中,不同浓度双酚A溶液下分别设置两个平行样。
S3:向S2中放置样品的棕色玻璃瓶中加入50ml双酚A溶液,放入25℃摇床中震荡吸附24h,转速为180rpm。
S4:吸附结束后,取1ml吸附后溶液在16000rpm条件下离心5min,取上清液用高效液相色皮进行检测,由标准曲线的带吸附后溶液的浓度,然后根据吸附前后溶液浓度的变化,利用公式(1)计算塑料炭材料不同吸附时间对双酚A的吸附量。
Figure BDA0004214993680000091
式(4)中,Qe为双酚A的平衡吸附量,单位为mg·g-1;Ce是吸附平衡时的溶液浓度,单位为mg·L-1;C0为溶液中双酚A的初始浓度,单位为mg·L-1;V为溶液体积,单位为L;m为塑料炭材料的投加量,单位为g。
S5:通过Langmuir等温线模型和Freundlich等温线模型对等温线数据进行了非线性拟合。各模型的方程式如下:
Langmuir等温线模型:
Figure BDA0004214993680000092
Freundlich等温线模型:
Figure BDA0004214993680000093
式(5)和(6)中,Qe为双酚A的平衡吸附量,单位为mg·g-1;Ce是吸附平衡时的溶液浓度,单位为mg·L-1;KL为Langmuir等温吸附常数,单位为L·mg-1;KF和n分别为Freundlich方程常数和无量纲常数,KF单位为(mg/g)(L/mg)1/n;Qm为理论最大吸附量,单位为mg·g-1
根据图3可知,Langmuir等温吸附模型和Freundlich等温吸附模型拟合曲线如图3和表3所示,随着混合体系中双酚A的浓度的不断上升,塑料炭材料对双酚A的吸附量也不断增大。Freundlich模型的相关系数(R2)小于Langmuir模型的相关系数,这说明塑料炭材料吸附双酚A过程中Langmuir模型比Freundlich模型更能拟合结果。通过Langmuir拟合可知,塑料炭材料对双酚A的最大吸附量Qm为71.55mg/g;这说明了塑料炭材料能够很好地应用于双酚A的去除。
表3实施例1-5塑料炭材料吸附双酚A的Langmuir等温吸附模型和Freundlich等温吸附模型拟合曲线数据
Figure BDA0004214993680000101
表4实施例和对比例塑料炭材料的对最大吸附量对比
最大吸附量/(mg/g)
实施例1 29.27
实施例2 15.98
实施例3 65.77
实施例4 26.61
实施例5 52.39
实施例6 15.36
对比例1 10.13
对比例2 9.46
对比例3 12.43
对比例4 6.51
对比例5 11.85
根据表4可知,实施例1-6塑料炭材料的最大吸附量优于对比例所制备的材料,说明本发明所述制备方法制备的塑料炭材料对双酚A具有优异的吸附性能。根据表2和4可知,对比实施例1和对比例1,对比例1的吸附性能和产率较低,是因为ABS属于无定形聚合物,表面非常光滑与三氯化铁热解结合性差因此产率低,且本发明中使用的PE塑料应用更广泛,处理研究意义更大。对比实施例1和对比例2可知,对比例2的吸附性能和产率较低,是因为PE-Zn是一种由类石墨微晶构成的无定形材料,而热解温度保持在700℃时三氯化铁改性塑料炭中的部分三氯化铁会产生零价铁,其还原性强、比表面积大对有机污染物具有更好的吸附特性和反应活性。根据对比例3和实施例1可知,对比例3的吸附性能和产率较低,是因为将三氯化铁和塑料颗粒混合物冷干后两者结合程度比干燥要好,热解产率也更高。根据对比例4和实施例1可知,对比例4的吸附性能和产率较低,是因为直接将两者的混合物热解,部分塑料会随着氮气气流被带出管式炉,而加水冷干可以更好地使三氯化铁和塑料颗粒固定在一起,达到更高的产率和更好的吸附性能。根据对比例4和实施例1、6可知,三氯化铁和塑料颗粒的质量比对塑料炭材料的产率和吸附性能影响较大,三氯化铁和塑料颗粒的质量比在本发明限定范围内,所制备的塑料炭材料具有较好的产率和吸附性能。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (6)

1.一种基于废塑料再利用的塑料炭材料的制备方法,其特征在于,包括如下步骤:将处理过的废塑料颗粒与三氯化铁混合,加入水后冷冻干燥;然后将冷冻干燥后的混合物进行热解,得到塑料炭材料;废塑料颗粒为聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚甲基丙烯酸甲酯中的至少一种。
2.如权利要求1所述基于废塑料再利用的塑料炭材料的制备方法,其特征在于,所述废塑料颗粒与三氯化铁的质量比为1-5:1。
3.如权利要求1所述基于废塑料再利用的塑料炭材料的制备方法,其特征在于,所述废塑料颗粒与三氯化铁的质量比为1:1。
4.如权利要求1所述基于废塑料再利用的塑料炭材料的制备方法,其特征在于,热解的温度为700℃,时间为4小时,升温速率为5℃/min,在氮气氛围下进行热解。
5.权利要求1-4任一项所述基于废塑料再利用的塑料炭材料的制备方法制备的塑料炭材料。
6.权利要求4所述塑料炭材料在吸附水体中双酚A的应用。
CN202310504063.XA 2023-05-06 2023-05-06 一种基于废塑料再利用的塑料炭材料及制备方法与应用 Active CN116272874B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310504063.XA CN116272874B (zh) 2023-05-06 2023-05-06 一种基于废塑料再利用的塑料炭材料及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310504063.XA CN116272874B (zh) 2023-05-06 2023-05-06 一种基于废塑料再利用的塑料炭材料及制备方法与应用

Publications (2)

Publication Number Publication Date
CN116272874A true CN116272874A (zh) 2023-06-23
CN116272874B CN116272874B (zh) 2024-09-06

Family

ID=86788987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310504063.XA Active CN116272874B (zh) 2023-05-06 2023-05-06 一种基于废塑料再利用的塑料炭材料及制备方法与应用

Country Status (1)

Country Link
CN (1) CN116272874B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105771901A (zh) * 2016-05-27 2016-07-20 重庆市科学技术研究院 利用塑料或废旧塑料炭化制备吸附材料的方法
US20170233265A1 (en) * 2016-02-11 2017-08-17 King Fahd University Of Petroleum And Minerals Method for removing cationic dyes from an aqueous solution using an adsorbent
CN111204817A (zh) * 2020-01-15 2020-05-29 李立欣 一种利用有害水华藻及塑料制备的磁性复合炭及制备方法
CN114931929A (zh) * 2022-05-20 2022-08-23 中铁上海工程局集团市政环保工程有限公司 一种铁基污泥/塑料复合生物炭吸附材料,及其制备方法和应用
WO2022220828A1 (en) * 2021-04-14 2022-10-20 William Marsh Rice University Porous polymeric carbon sorbents and methods of making and using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170233265A1 (en) * 2016-02-11 2017-08-17 King Fahd University Of Petroleum And Minerals Method for removing cationic dyes from an aqueous solution using an adsorbent
CN105771901A (zh) * 2016-05-27 2016-07-20 重庆市科学技术研究院 利用塑料或废旧塑料炭化制备吸附材料的方法
CN111204817A (zh) * 2020-01-15 2020-05-29 李立欣 一种利用有害水华藻及塑料制备的磁性复合炭及制备方法
WO2022220828A1 (en) * 2021-04-14 2022-10-20 William Marsh Rice University Porous polymeric carbon sorbents and methods of making and using same
CN114931929A (zh) * 2022-05-20 2022-08-23 中铁上海工程局集团市政环保工程有限公司 一种铁基污泥/塑料复合生物炭吸附材料,及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHAOCHAO LAI ET AL.: "Adsorption and photochemical capacity on 17α-ethinylestradiol by char produced in the thermo treatment process of plastic waste", 《JOURNAL OF HAZARDOUS MATERIALS》, vol. 423, 7 September 2021 (2021-09-07), pages 2, XP086858832, DOI: 10.1016/j.jhazmat.2021.127066 *
YIBING CAI ET AL.: "Catalyzing carbonization function of ferric chloride based on acrylonitrileebutadieneestyrene copolymer/organophilic montmorillonite nanocomposites", 《POLYMER DEGRADATION AND STABILITY》, vol. 92, 24 January 2007 (2007-01-24), pages 490 - 496, XP005897535, DOI: 10.1016/j.polymdegradstab.2006.08.029 *
任哲仪: "磁性壳聚糖改性生物炭的制备及其去除水中铜和亚甲基蓝", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, no. 6, 15 June 2022 (2022-06-15), pages 016 - 393 *
郑扬帆: "催化裂解聚乙烯塑料制备碳纳米管及其吸附性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, no. 9, 15 September 2019 (2019-09-15), pages 015 - 162 *

Also Published As

Publication number Publication date
CN116272874B (zh) 2024-09-06

Similar Documents

Publication Publication Date Title
Idrees et al. Animal manure-derived biochars produced via fast pyrolysis for the removal of divalent copper from aqueous media
Dai et al. Calcium-rich biochar from crab shell: an unexpected super adsorbent for dye removal
Li et al. Efficient removal of tetrabromobisphenol A (TBBPA) using sewage sludge-derived biochar: Adsorptive effect and mechanism
Shi et al. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal
Tang et al. Conversion of tannery solid waste to an adsorbent for high-efficiency dye removal from tannery wastewater: A road to circular utilization
Ma et al. One-pot hydrothermal synthesis of magnetic N-doped sludge biochar for efficient removal of tetracycline from various environmental waters
Chen et al. Functionalization of 4-aminothiophenol and 3-aminopropyltriethoxysilane with graphene oxide for potential dye and copper removal
Zhao et al. Application of sodium titanate nanofibers as constructed wetland fillers for efficient removal of heavy metal ions from wastewater
Liu et al. Effects of environmental aging on the adsorption behavior of antibiotics from aqueous solutions in microplastic-graphene coexisting systems
Sun et al. Adsorption of nitroimidazole antibiotics from aqueous solutions on self-shaping porous biomass carbon foam pellets derived from Vallisneria natans waste as a new adsorbent
Song et al. Biocompatible G-Fe3O4/CA nanocomposites for the removal of Methylene Blue
Ilyas et al. Utilization of activated carbon derived from waste plastic for decontamination of polycyclic aromatic hydrocarbons laden wastewater
Jain et al. Instructive analysis of engineered carbon materials for potential application in water and wastewater treatment
Guo et al. Chitosan/graphene oxide composite as an effective adsorbent for reactive red dye removal
Lawagon et al. Magnetic rice husk ash'cleanser'as efficient methylene blue adsorbent
Qin et al. Removal of tetracycline onto KOH-activated biochar derived from rape straw: Affecting factors, mechanisms and reusability inspection
Viglašová et al. Engineered biochar as a tool for nitrogen pollutants removal: Preparation, characterization and sorption study
Zhang et al. A hydrophilic surface molecularly imprinted polymer on a spherical porous carbon support for selective phenol removal from coking wastewater
Eldeeb et al. Novel bio-nanocomposite for efficient copper removal
Zhao et al. Small microplastic particles promote tetracycline and aureomycin adsorption by biochar in an aqueous solution
Liu et al. N-doping copolymer derived hierarchical micro/mesoporous carbon: Pore regulation of melamine and fabulous adsorption performances
Sheshmani et al. Potential of magnetite reduced graphene oxide/chitosan nanocomposite as biosorbent for the removal of dyes from aqueous solutions
Li et al. Biochars preparation from waste sludge and composts under different carbonization conditions and their Pb (II) adsorption behaviors
Liu et al. Facile method of synthesizing multilayer graphene capsuled sulfur nanoparticles for water treatment
CN116272874B (zh) 一种基于废塑料再利用的塑料炭材料及制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant