CN116251183B - 一种兼具磁共振增强显像的放疗增敏剂及其制备方法和应用 - Google Patents

一种兼具磁共振增强显像的放疗增敏剂及其制备方法和应用 Download PDF

Info

Publication number
CN116251183B
CN116251183B CN202310112437.3A CN202310112437A CN116251183B CN 116251183 B CN116251183 B CN 116251183B CN 202310112437 A CN202310112437 A CN 202310112437A CN 116251183 B CN116251183 B CN 116251183B
Authority
CN
China
Prior art keywords
mno
bsa
radiotherapy
magnetic resonance
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310112437.3A
Other languages
English (en)
Other versions
CN116251183A (zh
Inventor
陈丽娟
王梅云
焦雷
刘明博
程琳娜
高海燕
白岩
魏巍
李会强
刘欢欢
李晓晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Henan Provincial Peoples Hospital
Original Assignee
Qingdao University
Henan Provincial Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University, Henan Provincial Peoples Hospital filed Critical Qingdao University
Priority to CN202310112437.3A priority Critical patent/CN116251183B/zh
Publication of CN116251183A publication Critical patent/CN116251183A/zh
Application granted granted Critical
Publication of CN116251183B publication Critical patent/CN116251183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/242Gold; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/32Manganese; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • A61K49/143Peptides, e.g. proteins the protein being an albumin, e.g. HSA, BSA, ovalbumin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明属于生物材料领域,具体涉及一种兼具磁共振增强显像的放疗增敏剂及其制备方法和应用。该放疗增敏剂的纳米结构表示为MnO2/高Z序数元素@BSA,其中二氧化锰MnO2为二维(2D)纳米片结构,高Z序数元素纳米颗粒分散于MnO2纳米片层,整体结构通过牛血清白蛋白BSA作为稳定剂加入纳米体系。本发明所述的兼具磁共振增强显像的放疗增敏剂,依据肿瘤乏氧、放疗抵抗等特点,通过高Z序数元素,有效的吸收高能射线,实现放疗物理增敏,通过MnO2和高Z序数元素双途径增加O2产量,增强肿瘤放疗效果,具备产氧,产自由基功能,进行生物相容性改性,制备方法简单,可大规模生产。

Description

一种兼具磁共振增强显像的放疗增敏剂及其制备方法和应用
技术领域
本发明属于生物材料领域,具体涉及一种兼具磁共振增强显像的放疗增敏剂及其制备方法和应用。
背景技术
肿瘤放射治疗,即放疗是基于高能量放射线的一种局部治疗肿瘤的方法。作为目前临床治疗肿瘤的三大方式(手术、放疗、化疗)之一,大约70%的癌症患者在治疗癌症的过程中需要用放射治疗,约有40%的癌症可以用放疗根治。在肿瘤放疗中,高能量辐射可通过直接作用,即肿瘤细胞吸收一定的辐射能量后,直接与胞内生物大分子相互作用产生自由基,引起DNA分子断裂(DSB)、交联,进而导致细胞死亡;另外,射线亦可以引起组织中水分子电离,产生自由基,这些自由基再和生物大分子发生作用造成细胞损伤和死亡,从而达到间接抑制肿瘤生长的效果。
然而在临床实践过程中,放射治疗常因放疗抵抗而影响治疗效果,已有研究表明,放疗疗效取决于放射敏感性,除了不同细胞周期、不同组织器官以及不同肿瘤组织在受到照射后的反应程度不同外,肿瘤细胞的氧含量直接影响放射敏感性,然而,乏氧是大部分实体瘤所具有的一个共同特征,乏氧除了会引起肿瘤细胞放疗抵抗,使肿瘤细胞中放疗不敏感的G1/s期细胞比例增加,同时也会加速DNA辐射损伤修复,降低放疗细胞杀伤效果。
基于二氧化锰MnO2纳米材料由于独特的物理化学性质,通过基于肿瘤病理微环境(高表达H2O2,高表达GSH)的设计,能够在肿瘤原位与H2O2产生氧气(O2),同时掺杂对高能射线具有良好吸收性能的高Z序数元素铂(Au、Pt),一方面,产生大量二次电子,双重机制的增敏作用;另一方面,Au、Pt纳米粒同时发挥催化作用,同样能与H2O2发生反应,产生氧气,进一步补充O2产量。更重要的是,MnO2作为主体部分,同时能与肿瘤微环境中过表达的谷胱甘肽(GSH)反应,消耗还原性物质,阻止DNA辐射损伤修复。增强治疗效果。同时原位生化反应后生成的Mn2+发挥肿瘤部位磁共振(Magnetic Resonance Imaging,MRI)增强成像功能。在MnO2制备方法上,多以KMnO4为Mn源,在还原剂及反应条件选择上,以2-吗啉乙磺酸(MES)在超声30min条件下(J.Am.Chem.Soc.2011,133,50,20168-20171)或过夜反应(80℃,RSCAdv.,2017,7,14809),还原KMnO4,或使用十二烷基硫酸钠(SDS,一种对人体微毒的阴离子表面活性剂,Small,2015,11(18):2182-2191)我们首次使用葡萄糖和氨水作为还原剂,在60℃反应15min,即可完成KMnO4还原。另外,已报道的MnO2/Pt体系多采用电化学方法(SmallStruct.2021,2100047),高温回流法(CN 109741957 A)等,以上方法涉及产量低或需高温等苛刻条件。
更重要的是,MRI软组织分辨率高且无辐射,并具有多种成像模态,提供丰富的诊断信息,如形态结构、生理机能、组织功能等,可以很好解决基于CT技术开展图像引导放疗的问题。随着MRI与直线加速器一体化放疗设备以及MRI引导放疗系统(magneticresonance-guided radiation therapy,MRIgRT)的开发,兼具放疗增敏及MRI造影剂功能的显像增敏剂亟需开发。
发明内容
本发明为了改善乏氧状况,增强肿瘤放疗敏感性。设计了一种兼具磁共振增强显像的放疗增敏剂MnO2/高Z序数元素@BSA来增强辐射增敏,可以用于如胶质瘤的磁共振显像与治疗。
本发明技术问题采用以下技术方案来解决:
一方面,本发明提供了一种兼具磁共振增强显像的放疗增敏剂,该放疗增敏剂的纳米结构表示为MnO2/高Z序数元素@BSA,其中二氧化锰MnO2为二维(2D)纳米片结构,高Z序数元素纳米颗粒分散于MnO2纳米片层,放疗增敏剂的整体结构通过牛血清白蛋白BSA作为稳定剂加入纳米体系,以提高其分散性、满足注射使用要求。
另一方面,本发明还提供了一种兼具磁共振增强显像的放疗增敏剂的制备方法,用于制备上述的用于放疗的增敏剂:
步骤1:将高锰酸钾(KMnO4)加入葡萄糖溶液加热至60~90℃,混合均匀;
加入NH3·H2O,充分混合;
加入高Z序数元素前驱体,继续搅拌反应;
将得到的沉淀物/溶液经去离子水透析后离心,冻干,得到MnO2/高Z序数元素。
其中,所述高Z序数元素为在放疗中可能同样发挥作用的元素,如Pt或Au;
所述高锰酸钾和高Z序数元素前驱体的质量比为5:0.6~4,高锰酸钾和葡萄糖的质量比为1:6,NH3·H2O浓度为25%质量分数,每1mg高锰酸钾对应加入4μL 25%的NH3·H2O。
步骤2:为了获得更稳定的生物应用样品,用牛血清白蛋白BSA作为稳定剂加入步骤1中。用超声波细胞破碎仪分散样品,工作参数为:工作/间隔时间:1s~10s/5s~10s,功率:10%~35%,工作时间:10min~30min。其中BSA的质量浓度为:1~10mg/mL。
另外,本发明还提供了上述放疗增敏剂以及上述制备方法在胶质瘤磁共振增强显像及放疗增敏治疗中的应用。
本发明的有益效果为:
本发明的MnO2/高Z序数元素体系,除了依靠MnO2的催化活性产生氧气以外,同样负载在MnO2上的高Z序数元素纳米粒同样发生催化H2O2产生氧气的途径,增加产氧效率。
本发明所述的兼具磁共振增强显像的放疗增敏剂反应条件温和,步骤简单,所需制备的设备要求低,条件温和,通过对条件的综合控制,制备得到的产品纯度高,重复性高,有利于日常大规模生产。本发明制备的兼具磁共振增强显像的放疗增敏剂在胶质瘤皮下瘤模型中进行验证,稳定性良好,有良好的应用前景。
本发明设计的MnO2/高Z序数元素@BSA体系,能够响应肿瘤微酸(pH 6.8)、高表达的H2O2微环境,产生羟基自由基(最具杀伤力的自由基)以提高肿瘤细胞敏感性,产物中包含的氧气在改善乏氧方面提供支持。其中,MnO2在肿瘤放疗里发挥的作用为:①和肿瘤微环境中过表达的H2O2反应,生成氧气O2,改善乏氧,增强肿瘤放疗效果(另一产物Mn2+);②和肿瘤微环境中过表达的GSH反应,消耗还原性GSH,阻止GSH清除放疗产生的杀伤性羟基自由基·OH(另一产物Mn2+);③利用①和②产生的Mn2+,在HCO3-,微酸环境下,与H2O2进一步发生芬顿反应,产生更大量的杀伤性羟基自由基·OH;④利用①和②产生的Mn2+,发挥成像功能,磁共振T1增强效果,实现肿瘤治疗效果监测。高Z序数元素在肿瘤放疗中发挥的作用为:①沉积X-射线的辐射,直接增敏放疗。②高Z序数元素和肿瘤微环境中过表达的H2O2反应,生成氧气O2,改善乏氧,增强肿瘤放疗效果。本发明放疗增敏剂的作用机理(当高Z序数元素为Pt时)如图12所示。
本发明的增强放疗效果的放疗增敏剂,通过放大放疗的DNA损伤效果以及产生氧气、产生活性氧ROS、消耗肿瘤组织内GSH,阻止DNA辐射损伤修复,以增强辐射介导的氧化应激。
本发明所述的兼具磁共振增强显像的放疗增敏剂,依据肿瘤乏氧、放疗抵抗等特点,通过设计制备特殊功能的无机纳米材料,具备产氧,产自由基功能,进行生物相容性改性,制备方法简单,可大规模生产,有利于临床推广。
附图说明
图1为实施例1中制备兼具磁共振增强显像的放疗增敏剂MnO2/Pt的反应监测。
图2为本发明实施例1中制备的兼具磁共振增强显像的放疗增敏剂MnO2/Pt的透射电镜形貌及元素映射图;
图3为本发明实施例1中制备的兼具磁共振增强显像的放疗增敏剂MnO2/Pt@BSA稳定性考察图;
图4为本发明实施例1中该制剂体外及细胞水平氧气产生评价图;
图5为本发明实施例1中该制剂的体外羟基自由基(·OH)产生结果图;
图6为三种不同比例原料制备的MnO2/Pt@BSA的粒径分布;
图7为三种不同比例原料制备的MnO2/Au@BSA的粒径分布;
图8为本发明实施例5中该制剂在模拟肿瘤微酸、高H2O2/高还原(GSH)环境响应能力图;
图9为本发明实施例5中该制剂响应模拟肿瘤还原(GSH)微环境的体内外MRI成像图;
图10为本发明实施例6中该制剂在细胞水平的细胞毒性及放疗增敏图效果;
图11为本发明实施例7中该制剂在动物模型水平的放疗增敏效果图;
图12为本发明放疗增敏剂的作用机理图,其中高Z序数元素为Pt。
具体实施方式
下面通过具体实施方式对本发明进行更加详细的说明,以便于对本发明技术方案的理解,但并不用于对本发明保护范围的限制。
实施例1
一种兼具磁共振增强显像的放疗增敏剂MnO2/Pt@BSA的制备方法,包括如下步骤:
步骤(1):将1mL高锰酸钾(KMnO4,5mg/mL)加入30mL葡萄糖溶液(1mg/mL)中,加热至60℃,混合均匀。然后,加入20μL、25%的NH3·H2O,充分混合2分钟后,加入Pt前驱体六氯铂酸(H2PtCl6,0.1M,100μL),继续搅拌反应15分钟,得到的沉淀物/溶液经去离子水透析后离心,冻干,得到MnO2/Pt。
另外,不加Pt前驱体的制备过程可得到MnO2产物。
步骤(2):为了获得更稳定的生物应用样品,将浓度为5mg/mL的牛血清白蛋白BSA作为稳定剂加入步骤(1)中,用超声波细胞破碎仪分散样品,工作/间隔时间:5s/8s,功率:35%,工作时间:10min。得到MnO2/Pt@BSA。
另外,不加Pt前驱体的制备过程可得到MnO2@BSA产物。用于进一步的实验。
上述制备方法中,通过紫外-可见光谱监测反应过程,如图1所示,高锰酸钾KMnO4的最大吸收峰在530nm,且在加入葡萄糖后,吸收不变,说明未发生还原反应,在加入氨水后,KMnO4最大吸收峰下降(图1-reaction 0min),并在之后一分钟内继续下降(图1-reaction 1min),反应10分钟后,KMnO4最大吸收峰消失(图1-reaction 10min),并在之后的20~30分钟保持稳定(图1-reaction 20min、30min)。说明高锰酸钾在10分钟内被完全还原。
上述制得的MnO2/Pt@BSA经ICP-MS分析,Mn元素含量为:49.5μg/mL,Pt元素含量为19.2μg/mL,Pt的负载率为38.7%。
上述制得的MnO2/Pt@BSA的透射电镜(TEM)图及元素映射图如图2A1~A4所示,透射电镜图像清晰显示MnO2/Pt@BSA,MnO2纳米片层上均匀分散Pt纳米粒(粒径1nm左右),相应的mapping图证实了Mn、O、Pt元素的存在及分布情况,如图2B1~B4所示。
上述制得的MnO2、MnO2/Pt、MnO2@BSA、MnO2/Pt@BSA的稳定性如图3所示,在制备后(图3,0h),以上4种制剂均为均相澄清棕色溶液,考察4℃、25℃条件下的贮存稳定性,结果显示,只有经过BSA稳定剂分散的MnO2和MnO2/Pt才能稳定贮存,时长达19天。
由于商业探针([Ru(dpp)3]Cl2,(RDPP))的荧光强度会被氧气淬灭,进而可采用该商业探针定量/定性检测上述制得的MnO2@BSA、MnO2/Pt@BSA的体外及细胞水平氧气产生情况。简单地说,将RDPP(3μL,10mM,溶于乙醇)和MnO2@BSA或MnO2/Pt@BSA(100μL)溶液加入到96孔板中混合均匀,加入H2O2(100μL,pH=5.5缓冲液)后,用多功能酶标仪(Synergy H1,BioTek)在(λex=488nm,λem=628nm)记录荧光光谱,H2O2与乙酸/醋酸钠缓冲液(pH=5.5)作为对照。结果如图4(A)所示,RDPP在暴露于100mM H2O2(PBS[pH=5.6])时没有显示出明显的荧光变化,暴露于MnO2时荧光强度略有下降,在MnO2/Pt溶液中反应迅速,荧光强度在100秒内迅速下降,产氧效率及产氧量显著高于单一的MnO2,这表明O2的有效生成。同样,在细胞实验中,以胶质瘤U87细胞为模型,通过荧光成像手段观测到,经过MnO2/Pt@BSA处理的细胞,RDPP荧光强度显著降低,如图4(B)所示。
通过电子顺磁共振光谱(EPR,BrukerA300,德国)检测上述制得的MnO2/Pt@BSA在加入DMPO捕获剂后羟基自由基(·OH)的生成情况,H2O2作为对照。结果显示DMPO捕获·OH后的标准等距四重峰,峰高比为1:2:2:1,且显著高于等量的H2O2对照(图5A)。亚甲基蓝(MB)是检验·OH的重要手段,亚甲基蓝与·OH反应,颜色由蓝变为无色,而通过GSH消耗·OH可使MB颜色恢复。测试了在HCO3 -(25mM)条件下,H2O2与Mn2+(8mM H2O2和0.5mM MnCl2)在37℃下进行反应30分钟亚甲基蓝(MB)褪色(如图5B)。说明Mn2+在类微环境中(HCO3 -,H2O2),能够产生杀伤性·OH。本实施例测试了以MnO2/Pt氧化物状态下·OH的产生情况,在HCO3 -、H2O2条件下,MnO2降解产生Mn2+,同样能使MB颜色变浅,而在有10mM GSH的情况下,MB蓝色完全恢复(如图5C)。以上过程均可通过测定UV-Vis吸收光谱强弱来表示。
实施例2
本实施例的兼具磁共振增强显像的放疗增敏剂MnO2/Pt@BSA的制备方法与实施例1基本相同,不同之处在于:步骤(2):将浓度为1mg/mL的牛血清白蛋白BSA作为稳定剂加入步骤(1)中。结果显示浓度为1mg/mL的牛血清白蛋白BSA也可以提高目标产品的稳定性。
实施例3
本实施例的兼具磁共振增强显像的放疗增敏剂MnO2/Pt@BSA的制备方法与实施例1基本相同,不同之处在于:步骤(1):加入Pt前驱体六氯铂酸(H2PtCl6,0.1M)的体积为20μL、50μL、80μL,即以质量比计,KMnO4:H2PtCl6=5:0.8/2/3.2。
结果显示,三种不同比例原料制备的MnO2/Pt@BSA均为棕黄色澄明溶液,稳定性差别不大。粒度测定结果显示:不同量Pt前驱体的加入,不改变体系的粒度分布情况,均出现了双峰,这可能是归因于体系中存在MnO2纳米片的二维结构(peak2)和Pt纳米粒的一维结构(peak1),随着H2PtCl6加入量的提高,peak1的粒径保持不变,大概在18~23nm之间,且峰占百分比增加(表1);对peak2,随着H2PtCl6加入量的提高,峰占比逐渐降低,如图6所示;另外,本实施例所制备的纳米体系整体的平均粒径逐渐减小。
表1三种不同比例原料制备的MnO2/Pt@BSA的粒径分布
—— KMnO4/Pt(5:0.8) KMnO4/Pt(5:2) KMnO4/Pt(5:3.2)
Peak 1(d.nm)(Percent) 17.93(61.1%) 17.41(62.3%) 19.67(64.5%)
Peak 2(d.nm)(Percent) 145(38.9%) 144(37.3%) 241.7(35.5%)
Average size(d.nm) 326.1 286.5 273.9
实施例4
本实施例的兼具磁共振增强显像的放疗增敏剂MnO2/Au@BSA的制备方法与实施例1基本相同,不同之处在于:步骤(1):将前驱体更换为氯金酸(HAuCl4,0.1M,80μL),结果显示得到了类似的棕色、稳定性良好澄清透明溶液。
本实施例还考察了MnO2/Au@BSA制备条件:
1、温度:
考察了RT(室温25℃)、60℃、90℃对制备的溶液性状影响,发现整个体系在室温下不反应,溶液一直为紫色溶液,但加热条件下(60℃、90℃)对体系产物溶液影响不大,均能反应得到棕色澄明溶液。
2、氨水
氨水的加入,对产物的形成及稳定性起关键作用。20μL、25%的NH3·H2O(+)溶液至少能稳定存在24h,不加氨水,即NH3·H2O(-)组的溶液在反应15min后,即有絮状棕色沉淀生成,且在超声后,不能完全分散。
3、氯金酸(HAuCl4)前驱体的加入量
不同量的氯金酸(HAuCl4)前驱体,会影响体系的粒度分布。如图7所示,KMnO4:Au=5:0.68时,产物的平均粒径为121.6nm;KMnO4:Au=5:1.70时,产物的平均粒径为85.6nm,但粒度分布不均;KMnO4:Au=5:2.71,产物的平均粒径为98.85nm。说明,该制备方法同样适用于HAuCl4为前驱体制备MnO2/Au@BSA,Au同样作为高Z序数元素,在放疗中可能同样发挥增敏效果。
实施例5
兼具磁共振增强显像的放疗增敏剂MnO2/Pt@BSA在磁共振成像方面的应用:
肿瘤微环境以微酸、高氧化/还原性为主要特征,其中H2O2、GSH过表达。本实施例配置不同pH值(5.5、6.8、7.4)的PBS缓冲液,加入不同浓度的H2O2工作溶液(50、25、3.12、1.56、0.39、0),再分别加入等量的MnO2/Pt@BSA,用多功能酶标仪(Synergy H1,BioTek)测定整个响应体系的UV-Vis全波长(280nm~800nm)扫描吸收光谱,并结合反应管中宏观的颜色深浅,判断其类体内肿瘤微环境的响应性,结果显示,随着H2O2浓度的升高,体系的吸收强度下降(图8A),H2O2是MnO2/Pt降解的必要条件,且在pH值为5.5时,降解程度最大,溶液为无色(图8B1、B2)。结果表明,MnO2/Pt@BSA具备类肿瘤微环境(H2O2)响应能力,且在一定的pH下,其降解程度随H2O2浓度升高而增大(图8A)。并采用同样的方法,制备了不同谷胱甘肽GSH浓度梯度(10、5、2.5、1.25、0.62、0.31、0mM)作用于MnO2/Pt@BSA(pH=6.8)。结果如图8(C,D)所示,在微酸高还原(GSH)环境下,体系的紫外吸收强度与GSH浓度成反比,且在3min以内MnO2/Pt@BSA发生降解,溶液由棕黄色变为无色,说明该体系具备类肿瘤微环境(GSH)的响应能力,且在一定pH下,其降解程度随GSH浓度升高而增大。
MnO2/Pt@BSA在微酸、5mM的GSH的溶液环境中,从棕黄色溶液降解为无色Mn2+溶液(图9A)。发生微环境响应后,被降解的Mn2+具有磁共振成像功能,将本发明实施例1中制备的MnO2/Pt@BSA进行响应模拟肿瘤还原(GSH)微环境体内外的MRI成像。使用临床1.5T磁共振扫描仪(西门子,德国)扫描样品,进行体外磁共振成像(MRI)性能评价,T1回波序列主要参数为:TR=16ms,TE=2.5ms。在中性/酸性环境(pH7.4,pH6.8,pH5.5)中,不同的MnO2/Pt@BSA浓度[以Mn浓度](0.23,0.12,0.056,0.028,0.014,0.007,0.003μM),与谷胱甘肽(GSH=10mM)反应后的T1加权成像序列图如图9C显示,在浓度大于0.056μM时,在该浓度的GSH条件下,溶液体系呈高信号,而GSH(-)时,与0μM对比,溶液呈稍低/低信号,进一步说明MnO2/Pt@BSA与谷胱甘肽的反应产生了Mn2+,且与MnO2/Pt@BSA的浓度相关。进一步的,通过T1mapping序列,得到定量测定T1信号强度,计算纵向弛豫率r1。结果如图9B所示,在GSH(+)pH7.4、pH6.8、pH5.5的环境中,MnO2/Pt@BSA的纵向弛豫率(r1)分别为7.11mM-1s-1、4.78mM- 1s-1、7.32mM-1s-1,而在对照组中,在GSH(-)环境中,pH7.4、pH6.8、pH5.5的弛豫率达分别为0.45mM-1s-1、0.59mM-1s-1、1.25mM-1s-1。酸性环境使MnO2/Pt@BSA降解,谷胱甘肽使不同浓度的MnO2/Pt@BSA降解程度增加,生成Mn2+的量增加,达到磁共振T1成像对比增强的效果。
本实施例建立了U87肿瘤小鼠皮下瘤模型,使用配备动物线圈的3.0T(GE,美国)临床MRI扫描仪对荷瘤小鼠进行磁共振扫描。小鼠在静脉注射、瘤内注射MnO2/Pt@BSA(100μg/mL,100μL)2小时后分别进行成像,获取肿瘤感兴趣区域(ROI)信号进行体内磁共振成像能力评价。如图9D1所示,静脉注射MnO2/Pt@BSA,与正常组织相比,肿瘤稍均匀增强,皮肤血管强化;瘤内注射MnO2/Pt@BSA,肿瘤均匀增强及注射部位的不均匀增强(图9D2),说明MnO2/Pt@BSA在肿瘤处以Mn2+形式存在,存在体内肿瘤微环境响应降解能力。
实施例6
兼具磁共振增强显像的放疗增敏剂MnO2/Pt@BSA的细胞毒性及细胞、组织水平的放疗增敏效果
1、采用MTT试验测定细胞毒性及放疗增敏效果
具体使用人源胶质瘤细胞株U87,以确定MnO2@BSA,MnO2/Pt@BSA对U87细胞的毒性进行评价。步骤如下:收集培养至对数期的U87细胞,按照3×103个细胞/孔的密度加入96孔板,在100μL的Dulbecco's modified Eagle培养基(DMEM)与胎牛血清(Thermoscientific,USA)中培养24小时后,加入100μL的不同浓度的MnO2@BSA、MnO2/Pt@BSA溶液。继续培养36小时后,在每个孔中加入20μL的MTT(5mg/mL)并进一步培养4小时,然后用160μL的二甲基亚砜(DMSO)替换液体介质。最后,用多功能酶标仪(Bio-Tech Instrument,Inc.,USA)读取波长570nm处的吸收值(OD)(n=6)。结果如图10A所示,在Mn浓度大于540μM/L时,含Pt样品的MnO2/Pt@BSA与MnO2@BSA相比,对U87细胞的毒性呈显著性差异,这一结果同样在细胞形貌中体现(图10B)出:MnO2/Pt@BSA处理细胞后,细胞形貌萎缩呈球形,而MnO2@BSA处理后,细胞仍贴壁铺展形貌良好。
2、MTT试验及细胞体外克隆存活试验考察放疗条件对细胞活力的影响
将U87细胞以5×104个细胞/孔的密度种植在6孔培养皿中,24小时后,分别加入MnO2@BSA、MnO2/Pt@BSA(100μg/mL,100μL)培养12小时,然后将这些细胞暴露于不同强度的X射线照射器下,辐射剂量为6、8、10、12Gy。1小时后,用PBS清洗细胞,用多聚甲醛固定细胞(4℃,60分钟),然后用PBS清洗,再用结晶紫染色液(0.5%)染色,进行存活率统计。结果如图10C所示,细胞的存活率随X-ray辐照强度逐渐下降;对于MnO2@BSA处理组,经过X-ray辐照后,细胞存活率整体低于MnO2/Pt@BSA处理组,证明在相同剂量的射线辐照下,MnO2/Pt@BSA的增敏辐照的效果显著高于MnO2@BSA(p<0.01),这样一结果与结晶紫染色的结果一致(图10D)。
实施例7
兼具磁共振增强显像的放疗增敏剂MnO2/Pt@BSA的动物水平的放疗增敏效果
建立U87皮下肿瘤模型(肿瘤直径达8~10cm)。然后将RT(10Gy)与MnO2/Pt@BSA或MnO2@BSA(i.t.)相结合进行治疗,生理盐水作为阴性对照,注射给药一次,辐照一次。辐照24小时后,肿瘤组织被切除,固定,用γ-H2AX(servicebio technology CO.,LTD)染色来评估体内DNA损伤(阳性呈棕色),核为蓝染。用case viewer扫描切片后,Image J分析图像结果。
结果如图11A、B所示,与不作任何干预相比(NS组),单独RT(X-ray辐射)或单独的MnO2/Pt@BSA、MnO2@BSA样品治疗处理,或样品+RT处理,均能显著抑制动物模型中的肿瘤生长。放疗干预(RT,10Gy)显著优于单独的MnO2/Pt@BSA、MnO2@BSA(p<0.05),MnO2/Pt@BSA+RT、MnO2@BSA+RT对动物模型肿瘤的抑制效果显著优于单一放疗组(RT,10Gy);对同一肿瘤组织,在指定点瘤内注射MnO2/Pt@BSA样品,整体X-Ray辐射干预,并作γ-H2AX染色,如图11C、D所示,MnO2/Pt@BSA处理区域,γ-H2AX阳性率(34.4%)显著高于无MnO2/Pt@BSA处理的部分(14.1%)。从病理组织水平说明,MnO2/Pt@BSA的能够增加肿瘤组织DNA的损伤。
以上所述之实施例,只是本发明的较佳实施例而已,并非限制本发明的实施范围,故凡依本发明专利范围所述的构造、特征及原理所做的等效变化或修饰,均应包括于本发明申请专利范围内。

Claims (9)

1.一种兼具磁共振增强显像的放疗增敏剂,其特征在于,该放疗增敏剂的纳米结构表示为MnO2/高Z序数元素@BSA,其中MnO2为二维纳米片结构,高Z序数元素纳米颗粒分散于MnO2纳米片层,放疗增敏剂的整体结构通过牛血清白蛋白BSA作为稳定剂加入纳米体系;
所述高Z序数元素为Pt或Au。
2.权利要求1所述的一种兼具磁共振增强显像的放疗增敏剂的制备方法,其特征在于,包括以下步骤:
步骤1:将KMnO4加入葡萄糖溶液加热至60~90℃,混合均匀;
加入NH3·H2O,混合;
加入高Z序数元素前驱体,继续搅拌反应;
将得到的沉淀物/溶液经去离子水透析后离心,冻干,得到MnO2/高Z序数元素;
步骤2:用BSA作为稳定剂加入步骤1中;然后分散样品。
3.根据权利要求2所述的制备方法,其特征在于,所述高锰酸钾和葡萄糖的质量比为1:6。
4.根据权利要求2所述的制备方法,其特征在于,所述NH3·H2O浓度为25%质量分数,每1mg高锰酸钾对应加入4μL 25%的NH3·H2O。
5.根据权利要求2所述的制备方法,其特征在于,高Z序数元素前驱体分别为H2PtCl6或HAuCl4,所述高锰酸钾和高Z序数元素前驱体的质量比为5:0.6~4。
6.根据权利要求2所述的制备方法,其特征在于,BSA的质量浓度为:1~20mg/mL。
7.根据权利要求2所述的制备方法,其特征在于,步骤2中,用超声波细胞破碎仪分散样品,工作参数为:工作/间隔时间:1s~10s/5s~10s,功率:10%~35%,工作时间:10min~30min。
8.权利要求1所述的放疗增敏剂在制备胶质瘤磁共振增强显像及放疗增敏剂中的应用。
9.权利要求2~7任一项所述的制备方法在制备胶质瘤磁共振增强显像及放疗增敏剂中的应用。
CN202310112437.3A 2023-02-14 2023-02-14 一种兼具磁共振增强显像的放疗增敏剂及其制备方法和应用 Active CN116251183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310112437.3A CN116251183B (zh) 2023-02-14 2023-02-14 一种兼具磁共振增强显像的放疗增敏剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310112437.3A CN116251183B (zh) 2023-02-14 2023-02-14 一种兼具磁共振增强显像的放疗增敏剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116251183A CN116251183A (zh) 2023-06-13
CN116251183B true CN116251183B (zh) 2023-11-07

Family

ID=86685782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310112437.3A Active CN116251183B (zh) 2023-02-14 2023-02-14 一种兼具磁共振增强显像的放疗增敏剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116251183B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093272A (zh) * 2016-06-01 2016-11-09 西安交通大学 一种二氧化锰纳米片模拟氧化物酶检测还原性生物分子的方法
CN109771442A (zh) * 2019-03-15 2019-05-21 华中科技大学 一种增敏肿瘤放疗的复合纳米颗粒及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093272A (zh) * 2016-06-01 2016-11-09 西安交通大学 一种二氧化锰纳米片模拟氧化物酶检测还原性生物分子的方法
CN109771442A (zh) * 2019-03-15 2019-05-21 华中科技大学 一种增敏肿瘤放疗的复合纳米颗粒及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Albumin stabilized Pt nanoparticles as radiosensitizer for sensitization of breast cancer cells under X-ray radiation therapy;Yuhui Zhang等;《Inorganic Chemistry Communications》;第140卷;第109423页,尤其是第1页摘要、第1段,第2页左栏第1段和2.1,第4页左栏"结论" *
Albumin-Templated Bi2Se3-MnO2 Nanocomposites with Promoted Catalase-Like Activity for Enhanced Radiotherapy of Cancer;YuzhuYao等;《ACS Appl. Mater. Interfaces》;第13卷;第28650-28661页,尤其是第28650页左栏倒数第1段,第28651页左栏第2-5行、左栏倒数第1-5行、右栏第1-18行,第28655页第9-11行 *
Radioresistance in Glioblastoma and the Development of Radiosensitizers;Md Yousuf Ali等;《Cancers》;第12卷;第2511(1-30)页 *

Also Published As

Publication number Publication date
CN116251183A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
CN111643673B (zh) 一种同时包载光敏剂和蛋白质的肿瘤靶向纳米药物及其应用
Wang et al. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors
Liu et al. Gold nanoparticles doped metal-organic frameworks as near-infrared light-enhanced cascade nanozyme against hypoxic tumors
CN109771442B (zh) 一种增敏肿瘤放疗的复合纳米颗粒及其制备方法和应用
Hu et al. Enhancing anti-tumor effect of ultrasensitive bimetallic RuCu nanoparticles as radiosensitizers with dual enzyme-like activities
Liu et al. Carbon nanocage-based nanozyme as an endogenous H 2 O 2-activated oxygenerator for real-time bimodal imaging and enhanced phototherapy of esophageal cancer
Yuan et al. Iridium oxide nanoparticles mediated enhanced photodynamic therapy combined with photothermal therapy in the treatment of breast cancer
Zhu et al. Nanoplatforms with synergistic redox cycles and rich defects for activatable image-guided tumor-specific therapy
Liu et al. Precision photothermal therapy and photoacoustic imaging by in situ activatable thermoplasmonics
CN107469079B (zh) 一种t1-mri成像引导下的光动治疗剂制备方法
Wang et al. NIR-II-driven intracellular photocatalytic oxygen-generation on Z-Scheme iron sulfide/cobalt sulfide nanosheets for hypoxic tumor therapy
Zhang et al. Biomimetic mesoporous polydopamine nanoparticles for MRI-guided photothermal-enhanced synergistic cascade chemodynamic cancer therapy
CN109289050B (zh) 一种四氧化三铁/聚吡咯/葡萄糖氧化酶复合多功能纳米诊疗剂及其制备方法和应用
Li et al. Bimetallic oxide nanozyme-mediated depletion of glutathione to boost oxidative stress for combined nanocatalytic therapy
Nakayama et al. Samarium doped titanium dioxide nanoparticles as theranostic agents in radiation therapy
Wang et al. Dual-targeted nanoformulation with Janus structure for synergistic enhancement of sonodynamic therapy and chemotherapy
Chiarelli et al. Iron oxide nanoparticle-mediated radiation delivery for glioblastoma treatment
Zhou et al. Oxygen vacancy-enhanced catalytic activity of hyaluronic acid covered-biomineralization nanozyme for reactive oxygen species-augmented antitumor therapy
CN109172828B (zh) 一种新型稀土纳米双模态显像剂及其制备方法和应用
Li et al. Programmable phthalocyanine-iron-based nanoreactor for fluorescence/magnetic resonance dual-modality imaging-guided sono/chemodynamic therapies
CN116251183B (zh) 一种兼具磁共振增强显像的放疗增敏剂及其制备方法和应用
Tang et al. Multifunctional AuPt Nanoparticles for Synergistic Photothermal and Radiation Therapy
CN109793896A (zh) 一种基于树状大分子的放疗增敏型乏氧双模态造影剂的制备方法
Liu et al. Cancer cell membrane-coated upconversion nanoparticles/ZnxMn1-xS core-shell nanoparticles for targeted photodynamic and chemodynamic therapy of pancreatic cancer
Qiao et al. Fluorescence enhancement of gold nanoclusters via Zn doping for biomedical applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant