CN116250192A - 用于实现增强的配置授权的移动设备和方法 - Google Patents

用于实现增强的配置授权的移动设备和方法 Download PDF

Info

Publication number
CN116250192A
CN116250192A CN202080104664.6A CN202080104664A CN116250192A CN 116250192 A CN116250192 A CN 116250192A CN 202080104664 A CN202080104664 A CN 202080104664A CN 116250192 A CN116250192 A CN 116250192A
Authority
CN
China
Prior art keywords
values
base station
transmission
resources
uplink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080104664.6A
Other languages
English (en)
Inventor
张羽书
杨维东
A·巴哈拉德瓦杰
张大伟
孙海童
姚春海
何宏
叶春璇
O·欧泰瑞
叶思根
曾威
R·罗斯巴赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of CN116250192A publication Critical patent/CN116250192A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Abstract

改进的配置授权(CG)可包括对应于UE的上行链路传输的覆盖区的指定,其中该覆盖区至少部分地由占用的传输时间、占用的传输频率和传输功率来定义。该覆盖区可由该UE根据该UE的当前流量需求调整和/或选择,并且处于经由从基站到该UE的先前信令为该覆盖区设置的限制内。该UE可通过向该基站传输包括实际覆盖区值的CG上行链路控制信息(CG‑UCI)来指示该UE的上行链路数据传输的该实际覆盖区参数/值。该UE可以在根据经由该先前信令从该基站接收的附加参数值配置的资源上传输该CG‑UCI。该UE还可以在根据该实际覆盖区值配置的资源上传输上行链路数据。

Description

用于实现增强的配置授权的移动设备和方法
技术领域
本申请涉及无线通信,并且更具体地涉及在无线通信(例如3GPP NR通信)中提供配置授权。
背景技术
无线通信系统的使用正在快速增长。在最近几年中,无线设备诸如智能电话和平板电脑已变得越来越复杂精密。除了支持电话呼叫之外,现在很多移动设备(即,用户装备设备或UE)还提供对互联网、电子邮件、文本消息传送和使用全球定位系统(GPS)的导航的访问,并且能够操作利用这些功能的复杂精密的应用程序。另外,存在许多不同的无线通信技术和无线通信标准。无线通信标准的一些示例包括GSM、UMTS(WCDMA、TDS-CDMA)、LTE、LTEAdvanced(LTE-A)、HSPA、3GPP2CDMA2000(例如,1xRTT、1xEV-DO、HRPD、eHRPD)、IEEE 802.11(WLAN或Wi-Fi)、IEEE 802.16(WiMAX)、BLUETOOTHTM等。所提出的移动超越国际移动电信高级(IMT-Advanced)标准的电信标准是第5代移动网络或第5代无线系统,称为3GPP NR(也称为5G新无线电(5G-NR),也简称为NR)。NR为更高密度的移动宽带用户提供更高容量,同时支持设备到设备、超可靠和大规模机器通信,以及比LTE标准更低的延迟和更低的电池消耗。
3GPP LTE/NR定义了分类为传输或控制信道的多个下行链路(DL)物理信道,以承载从MAC和高层接收的信息块。3GPP LTE/NR也定义了上行链路(UL)的物理层信道。物理下行链路共享信道(PDSCH)是DL传输信道,并且是在动态和伺机基础上分配给用户的主要数据承载信道。PDSCH携带对应于介质访问控制协议数据单元(MAC PDU)的传输块(TB)中的数据,该数据在每个传输时间间隔(TTI)从MAC层传递到物理(PHY)层一次。PDSCH还用于传输广播信息诸如系统信息块(SIB)和寻呼消息。
物理下行链路控制信道(PDCCH)是DL控制信道,该DL控制信道携带包含在下行链路控制信息(DCI)消息中的UE的资源分配。例如,DCI可包括与波束成形有关的传输配置指示(TCI),其中TCI包括配置,诸如一个信道状态信息RS(CSI-RS)集之中的下行链路参考信号(DL-RS)与PDSCH解调参考信号(DMRS)端口之间的准共址(QCL)关系。每个TCI状态能够包含用于配置一个或两个下行链路参考信号与PDSCH的DMRS端口、PDCCH的DMRS端口或CSI-RS资源的CSI-RS端口之间的QCL关系的参数。可使用控制信道元素(CCE)在相同子帧中传输多个PDCCH,每个控制信道元素是被称为资源元素组(REG)的一个资源元素集。PDCCH可采用正交相移键控(QPSK)调制,其中将特定数目(例如四个)的QPSK符号映射到每个REG。此外,取决于信道条件,UE可使用指定数目(例如1、2、4或8)的CCE来确保足够的稳健性。
物理上行链路共享信道(PUSCH)是由无线电小区中的所有设备(用户装备,UE)共享的UL信道,以将用户数据传输到网络。针对所有UE的调度都在基站(例如eNB或gNB)的控制下。基站使用上行链路调度授权(例如,在DCI中)来通知UE关于资源块(RB)分配以及待使用的调制和编码方案。PUSCH通常支持QPSK和正交幅度调制(QAM)。除了用户数据之外,PUSCH还携带解码信息所需的任何控制信息,诸如传输格式指示符和多输入多输出(MIMO)参数。在数字傅立叶变换(DFT)展开之前,控制数据与信息数据复用。
无线数据传输的一个重要方面是调度。一般来讲,在UE设备与无线网络之间的通信中,使用调度指定由UE设备传输到基站的上行链路通信的时隙。对于上行链路通信,UE可以首先向基站发出调度请求。作为响应,基站可以用发送给UE的上行链路授权进行响应,从而授予UE传输上行链路数据的许可。在大多数情况下,调度是完全动态的。在下行链路方向上,在数据可用时分配资源。对于要在上行链路方向上发送的数据,每当数据到达UE的上行链路缓冲器时,UE动态地请求传输机会。关于在下行链路方向上发送的数据和上行链路传输机会的信息在无线电层控制信道中携带,该无线电层控制信道在每个子帧的开始处发送。虽然动态调度对于可能导致大数据突发(例如,上网、视频流、电子邮件)的不频繁的和消耗带宽的数据传输是有效的,但其不太适合于实时流传输应用诸如语音呼叫。在后一种情况下,数据以规则的间隔以短脉冲串发送。如果流的数据速率非常低,如语音呼叫的情况,则调度消息的开销可变得非常高,因为对于每个调度消息仅发送很少的数据。
该问题的一个解决方案是半持久性调度(SPS)。不是调度每个上行链路或下行链路传输,而是定义传输模式而不是单个机会。这显著减少了调度分配开销。在静默期,UE中的无线语音CODEC停止传输语音数据,并且仅发送其间具有长得多的时间间隔的静默描述信息。在那些静默时间期间,可关闭持久性调度。在上行链路中,如果没有针对网络配置数量的空上行链路传输机会发送数据,则隐式地取消SPS授权方案。在下行链路方向上,用RRC(无线电资源控制)消息取消SPS。
利用SPS,基站向UE提供周期性时隙的预定调度,其中UE可以执行上行链路通信。这允许UE生成向基站的上行链路传输,而没有调度请求和特定(动态)上行链路授权的开销。因此,当基站配置SPS无线电资源时,移动手机可采用周期性资源,而无需额外的调度请求过程。当设备在其缓冲器中具有传输数据时,它可以经由下一个已经配置的周期性资源传输该数据。然而,由于SPS配置是在每个设备的基础上实现的,因此当设备不需要周期性资源时,例如仅在特定事件发生时必须传输数据,设备未采用的SPS资源不被使用并因此被浪费。为了减少这种周期性分配资源的浪费,多个设备可被配置为通过被称为配置授权(CG)的功能来共享周期性资源。配置授权最初基于SPS特征,并且允许基站将配置授权资源分配到多个设备,所述多个设备可根据需要(例如在其具有待传输的数据时)利用资源。通过分配所述配置授权资源,网络消除了调度请求过程的分组传输延迟,同时还提高了所分配的周期性无线电资源的利用率。然而,对于某些流量条件,配置授权的当前实现可能是低效的。因此,期望本领域中的改进。
在将此类现有技术与本文描述的所公开实施方案对比之后,与现有技术相关的其他对应问题对于本领域的技术人员将变得显而易见。
发明内容
本文尤其提供了用于在无线通信(例如3GPP新无线电(NR)通信)中实现改进的配置授权(CG)的方法的实施方案。本文进一步给出了无线通信系统的实施方案,该无线通信系统包含用户装备(UE)设备和/或在无线通信系统之内彼此通信的基站。
为了改进CG,UE的上行链路传输的覆盖区可以至少部分地由占用的传输时间、占用的传输频率和传输功率来定义。该覆盖区可以由UE根据UE的当前流量需求动态地调整/选择,并且在经由从基站到UE的先前信令为覆盖区设置的限制内。UE可通过向基站传输包括实际覆盖区值的CG上行链路控制信息(CG-UCI)来向基站指示UE的上行链路数据传输的实际覆盖区参数/值。
因此,设备可以从基站接收与用于至少部分地配置用于设备的上行链路数据传输(例如,PUSCH传输)的资源的第一传输参数相对应的第一组值,并且还可以从基站接收与用于至少部分地配置用于设备的上行链路控制信息传输(例如,CG-UCI传输)的资源的第二传输参数相对应的第二组值。设备可至少基于设备的当前无线流量需求并进一步基于第一组值确定对应于第一传输参数的第三组值,并且在使用至少第二组值配置的资源上将包含至少第三组值的上行链路控制信息(例如,CG-UCI)传输到基站。设备可以在使用至少第三组值配置的资源上将上行链路数据(例如PUSCH)传输到基站。第一传输参数可用于定义设备的上行链路传输覆盖区,并且可包括传输持续时间、传输功率、传输频率和调制编码方案级别。因此,第一组值可包括对应于上述参考参数的范围/限制,包括最大传输持续时间、最大传输功率、调制编码方案级别范围和/或最大占用频率。第三组值可以对应地包括每次重复的传输持续时间、重复次数、调制编码方案级别、占用频率和/或由设备掩蔽的循环冗余校验位。第二组值可以被设备用来定义/配置设备可以在其上传输UCI的资源(其至少包括第三组值),并且可包括调制顺序、编码速率、时间和频率资源元素、和/或解调参考信号配置。
需注意,可在多个不同类型的设备中实施本文描述的技术和/或将本文描述的技术与多个不同类型的设备一起使用,所述多个不同类型的设备包括但不限于基站、接入点、蜂窝电话、便携式媒体播放器、平板电脑、可穿戴设备和各种其他计算设备。
本发明内容旨在提供在本文档中所描述的主题中的一些的简要概述。因此,应当理解,上述特征仅为示例并且不应理解为以任何方式缩小本文所述的主题的范围或实质。本文所描述的主题的其他特征、方面和优点将通过以下具体实施方式、附图和权利要求书而变得显而易见。
附图说明
图1示出了根据一些实施方案的示例性(和简化的)无线通信系统;
图2示出了根据一些实施方案的与示例性无线用户装备(UE)设备通信的示例性基站;
图3示出了根据一些实施方案的UE的示例性框图;
图4示出了根据一些实施方案的基站的示例性框图;
图5示出了根据一些实施方案的例示蜂窝通信电路的示例性简化框图;
图6示出了根据一些实施方案的用于多个流的组合流量的组合配置授权(CG)的调配的示例性图表。
图7示出了根据一些实施方案的示出PUSCH重复类型B传输期间的CG-UCI候选位置的图表;
图8示出了根据一些实施方案的示出分别用于CG-UCI的循环前缀OFDM传输和DFT-S-OFDM传输的频率占用的图表;
图9示出了根据一些实施方案的CG-UCI传输的频率占用,其中CG-UCI存在于一些重复中而不存在于其他重复中;
图10示出了根据一些实施方案的用于实现CG的移动设备的示例性方法的流程图;并且
图11示出了根据一些实施方案的用于实现CG的基站的示例性方法的流程图。
尽管本文所述的特征易受各种修改和另选形式的影响,但其具体实施方案在附图中以举例的方式示出并且在本文中详细描述。然而,应当理解,附图和对其的详细描述并非旨在将本文限制于所公开的具体形式,而正相反,其目的在于覆盖落在如由所附权利要求书所限定的主题的实质和范围内的所有修改、等同物和另选方案。
具体实施方式
首字母缩略词
在本专利申请中通篇使用各种首字母缩略词。在本专利申请中通篇可能出现的最为突出的所用首字母缩略词的定义如下:
·ACK:确认
·APR:应用处理器
·AUL:自主上行链路传输
·BLER:误块率
·BS:基站
·BSR:缓冲状态报告
·BWP:带宽部分
·CAPC:信道接入优先级类别
·CG:配置授权
·CMR:更改模式请求
·CORESET:控制信道资源集
·COT:信道占用时间
·CRC:循环冗余校验
·CS-RNTI:配置的调度无线电网络临时标识符
·CSI:信道状态信息
·DCI:下行链路控制信息
·DG:动态授权
·DL:下行链路(从BS到UE)
·DMRS:解调参考信号
·DYN:动态
·ED:能量检测
·FDM:频分复用
·FT:帧类型
·GC-PDCCH:组公共物理下行链路控制信道·GPRS:通用分组无线电服务
·GSM:全球移动通信系统
·GTP:GPRS隧道协议
·HARQ:混合自动重传请求
·IR:初始化和刷新状态
·LAN:局域网
·LTE:长期演进
·MAC:介质访问控制
·MAC-CE:MAC控制元素
·MCS:调制和编码方案
·MIB:主信息块
·MIMO:多输入多输出
·NDI:新数据指示
·OFDM:正交频分复用
·OSI:开放系统互连
·PBCH:物理广播信道
·PDCCH:物理下行链路控制信道
·PDCP:分组数据汇聚协议
·PDN:分组数据网络
·PDSCH:物理下行链路共享信道
·PDU:协议数据单元
·PRB:物理资源块
·PUCCH:物理上行链路控制信道
·PUSCH:物理上行链路共享(数据)信道·QCL:准共址
·RACH:随机接入过程
·RAT:无线电接入技术
·RB:资源块
·RE:资源元素
·RF:射频
·RMSI:剩余最小系统信息
·RNTI:无线电网络临时标识符
·ROHC:稳健标头压缩
·RRC:无线电资源控制
·RS:参考信号(符号)
·RSI:根序列指示标识
·RTP:实时传输协议
·RV:冗余版本
·RX:接收
·SDM:空分复用
·SID:系统标识号
·SGW:服务网关
·SR:调度请求
·SRS:探测参考信号
·SS:搜索空间
·SSB:同步信号块
·TBS:传输块大小
·TCI:传输配置指示
·TDM:时分复用
·TRS:跟踪参考信号
·TX:传输
·UCI:上行链路控制信息
·UE:用户装备
·UL:上行链路(从UE到BS)
·UMTS:通用移动电信系统
·Wi-Fi:基于电气电子工程师协会(IEEE)802.11标准的无线局域
网(WLAN)RAT
·WLAN:无线LAN
术语
以下是本申请中会出现的术语的术语表:
存储器介质—各种类型的存储器设备或存储设备中的任何设备。术语“存储器介质”旨在包括安装介质,例如CD-ROM、软盘或磁带设备;计算机系统存储器或随机存取存储器诸如DRAM、DDR RAM、SRAM、EDO RAM、Rambus RAM等;非易失性存储器诸如闪存、磁介质,例如,硬盘驱动器或光学存储装置;寄存器、或其他类似类型的存储器元件等。存储器介质也可包括其他类型的存储器或它们的组合。此外,存储器介质可位于执行程序的第一计算机系统中,或者可位于通过网络诸如互联网连接到第一计算机系统的不同的第二计算机系统中。在后面的实例中,第二计算机系统可向第一计算机系统提供程序指令以供执行。术语“存储器介质”可包括可驻留在例如通过网络连接的不同计算机系统中的不同位置的两个或更多个存储器介质。存储器介质可存储可由一个或多个处理器执行的程序指令(例如,表现为计算机程序)。
载波介质—如上所述的存储器介质,以及物理传输介质,诸如总线、网络和/或其他传送信号(诸如电信号、电磁信号或数字信号)的物理传输介质。
可编程硬件元件—包括各种硬件设备,该各种硬件设备包括经由可编程互连件连接的多个可编程功能块。示例包括FPGA(现场可编程门阵列)、PLD(可编程逻辑设备)、FPOA(现场可编程对象阵列)和CPLD(复杂的PLD)。可编程功能块可从细粒度(组合逻辑部件或查找表)到粗粒度(算术逻辑单元或处理器内核)变动。可编程硬件元件也可被称为“可配置逻辑部件”。
计算机系统(或计算机)—各种类型的计算系统或处理系统中的任一种,包括个人计算机系统(PC)、大型计算机系统、工作站、网络电器、互联网电器、个人数字助理(PDA)、电视系统、栅格计算系统,或者其他设备或设备的组合。通常,术语“计算机系统”可广义地被定义为包含具有执行来自存储器介质的指令的至少一个处理器的任何设备(或设备的组合)。
用户装备(UE)(或“UE设备”)—执行无线通信的各种类型的计算机系统设备中的任一种。也被称为无线通信设备,其中许多可为移动的和/或便携式的。UE设备的示例包括移动电话或智能电话(例如,iPhoneTM、基于AndroidTM的电话)和平板电脑诸如iPadTM、Samsung GalaxyTM等、游戏设备(例如Sony PlayStationTM、Microsoft XBoxTM等)、便携式游戏设备(例如,Nintendo DSTM、PlayStation PortableTM、Gameboy AdvanceTM、iPodTM)、膝上型电脑、可穿戴设备(例如,Apple WatchTM、Google GlassTM)、PDA、便携式互联网设备、音乐播放器、数据存储设备或其他手持式设备、无人飞行器(例如,无人机)和无人机控制器等。各种其他类型的设备如果包括Wi-Fi通信能力或蜂窝和Wi-Fi两种通信能力和/或其他无线通信能力(例如,通过短程无线电接入技术(SRAT)诸如BLUETOOTHTM等)则会落在这一类别中。通常,可以宽泛地定义术语“UE”或“UE设备”以涵盖能够进行无线通信的任何电子设备、计算设备和/或电信设备(或设备的组合)并且也可以是便携式/移动的。
无线设备(或无线通信设备)—使用WLAN通信、SRAT通信、Wi-Fi通信等执行无线通信的各种类型的计算机系统设备中的任一种。如本文所用,术语“无线设备”可以指上文所定义的UE设备或者固定设备诸如固定无线客户端或无线基站。例如,无线设备可以是任何类型的802.11系统的无线站,诸如接入点(AP)或客户端站点(UE),或任何类型的根据蜂窝无线电接入技术(例如,LTE、CDMA、GSM)通信的蜂窝通信系统的无线站,例如诸如基站或蜂窝电话。
通信设备—执行通信的各种类型的计算机系统或设备中的任一者,其中该通信可为有线的或无线的。通信设备可为便携式的(或移动的),或者可为静止的或固定在某个位置处。无线设备是通信设备的一个示例。UE是通信设备的另一个示例。
基站(BS)—术语“基站”具有其通常含义的全部范围,并且至少包括被安装在固定位置处并用于作为无线电话系统或无线电系统的一部分进行通信的无线通信站。
处理器—是指能够执行设备中(例如在用户装备设备中或在蜂窝网络设备中)的功能的各种元件(例如,电路)或元件组合。处理器可以包括,例如:通用处理器和相关联的存储器、各个处理器内核的部分或电路、整个处理器内核或处理电路内核、处理电路阵列或处理器阵列、诸如ASIC的电路(专用集成电路)、可编程硬件元件,诸如现场可编程门阵列(FPGA),以及上述的任何各种组合。
信道—用于将信息从发送器(发射器)传送至接收器的介质。应当注意,由于术语“信道”的特性可根据不同的无线协议而有所不同,因此本发明所使用的术语“信道”可被视为以符合术语使用所参考的设备的类型的标准的方式来使用。在一些标准中,信道宽度可为可变的(例如,取决于设备能力、频带条件等)。例如,LTE可支持1.4MHz至20MHz的可扩展信道带宽。相比之下,WLAN信道可为22MHz宽,而蓝牙信道可为1MHz宽。其他协议和标准可包括对信道的不同定义。此外,一些标准可定义并使用多种类型的信道,例如用于上行链路或下行链路的不同信道和/或针对不同用途诸如数据、控制信息等的不同信道。
带(或频带)—术语“频带”具有其通常含义的全部范围,并且至少包括其中为了相同目的而使用或留出信道的一段频谱(例如,射频频谱)。此外,“频带”用于表示频域中由较低频率和较高频率界定的任何间隔。该术语可指无线电频带或一些其他频谱的间隔。无线电通信信号可占据载送信号的频率范围(或信号在此频率范围内载送)。此类频率范围也称为信号的带宽。因此,带宽是指连续频带中的上频率与下频率之间的差值。频带可表示一个通信信道,或者其可被细分成多个通信信道。针对不同用途的射频范围的分配是无线电频谱分配的主要函数。
Wi-Fi—术语“Wi-Fi”具有其通常含义的全部范围,并且至少包括无线通信网络或RAT,其由无线LAN(WLAN)接入点提供服务并通过这些接入点提供至互联网的连接性。大多数现代Wi-Fi网络(或WLAN网络)基于IEEE 802.11标准,并以“Wi-Fi”的命名面市。Wi-Fi(WLAN)网络不同于蜂窝网络。
自动—是指由计算机系统(例如,由计算机系统执行的软件)或设备(例如,电路、可编程硬件元件、ASIC等)在无需通过用户输入直接指定或执行动作或操作的情况下执行该动作或操作。因此,术语“自动”与用户手动执行或指定操作形成对比,其中用户提供输入来直接执行该操作。自动过程可由用户所提供的输入来启动,但“自动”执行的后续动作不是由用户指定的,即,不是“手动”执行的,其中用户指定要执行的每个动作。例如,用户通过选择每个字段并提供输入指定信息(例如,通过键入信息、选择复选框、无线电选择等)来填写电子表格为手动填写该表格,即使计算机系统必须响应于用户动作来更新该表格。该表格可通过计算机系统自动填写,其中计算机系统(例如,在计算机系统上执行的软件)分析表格的字段并填写该表格,而无需任何用户输入指定字段的答案。如上面所指示的,用户可援引表格的自动填写,但不参与表格的实际填写(例如,用户不用手动指定字段的答案而是它们自动地完成)。本说明书提供了响应于用户已采取的动作而自动执行的操作的各种示例。
大约—是指接近正确或精确的值。例如,大约可以是指在精确(或期望)值的1%至10%以内的值。然而,应该注意,实际的阈值(或公差)可取决于应用。例如,在一些实施方案中,“大约”可意指在一些指定值或期望值的0.1%以内,而在各种其他实施方案中,根据特定应用的期望或要求,阈值可为例如2%、3%、5%等。
并发—是指并行执行或实施,其中任务、进程或程序以至少部分重叠地方式执行。例如,可使用“强”或严格的并行性来实现并发性,其中在相应计算元件上(至少部分地)并行执行任务;或者使用“弱并行性”来实现并发性,其中以交织的方式(例如,通过执行线程的时间复用)执行任务。
站点(STA)—本文的术语“站点”是指具有(例如,通过使用802.11协议)无线地通信的能力的任何设备。站点可为膝上型电脑、台式PC、PDA、接入点或Wi-Fi电话或类似于UE的任何类型的设备。STA可以是固定的、移动的、便携式的或可穿戴的。一般来讲,在无线联网术语中,站点(STA)广义地涵盖具有无线通信能力的任何设备,并且术语站点(STA)、无线客户端(UE)和节点(BS)因此常常互换使用。
被配置为—各种部件可被描述为“被配置为”执行一个或多个任务。在此类环境中,“被配置为”是一般表示“具有”在操作期间执行一个或多个任务的“结构”的宽泛表述。由此,即使在部件当前没有执行任务时,该部件也能被配置为执行该任务(例如,一组电导体可被配置为将模块电连接到另一个模块,即使当这两个模块未连接时)。在一些上下文中,“被配置为”可以是一般意味着“具有”在操作期间实行一个或多个任务的“电路”的结构的宽泛表述。由此,即使在部件当前未接通时,该部件也能被配置为执行任务。通常,形成与“被配置为”对应的结构的电路可包括硬件电路。
传输调度—是指对传输(诸如无线传输)的调度。在蜂窝无线电通信的一些具体实施中,可以根据传输发生期间的特定持续时间的指定时间单位来组织信号传输和数据传输。如本文所用,术语“时隙”具有其通常含义的全部范围,并且至少是指无线通信中的最小(或最短)调度时间单位。例如,在3GPP LTE中,传输被分成无线电帧,每个无线电帧均具有相等的(时间)持续时间(例如,10ms)。3GPP LTE中的无线电帧可进一步分成指定数量的(例如,十个)子帧,每个子帧具有相等的持续时间,子帧被指定为最小(最短)调度单位,或用于传输的指定时间单位。因此,在3GPP LTE示例中,“子帧”可被视为如上定义的“时隙”的示例。类似地,5G NR(或者简称为NR)传输的最小(或最短)调度时间单位被称为“时隙”。在不同的通信协议中,最小(或最短)调度时间单位也可被不同地命名。
资源—术语“资源”具有其通常含义的全部范围,并且可以指在无线通信期间使用的频率资源和时间资源。如本文所用,资源元素(RE)是指特定量或数量的资源。例如,在时间资源的上下文中,资源元素可以是特定长度的时间段。在频率资源的上下文中,资源元素可以是以特定频率为中心的特定频率带宽或特定量的频率带宽。作为一个具体示例,资源元素可以指每1个子载波(参考频率资源,例如特定频率带宽,其可以以特定频率为中心)具有1个符号(参考时间资源,例如特定长度的时间段)的资源单元。资源元素组(REG)具有其通常含义的全部范围,并且至少是指指定数量的连续资源元素。在一些具体实施中,资源元素组可不包括为参考信号预留的资源元素。控制信道元素(CCE)是指一组指定数量的连续REG。资源块(RB)是指每指定数量的符号由指定数量的子载波组成的指定数量的资源元素。每个RB可包括指定数量的子载波。资源块组(RBG)是指包括多个RB的单元。一个RBG内RB的数量可根据系统带宽而不同。
为了便于描述,可将各种部件描述为执行一个或多个任务。此类描述应当被解释为包括短语“被配置为”。表述被配置为执行一个或多个任务的部件明确地旨在对该部件不援引美国法典第35标题第112节第六段的解释。
图1和图2-示例性通信系统
图1示出了根据一些实施方案的示例性(和简化的)无线通信系统。需注意,图1的系统仅为可能的系统的一个示例,并且根据需要可在各种系统中的任一种系统中实现该实施方案。
如图所示,示例性无线通信系统包括基站102A至102N,也统称为多个基站102或基站102。如图1所示,基站102A通过传输介质与一个或多个用户设备106A至106N通信。在本文中可将每个用户设备称为“用户装备”(UE)或UE设备。因此,用户设备106A至106N被称为UE或UE设备,并且也统称为多个UE 106或UE 106。UE设备中的各种UE设备可使用如本文所公开的配置授权进行操作。
基站102A可以是收发器基站(BTS)或小区站点,并且可以包括实现与UE 106A至106N的无线通信的硬件。基站102A也可被配备为与网络100通信,例如蜂窝服务提供商的核心网络,电信网络诸如公共交换电话网络(PSTN)和/或互联网、中立主机或各种CBRS(市民宽频无线电服务)部署、以及各种可能性。因此,基站102A可促进用户设备之间和/或用户设备与网络100之间的通信。特别地,蜂窝基站102A可提供具有各种通信能力诸如语音、SMS和/或数据服务的UE 106。基站的通信区域(或覆盖区域)可称为“小区”。还应当指出,“小区”还可以指在给定频率下针对给定覆盖区域的逻辑身份。通常,任何独立的蜂窝无线覆盖区域都可以被称为“小区”。在这样的情况下,基站可以位于三个小区的特定交汇处。在这种均匀的拓扑中,基站可以为三个称为小区的120度波束宽度区域服务。而且,对于载波聚合而言,小的小区、中继等均可以表示小区。因此,尤其是在载波聚合中,可以存在可服务至少部分重叠的覆盖区域但是是在不同相应频率上进行服务的主小区和辅小区。例如,基站可服务任意数量的小区,并且由基站服务的小区可以并置排列或者可以不并置排列(例如,远程无线电头端)。同样如本文所用,就UE而言,有时在考虑了UE的上行链路和下行链路通信的情况下,基站可被认为代表网络。因此,与网络中的一个或多个基站通信的UE也可以被解释为与该网络通信的UE,并且还可以被认为是UE在网络上或通过网络进行通信的至少一部分。
基站102和用户设备可被配置为利用各种无线电接入技术(RAT)中的任一者通过传输介质进行通信,该无线电接入技术也被称为无线通信技术或电信标准,诸如GSM、UMTS(WCDMA)、LTE、LTE-Advanced(LTE-A)、LAA/LTE-U、5G-NR(简写为NR)、3GPP2 CDMA2000(例如,1xRTT、1xEV-DO、HRPD、eHRPD)、Wi-Fi、WiMAX等。需注意,如果在LTE的环境中实施基站102,则它另选地可被称为“eNodeB”或者“eNB”。需注意,如果在5G NR的环境中实施基站102A,则其另选地可被称为“gNodeB”或“gNB”。在一些实施方案中,基站102可实现配置授权,如本文所述。取决于给定的应用或特定考虑因素,为方便起见,可以根据整体定义特征在功能上对一些不同的RAT进行分组。例如,可以将所有蜂窝RAT统一地视为代表第一(形式/类型)RAT,而Wi-Fi通信可以被认为代表第二RAT。在其他情况下,可以将各个蜂窝RAT单独视为不同的RAT。例如,当区分蜂窝通信与Wi-Fi通信时,“第一RAT”可以统一指代所考虑的所有蜂窝RAT,而“第二RAT”可以指代Wi-Fi。类似地,当可适用时,可以认为不同形式的Wi-Fi通信(例如,超过2.4GHz与超过5GHz)对应于不同的RAT。此外,根据给定RAT(例如,LTE或NR)执行的蜂窝通信可以基于进行那些通信的频谱彼此区分。例如,LTE或NR通信可以在主许可频谱上以及在诸如指配给市民宽频无线电服务(CBRS)的未许可频谱和/或频谱的辅频谱上执行。总体而言,将始终关于所考虑的各种应用/实施方案的环境并在该环境中清楚地指出各种术语和表达的使用。
如图所示,基站102A也可被配备为与网络100(例如,在各种可能性中,蜂窝服务提供商的核心网络、电信网络诸如公共交换电话网(PSTN)和/或互联网)进行通信。因此,基站102A可促进用户设备之间和/或用户设备与网络100之间的通信。特别地,蜂窝基站102A可提供具有各种通信能力诸如语音、SMS和/或数据服务的UE 106。基站102A和根据相同或不同的蜂窝通信标准进行操作的其他类似的基站(诸如基站102B…102N)可因此被提供作为小区的网络,该小区的网络可经由一个或多个蜂窝通信标准在地理区域上向UE 106A-106N和类似的设备提供连续或几乎连续的重叠服务。
因此,尽管基站102A可充当如图1中所示的UE 106A-106N的“服务小区”,但是每个UE 106还可能够从一个或多个其他小区(可由基站102B-102N和/或任何其他基站提供)接收信号(并可能在其通信范围内),该一个或多个其他小区可被称为“相邻小区”。此类小区也可能够促进用户设备之间和/或用户设备和网络100之间的通信。此类小区可包括“宏”小区、“微”小区、“微微”小区和/或提供服务区域大小的任何各种其他粒度的小区。例如,在图1中示出的基站102A-102B可为宏小区,而基站102N可为微小区。其他配置也是可能的。
在一些实施方案中,基站102A可为下一代基站,例如,5G新无线电(5G NR)基站或“gNB”。在一些实施方案中,gNB可连接到传统演进分组核心(EPC)网络和/或连接到NR核心(NRC)网络。此外,gNB小区可包括一个或多个发射和接收点(TRP)。此外,能够根据5G NR操作的UE可连接到一个或多个gNB内的一个或多个TRP。
如上所述,UE 106可能够使用多个无线通信标准进行通信。例如,UE可被配置为使用3GPP蜂窝通信标准(诸如LTE或NR)或3GPP2蜂窝通信标准(诸如CDMA2000系列的蜂窝通信标准中的蜂窝通信标准)中的任一种或所有蜂窝通信标准进行通信。根据相同或不同的蜂窝通信标准进行操作的基站102和其他类似基站因此可被提供作为一个或多个小区网络,该一个或多个小区网络可经由一个或多个蜂窝通信标准在广阔的地理区域上向UE 106和类似的设备提供连续的或近似连续的重叠服务。
UE 106还可被配置为或另选地被配置为使用WLAN、BLUETOOTHTM、BLUETOOTHTMLow-Energy、一个或多个全球导航卫星系统(GNSS,例如GPS或GLONASS)、一个和/或多个移动电视广播标准(例如,ATSC-M/H或DVB-H)等进行通信。无线通信标准的其他组合(包括多于两个无线通信标准)也是可能的。此外,UE 106也可以通过一个或多个基站或通过其他设备、站点或未明确示出但被认为是网络100的一部分的任何器具与网络100通信。因此,UE 106与网络通信可以被解释为UE 106与被认为是网络的一部分的一个或多个网络节点通信,并且可以与UE 106交互以进行与UE106的通信,并且在一些情况下影响到至少一些通信参数和/或UE 106的通信资源的使用。
此外,还如图1中所示,UE 106中的至少一些(例如,UE 106D和106E)可以表示例如经由蜂窝通信诸如3GPP LTE和/或5G-NR彼此通信并且与基站102A通信的车辆。另外,UE106F可以以类似的方式表示正在与UE 106D和106E表示的车辆进行通信和/或交互的行人。在车辆到一切(V2X)通信(诸如由3GPP TS 22.185V 14.3.0指定的通信等)的环境下,公开在图1中例示的网络中通信的车辆的其他方面。
图2示出了根据一些实施方案的与基站102和接入点112通信的示例性用户装备106(例如,设备106A到106N中的一个设备)。UE 106可以是具有蜂窝通信能力和非蜂窝通信能力(例如,BLUETOOTHTM、Wi-Fi等)的设备,诸如移动电话、手持设备、计算机或平板电脑、或几乎任何类型的无线设备。UE 106可包括被配置为执行存储在存储器中的程序指令的处理器。UE 106可通过执行此类存储的指令来执行本发明所述的方法实施方案中的任何一个。另选地或除此之外,UE 106可包括可编程硬件元件,诸如被配置为执行本发明所述的方法实施方案中的任何一个或本发明所述的方法实施方案中的任何一个的任何部分的现场可编程门阵列(FPGA)。UE 106可被配置为使用多个无线通信协议中的任一个协议来通信。例如,UE 106可被配置为使用CDMA 2000、LTE、LTE-A、NR、WLAN或GNSS中的两者或更多者来通信。无线通信标准的其他组合也是可能的。
UE 106可包括一个或多个天线,用于使用根据一个或多个RAT标准的一个或多个无线通信协议进行通信,例如,上文先前所述的那些。在一些实施方案中,UE 106可在多个无线通信标准之间共享接收链和/或发射链中的一个或多个部分。共享的无线电部件可包括单根天线,或者可包括用于执行无线通信的多根天线(例如,对于MIMO来说)。另选地,UE106针对被配置为利用其进行通信的每个无线通信协议而可包括独立的发射链和/或接收链(例如,包括独立的天线和其他无线电部件)。作为另一种另选形式,UE 106可包括在多个无线通信协议之间共享的一个或多个无线电部件或无线电电路,以及由单个无线通信协议唯一地使用的一个或多个无线电部件。例如,UE 106可包括用于使用LTE或CDMA2000 1xRTT或NR中的任一种进行通信的共享无线电部件,以及用于使用Wi-Fi和BLUETOOTHTM中的每一种进行通信的独立无线电部件。其他配置也是可能的。
图3-示例性UE的框图
图3示出了根据一些实施方案的示例性UE 106的框图。如图所示,UE 106可包括片上系统(SOC)300,该SOC可包括用于各种目的的部分。例如,如图所示,SOC 300可包括可执行用于UE 106的程序指令的处理器302,以及可执行图形处理并向显示器360提供显示信号的显示电路304。处理器302还可耦接至存储器管理单元(MMU)340、和/或其他电路或设备(诸如显示电路304、无线电电路330、连接器I/F 320和/或显示器360),该MMU可被配置为从处理器302接收地址并将那些地址转换成存储器(例如存储器306、只读存储器(ROM)350、NAND闪存存储器310)中的位置。MMU 340可被配置为执行存储器保护和页表转换或设置。在一些实施方案中,MMU 340可以被包括作为处理器302的一部分。
如图所示,SOC 300可耦接到UE 106的各种其他电路。例如,UE 106可包括各种类型的存储器(例如,包括NAND闪存310)、连接器接口320(例如,用于耦接至计算机系统)、显示器360和无线通信电路(例如,用于LTE、LTE-A、NR、CDMA2000、BLUETOOTHTM、Wi-Fi、GPS等)。UE设备106可包括至少一根天线(例如335a),并且可能包括多根天线(例如由天线335a和335b所示),以用于执行与基站和/或其他设备的无线通信。天线335a和335b以示例方式示出,并且UE设备106可包括更少或更多的天线。总体上讲,一根或多根天线统称为天线335。例如,UE设备106可以使用天线335来借助无线电电路330执行无线通信。如上所述,在一些实施方案中,UE可被配置为使用多个无线通信标准来进行无线通信。
如本文进一步所述,UE 106(和/或基站102)可包括用于使用增强物理控制信道(例如PDCCH)传输和接收的控制信令来运行的硬件和软件部件,如本文进一步详细所述。UE设备106的处理器302可被配置为实现本文所述方法的一部分或全部,例如通过执行被存储在存储器介质(例如,非暂态计算机可读存储器介质)上的程序指令。在其他实施方案中,处理器302可被配置作为可编程硬件元件,诸如FPGA(现场可编程门阵列)或者作为ASIC(专用集成电路)。此外,处理器302可耦接到如图3所示的其他部件并且/或者可与所述其他部件进行互操作,以实现根据本文所公开的各种实施方案的配置授权。处理器302还可实现各种其他应用程序和/或在UE 106上运行的最终用户应用程序。
在一些实施方案中,无线电电路330可包括专用于针对各种相应RAT标准来控制通信的独立控制器。例如,如图3所示,无线电电路330可包括Wi-Fi控制器356、蜂窝控制器(例如LTE和/或NR控制器)352和BLUETOOTHTM控制器354,并且在至少一些实施方案中,这些控制器中的一个或多个控制器或者全部控制器可被实现为相应的集成电路(简称为IC或芯片),这些集成电路彼此通信,并且与SOC 300(更具体地,与处理器302)通信。例如,Wi-Fi控制器356可以通过小区-ISM链路或WCI接口来与蜂窝控制器352进行通信,并且/或者BLUETOOTHTM控制器354可以通过小区-ISM链路等与蜂窝控制器352进行通信。虽然在无线电电路330内示出了三个独立的控制器,但UE设备106中可实现具有用于各种不同RAT的更少或更多个类似控制器的其他实施方案。例如,在图5中示出了例示蜂窝控制器352的一些实施方案的至少一个示例性框图,并且将在下面进一步描述。
图4-示例性基站的框图
图4示出了根据一些实施方案的示例性基站102的框图。需注意,图4的基站仅为可能的基站的一个示例。如图所示,基站102可包括可执行针对基站102的程序指令的处理器404。处理器404还可以耦接到存储器管理单元(MMU)440或其他电路或设备,该MMU可以被配置为接收来自处理器404的地址并将这些地址转换为存储器(例如,存储器460和只读存储器(ROM)450)中的位置。
基站102可包括至少一个网络端口470。网络端口470可被配置为耦接到电话网,并提供有权访问如上文在图1和图2中所述的电话网的多个设备诸如UE设备106。网络端口470(或附加的网络端口)还可被配置为或另选地被配置为耦接到蜂窝网络,例如蜂窝服务提供方的核心网络。核心网络可向多个设备诸如UE设备106提供与移动性相关的服务和/或其他服务。在一些情况下,网络端口470可经由核心网络耦接到电话网络,并且/或者核心网络可提供电话网络(例如,在蜂窝服务提供方所服务的其他UE设备中)。
基站102可以包括至少一个天线434,并且可能包括多个天线(例如,由天线434a和434b示出),用于与移动设备和/或其他设备进行无线通信。作为示例示出了天线434a和434b,并且基站102可以包括更少或更多的天线。总体上,可以包括天线434a和/或天线434b的一个或多个天线统称为天线434。天线434可被配置为作为无线收发器进行操作,并且可被进一步配置为经由无线电电路430与UE设备106进行通信。天线434可经由通信链432来与无线电电路430进行通信。通信链432可为接收链、发射链或两者。无线电电路430可被设计成经由各种无线电信标准进行通信,该无线电信标准包括但不限于LTE、LTE-A、5G-NR(或简称为NR)、WCDMA、CDMA2000等。基站102的处理器404可被配置为实现本文所述的方法的一部分或全部,例如通过执行被存储在存储器介质(例如,非暂态计算机可读存储器介质)上的程序指令,用于使基站102实现如本文所公开的配置授权。另选地,处理器404可被配置作为可编程硬件元件诸如FPGA(现场可编程门阵列)或作为ASIC(专用集成电路)或它们的组合。在某些RAT(例如Wi-Fi)的情况下,基站102可以被设计为接入点(AP),在这种情况下,网络端口470可被实现为提供对广域网和/或一个或多个局域网的接入,例如它可包括至少一个以太网端口,并且无线电部件430可以被设计为根据Wi-Fi标准进行通信。基站102可根据如本文所公开的各种方法和实施方案进行操作以实现配置授权。
图5-示例性蜂窝通信电路的框图
图5示出了根据一些实施方案的例示蜂窝控制器352的示例性简化框图。需注意,图5的蜂窝通信电路的框图仅仅是可能的蜂窝通信电路的一个示例;其他电路,诸如包括或耦接到用于不同RAT的足够天线以使用独立的天线执行上行链路活动的电路,或者包括或耦接到更少天线的电路,例如可以在多个RAT之间共享的电路也是可能的。根据一些实施方案,蜂窝通信电路352可包括在通信设备诸如上述通信设备106中。如上所述,除了其他设备之外,通信设备106可以是用户装备(UE)设备、移动设备或移动站、无线设备或无线站、台式计算机或计算设备、移动计算设备(例如膝上型计算机、笔记本或便携式计算设备)、平板计算机和/或设备的组合。
蜂窝通信电路352可(例如,通信地;直接或间接地)耦接到一个或多个天线,诸如如图所示的天线335a-b和336。在一些实施方案中,蜂窝通信电路352可包括用于多个RAT的专用接收链(包括和/或耦接到(例如通信地;直接或间接地)专用处理器和/或无线电部件(例如,用于LTE的第一接收链以及用于5G NR的第二接收链)。例如,如图5所示,蜂窝通信电路352可包括第一调制解调器510和第二调制解调器520。第一调制解调器510可被配置用于根据第一RAT(例如诸如LTE或LTE-A)的通信,并且第二调制解调器520可被配置用于根据第二RAT(例如诸如5G NR)的通信。
如图所示,第一调制解调器510可包括一个或多个处理器512和与处理器512通信的存储器516。调制解调器510可与射频(RF)前端530通信。RF前端530可包括用于发射和接收无线电信号的电路。例如,RF前端530可包括接收电路(RX)532和发射电路(TX)534。在一些实施方案中,接收电路532可与下行链路(DL)前端550通信,该下行链路前端可包括用于经由天线335a接收无线电信号的电路。
类似地,第二调制解调器520可包括一个或多个处理器522和与处理器522通信的存储器526。调制解调器520可与RF前端540通信。RF前端540可包括用于发射和接收无线电信号的电路。例如,RF前端540可包括接收电路542和发射电路544。在一些实施方案中,接收电路542可与DL前端560通信,该DL前端可包括用于经由天线335b接收无线电信号的电路。
在一些实施方案中,开关570可将发射电路534耦接到上行链路(UL)前端572。此外,开关570可将发射电路544耦接到UL前端572。UL前端572可包括用于经由天线336发射无线电信号的电路。因此,当蜂窝通信电路352接收用于根据(例如,经由第一调制解调器510支持的)第一RAT进行发射的指令时,开关570可被切换到允许第一调制解调器510根据第一RAT(例如,经由包括发射电路534和UL前端572的发射链)发射信号的第一状态。类似地,当蜂窝通信电路352接收用于根据(例如,经由第二调制解调器520支持的)第二RAT进行发射的指令时,开关570可被切换到允许第二调制解调器520根据第二RAT(例如,经由包括发射电路544和UL前端572的发射链)发射信号的第二状态。
如本文所述,第一调制解调器510和/或第二调制解调器520可以包括用于实现本文描述的任何各种特征和技术的硬件和软件组件。例如通过执行被存储在存储器介质(例如,非暂态计算机可读存储器介质)上的程序指令,处理器512、522可被配置为实施本文所述的特征的一部分或全部。另选地(或除此之外),处理器512、522可被配置作为可编程硬件元件,诸如FPGA(现场可编程门阵列)或者作为ASIC(专用集成电路)。另选地(或除此之外),结合其他部件530、532、534、540、542、544、550、570、572、335和336中的一个或多个,处理器512、522可被配置为实施本文所述的特征的一部分或全部。
此外,如本文所述,处理器512、522可包括一个或多个处理元件。因此,处理器512、522可包括被配置为执行处理器512、522的功能的一个或多个集成电路(IC)。此外,每个集成电路可包括被配置为执行处理器512、522的功能的电路(例如,第一电路、第二电路等等)。
在一些实施方案中,蜂窝通信电路352可包括仅一个发射/接收链。例如,蜂窝通信电路352可以不包括调制解调器520、RF前端540、DL前端560和/或天线335b。作为另一示例,蜂窝通信电路352可以不包括调制解调器510、RF前端530、DL前端550和/或天线335a。在一些实施方案中,蜂窝通信电路352也可以不包括开关570,并且RF前端530或RF前端540可以与UL前端572通信,例如,直接通信。
配置授权
如先前所述,为了防止周期性分配资源的浪费,多个设备可通过配置授权(CG)共享周期性资源,基站使用该配置授权将配置授权资源分配给多个设备。通过分配所述配置授权资源,网络(例如经由基站)消除了调度请求过程的分组传输延迟,同时还提高了所分配的周期性无线电资源的利用率。当前存在两种类型的CG,1型CG和2型CG。就1型CG而言,上行链路授权经由RRC配置并且被存储为配置上行链路授权。就2型CG而言,上行链路授权经由PDCCH(寻址到CS-RNTI)配置,并且基于指示配置上行链路授权激活或去激活的1层信令被存储或清除为配置上行链路授权。可在服务小区的一个BWP中配置多个CG配置,并且可以在不同服务小区上同时激活多个配置。对于2型CG,激活和去激活在服务小区之间可以是独立的。对于同一服务小区,介质访问控制(MAC)实体可配置有1型CG或2型CG。
CG的信息元素(IE)包括用于配置CG的多个参数/参数值。例如,CG的当前实现在标准文档3GPP TS 38.331Rel-16(38.331g10)中有所描述。本文所公开的各种实施方案提出了在CG IE中包括附加的和/或修改的参数,并且进一步提出了附加的和/或修改的信令以用于更有效地配置CG,如将在下文进一步描述。
NR未许可频谱(NR-U)中的CG上行链路控制信息(CG-UCI)
NR-U中的CG-UCI的当前实现至少包括以下信息:
·混合自动重传请求(HARQ)标识(ID);
·新数据指示符(NDI);
·冗余版本(RV);以及
·信道占用时间(COT)共享信息。
包括在未来实现中的附加信息被考虑用于进一步研究,例如包括UEID。
CG-UCI被包括在每个CG-PUSCH传输中。为了确定用于CG-UCI的RE的数量,正在(重新)使用用于CG-PUSCH上的HARQ-ACK的β偏移机制(例如,当它出现在3GPP标准的Rel-15 NR中时)。已定义用于配置CG-UCI的β偏移的新RRC参数。因此,对于UE发起的COT共享指示,当配置能量检测(ED)阈值时,也在CG-UCI中指示信道接入优先级类别(CAPC)值。可以向UE提供RRC配置,指示是否复用CG-UCI和HARQ-ACK。当被配置用于复用时,在PUCCH与PUCCH组内的CG-PUSCH重叠的情况下,CG-UCI和HARQ-ACK被联合编码(CG-UCI被视为与HARQ-ACK相同的类型)。当未被配置用于复用时,在PUCCH与PUCCH组内的CG-PUSCH重叠并且PUCCH携带HARQ ACK反馈的情况下,跳过配置授权PUSCH。
自主上行链路UCI(AUL-UCI)
用于传输新数据的UL时间-频率资源的即时可用性是减少延迟和提高UL吞吐量的关键因素。这对于非许可频谱操作尤其重要,在非许可频谱操作中,对信道的接入可能经受先听后讲(LBT)过程,并且用前一DL传输来调度UL传输可能是低效的。例如非许可频谱中的自主UL(AUL)传输允许UE在不需要来自网络(例如来自诸如gNB的基站)的先前调度请求或显式调度授权的情况下执行UL传输。
AUL-UCI的当前实现至少包括以下信息:
·HARQ ID(4位);
·NDI(1位用于TM1,2位用于TM2);
·RV(2位);
·UE ID(16位);
·PUSCH起点(1位:指示符号0或1);
·PUSCH终点(1位:指示符号12或13);
·COT共享指示(1位:指示子帧n+X是否是适用于UL至DL共享的子帧);X作为AULRRC配置的一部分由基站配置,并且1<X<5;如果UE指示子帧适用于UL至DL COT共享,则UE在符号#12处停止其在前一子帧中的AUL PUSCH传输,而与PUSCH结束符号的RRC配置无关;以及
·CRC(16位)。
使用CG引起的潜在问题
如当前所定义(例如,在3GPP标准的Rel-16 NR中),在带宽部分(BWP)上支持多个CG,并且仍然允许动态授权(DG)覆盖CG时间线。如果存在多个UL流量流,例如流1的视频流量和流2的音频流量,则不同的流可具有不同的到达周期性和不同的分组大小,同时仍然具有非常相似的可靠性要求(例如,针对第一传输的误块率BLER的10-4)。因此,当来自两个流的流量到达发生在相同时隙中时,理想地,它们将组合和携带在同一PUSCH中(例如,为了更好的时间分集,共享DMRS开销,和/或用相同的开销实现更好的信道估计等)。然而,正如所示,除了为组合流量调配另一CG之外,不存在合适的解决方案,如图6所示。如图6所示,CG1、CG 2和CG3都单独出现。此外,由于基站(例如,gNB)可能不具有上行链路流量流的完整信息来适当地配置每个CG,因此CG中的一些适配可能是有用的,例如,UE自主地和动态地采取的动作,例如以最佳地适配于当前网络流量。配置许多CG还可导致基站调度限制,因为动态授权(DG)时间线仍预期覆盖CG时间线。应当指出的是,该上下文中的DG是指使用如先前所论述的调度请求的动态调度。
使UE在上行链路传输上可具有的自主性最大化可能是有益的,尤其是对于未许可频谱接入而言。利用DG(或调度请求-SR调度)范例,UE执行UL传输通常需要三个步骤,并且每个步骤都以获得由发射器或通过共享由另一节点获得的COT的发射器的信道接入为条件。在第一步骤中,UE向基站传输SR(另选地UE可以向基站发送缓冲器状态报告BSR)以指示数据到达/状态。在第二步骤中,基站向UE传输PDCCH以调度上行链路传输。在第三步骤中,UE经由PUSCH传输UL数据。与DG范例相反,就CG而言,不需要UE执行上面的前两个步骤来实现第三步骤。如先前所述,最初引入AUL-UCI中并随后扩展到NR-U的CG-UCI设计结合了基于SR的方法和基于SPS的方法的益处。在一种意义上,CG-UCI可被视为PDCCH的反部分,因为它针对接收节点进行调配以接收解码所发送的传输所必需的信息。
增强的CG
为了进一步改进CG,UE的上行链路传输的覆盖区可以(至少部分地)由占用的传输时间、占用的传输频率和传输功率来定义。因此,CG的覆盖区可以由UE根据UE的当前流量需求在定义的限制内动态地调整/选择,并且UE可向基站指示实际覆盖区参数/值。换句话讲,可以定义UE的上行链路数据传输的覆盖区,并且该覆盖区可以由UE在基站(例如,gNB)先前用信号通知给UE的覆盖区的限制内选择/确定(或调整)。还可以至少根据UE的当前流量需求来进行调整/选择。UE可以将实际覆盖区作为至少根据UCI传输参数配置的资源上的CG上行链路控制信息(CG-UCI)的一部分用信号通知给基站,所述UCI传输参数先前也由基站用信号通知给UE。
因此,在网络侧,基站(例如,gNB)可通过为至少部分地定义覆盖区的对应参数设置限制来配置最大可允许覆盖区。基站还可以指示用于配置UE将在其上传输UCI的资源的传输参数。UE可根据由基站先前用信号通知的参数范围/限制值来自主地选择用于上行链路数据(例如PUSCH)传输的参数值,从而至少部分地基于UE的当前流量需求来选择实际值。用于PUSCH传输的参数值可作为UCI的有效载荷携带在UCI中。例如,如果UE选择用于PUSCH传输的某些参数,则可以在UCI有效载荷中向基站指示此类参数。在一些实施方案中,基线设计可包括用于UCI传输的固定传输参数,因此基站不会针对当前配置授权尝试不同的UCI传输。在一些实施方案中,作为进一步的变型,用于UCI传输的传输参数也可以被允许改变。例如,基站可以向UE指示多组此类参数,并且可以使UE能够从所述多组中选择这些参数组中的一组。在这种情况下,基站可以执行盲检测,以根据所选择的参数组来识别正在发生的UCI传输。根据上述内容,根据一些实施方案,CG可以如下实现。
基站经由RRC或经由RRC和动态信令的配置
首先,某些参数组可由基站用信号通知给UE以建立(或配置)CG。对于1型CG,可通过RRC信令用信号通知所有传输参数,而对于2型CG,可通过RRC信令用信号通知一些传输参数,而通过动态信令(即在DCI中)用信号通知一些传输参数。应当注意,为了便于理解,下面将仅列出如在改进的CG过程中实现的与上述传输覆盖区有关的那些参数。基站可根据配置CG的需要向UE指示未示出的附加参数。本文明确示出的参数包括用于允许UE选择上行链路数据传输(例如PUSCH)传输覆盖区的那些参数,如上所述。
根据上述内容,当配置CG时,基站可以将以下参数组用信号通知给UE。
·A组参数:用于上行链路数据传输,例如用于PUSCH的参数范围/
限制:
ο最大传输持续时间(Dmax);
ο最大传输功率;
οMCS级别范围(例如,由MCS级别A和MCS级别B界定);以及
ο最大占用频率(例如,由fstart和fend界定)。
·B组参数:用于UCI传输的传输参数:
ο调制顺序(或者如果调制方案被固定为QPSK,则为编码速率);
ο时间和频率资源(RE);以及
οDMRS配置。
然后,UE可以如下自主地选择/选定/确定参数,同时遵循由UE从基站接收的A组参数中包括的范围/限制。UE可以向基站传输以下参数组作为UE向基站传输的UCI的一部分(例如CG-UCI)。
·C组参数:用于PUSH(对于上行链路数据,其不同于UCI)的传输参数:
ο每次重复的传输持续时间(L);
ο重复次数(K);
οMCS级别(M);以及
ο占用频率(例如,由f1和f2界定)。
C组可以由UE至少部分地基于UE的当前无线流量需求并且根据从基站接收的A组参数来选择/确定。MCS级别“M”可被选择为使得MCS级别A≤M≤MCS级别B,“K”和“L”的值可被选择为使得K*L≤Dmax,并且最后,f1和f2可被选择为使得fstart≤f1≤f2≤fend。MCS级别可以表示CG-UCI MCS级别(或CG-UCI候选MCS级别),并且可被认为是PDCCH候选的对应物。如上所述,可以向UE指示B组参数的多个不同集合,其中UE选择这些集合中的一个集合来配置在其上传输UCI的资源,并且基站可以执行盲解码以检测感兴趣的UCI传输,类似于盲解码PDCCH。因此,上述内容包括CG-UCI的资源分配(时间频率资源)和CG-UCI的候选位置。作为示例,在一些实施方案中,由UE发信号通知给基站的CG-UCI可包括以下参数,其中新包括的C组参数被指示为适用的:
·HARQ ID(例如4位);
·NDI;
·RV(例如2位);
·MCS级别(作为上述C组参数的一部分);
·时域资源指示(例如K,L,作为上述C组参数的一部分);
·频率占用信息(例如起始符号、PRB数量,作为上述C组参数的一部分);
·PUSCH结束符号的COT共享指示;以及
·UE ID所掩蔽的CRC(XXX位)。
在一些实施方案中,CG-UCI可被携带在如图7中的垂直箭头所指示的固定候选位置中(例如,如果存在的话,CG-UCI的有效载荷大小和CG-UCI的频率/持续时间可以是固定的),该图示出了用于PUSCH重复类型B的CG-UCI传输。对于CG-UCI,MCS级别可以是固定的。在UCI传输资源可由UE选择的情况下,如上所述的覆盖区的实现可根据需要促进基站(例如,gNB)侧的盲检测。它还可以允许具有不同编码率的多个CG-UCI候选,类似于具有不同聚合级别的PDCCH。CG-UCI可具有其自己的解调参考信号(DMRS)以便于基站解码,而不依赖于PUSCH数据(或在PUSCH上/经由PUSCH传输的数据)的DMRS。
TBS确定和可调MCS水平和{L,K}
TBS大小可根据{MCS级别、L以及标称重复中的PRB数量}来确定,并且它们中的一者或多者可以用信号通知给基站。可允许的MCS级别不必跨越NR中支持的全部范围,例如,基站可以配置若干允许的MCS级别,或者配置为信号发送/配置的MCS级别周围的范围(如上文关于A组参数所指示的MCS增量范围)。作为示例,对于2型CG,如果MCS=5与MCS增量范围2一起被用信号通知给UE,则UE可以从以下MCS级别中进行选择:3、4、5、6、7(3、4和6、7都在用信号通知的值5的增量范围2内)。
对于PUSCH重复类型B,L(标称重复中OFDM符号的数量)可以是确定TBS的因素。通过使L可调,UE可根据流量需求来配置当前传输,例如在一个PUSCH中携带音频和视频流的分组。又如,对于视频编解码器,可将参考帧的有效载荷设定为不同于视频流的残余帧的有效载荷。
对于PUSCH重复类型B,基站还可以为CG传输束配置最大持续时间Dmax。只要K×L<=Dmax(例如,被约束在最大可允许覆盖区内),UE可自由选择L(对于单个TX)和K(重复因子)。
频率占用和UCI/数据复用
PUSCH传输中的起始PRB和PRB数量可以由UE用信号通知。为了减少信令开销,可以将起始PRB约束为与对应于CG-UCI的最低PRB相同。
就CP-OFDM(循环前缀OFDM)而言,对于秩1传输,可以假设由CG-UCI占用的PRB数量不同于PUSCH的PRB数量,其中具有CG-UCI的符号上的剩余RE填充有PUSCH。对于秩2或更高秩的传输,相同的CG-UCI可以应用于每个空间层,并且预编码可以由UE实现。图8中提供了CP-OFDM的一个示例(802)。
就DFT-S-OFDM而言,为了避免时间上的不同TX功率电平,可能优选的是具有在CG-UCI之后的剩余PUSCH。图8中提供了DFT-S-OFDM的一个示例(804)。
如图8所示,新的CG-UCI可以占用关于PUSCH RE的正交资源,因此UCI复用规则也可以被改变,例如类似于针对V2X中的两级SCI(侧行链路控制信息)设计所做的改变。在这个意义上,CG-UCI可被认为起到类似于阶段1SCI的作用。
用于不同重复的UCI/数据复用
在当前的NR-U设计中,在每个PUSCH传输中携带CG-UCI,这是考虑到传输持续时间不改变的合理设计。相比之下,根据本文所公开的各种实施方案,由于L可以被调整并且CG-UCI可存在于固定位置上,因此CG-UCI可存在于一些重复中而不存在于其他重复中,例如如图9所示。
功率控制
功率控制可根据{MCS级别,以及标称重复中的PRB数量}来确定。作为基线解决方案,UE可以选择用于PUSCH传输的MCS级别,并且也可以相应地调整传输功率。更精细的解决方案也是可能的并且是可设想的。基站可以定义最大功率电平,其可被提供为绝对限制,例如以dBm为单位,或者其可以是相对功率裕度,例如以dB为单位。UE可以操作,使得其不超过功率裕度/绝对限制。在一些实施方案中,可以将限制提供为对总传输功率的限制或对PSD的限制。在未许可频谱中,由于管理要求,可能存在PSD限制,而基站可实施PSD限制以确保小区间干扰不会太严重。
在UE中配置CG
图10示出了根据一些实施方案的用于实现CG的移动设备的示例性方法的流程图。如1002中所示,设备可以从基站接收与用于至少部分地配置用于设备的上行链路数据传输的资源的第一传输参数(例如,用于设备的PUSCH传输的传输参数)相对应的第一组值,并且还可以从基站接收与用于至少部分地配置用于设备的上行链路控制信息传输的资源的第二传输参数(例如,用于设备的UCI传输的传输参数)相对应的第二组值。在1004中,设备可以至少基于设备的当前无线流量需求和第一组值来确定对应于第一传输参数的第三组值。在1006中,设备可以在使用至少第二组值配置的资源上向基站传输包括至少第三组值的上行链路控制信息。在1008中,设备可以在使用至少第三组值配置的资源上向基站传输上行链路数据。
由基站配置CG
图11示出了根据一些实施方案的用于实现CG的基站的示例性方法的流程图。如1102中所示,基站可将配置参数/值作为配置设备的CG的一部分传输到设备。因此,基站可以相应地传输与用于至少部分地配置用于设备的上行链路数据传输的资源的第一传输参数(例如,用于设备的PUSCH传输的传输参数)相对应的第一组值,并且还可以向设备传输与用于至少部分地配置用于设备的上行链路控制信息传输的资源的第二传输参数(例如,用于设备的UCI传输的传输参数)相对应的第二组值。在1104中,基站可以在使用至少第二组值配置的资源上从设备接收上行链路控制信息,其中上行链路控制信息包括对应于第一传输参数的至少第三组值并且由设备至少基于设备的当前无线流量需求和第一组值确定。在1106中,基站可以在使用至少第三组值配置的资源上从设备接收上行链路数据。
众所周知,使用个人可识别信息应遵循公认为满足或超过维护用户隐私的行业或政府要求的隐私政策和做法。具体地,应管理和处理个人可识别信息数据,以使无意或未经授权的访问或使用的风险最小化,并应当向用户明确说明授权使用的性质。
本发明的实施方案可通过各种形式中的任一种来实现。例如,在一些实施方案中,可将本发明实现为计算机实现的方法、计算机可读存储器介质或计算机系统。在其他实施方案中,可使用一个或多个定制设计的硬件设备诸如ASIC来实现本发明。在其他实施方案中,可使用一个或多个可编程硬件元件诸如FPGA来实现本发明。
在一些实施方案中,非暂态计算机可读存储器介质(例如,非暂态存储器元件)可被配置为使其存储程序指令和/或数据,其中如果由计算机系统执行所述程序指令,则使计算机系统执行一种方法,例如本文所述的方法实施方案中的任一种,或本文所述的方法实施方案的任何组合,或本文所述的任何方法实施方案的任何子集,或此类子集的任何组合。
在一些实施方案中,设备(例如UE)可被配置为包括处理器(或一组处理器)和存储器介质(或存储器元件),其中所述存储器介质存储程序指令,其中所述处理器被配置为从所述存储器介质中读取并执行所述程序指令,其中所述程序指令是可执行的以实现本文所述的各种方法实施方案中的任一种方法实施方案(或本文所述方法实施方案的任何组合,或本文所述的任何方法实施方案中的任何子集或此类子集的任何组合)。可以各种形式中的任一种来实现该设备。
通过将用户装备(UE)或设备在下行链路中接收的每个消息/信号X解释为由基站/网络节点所传输的消息/信号X,并且将UE在上行链路中所传输的每个消息/信号Y解释为由基站/网络节点接收的消息/信号Y,本文所述的用于操作UE的方法中的任何方法可以成为用于操作该基站或适当网络节点的对应方法的基础。
虽然已相当详细地描述了上面的实施方案,但是一旦完全了解上面的公开,许多变型和修改对于本领域的技术人员而言将变得显而易见。本公开旨在使以下权利要求书被阐释为包含所有此类变型和修改。

Claims (20)

1.一种基带处理器,所述基带处理器被配置为执行包括以下的操作:
从基站接收对应于第一传输参数的第一组值,所述第一传输参数用于至少部分地配置用于设备的上行链路数据传输的资源;
从所述基站接收对应于第二传输参数的第二组值,所述第二传输参数用于至少部分地配置用于所述设备的上行链路控制信息传输的资源;
至少基于所述设备的当前无线流量需求和所述第一组值来确定对应于所述第一传输参数的第三组值;以及
在使用至少所述第二组值配置的资源上向所述基站传输包括至少所述第三组值的上行链路控制信息。
2.根据权利要求1所述的基带处理器,所述基带处理器被配置为执行包括以下的另外操作:
在使用至少所述第三组值配置的资源上向所述基站传输上行链路数据。
3.根据权利要求1所述的基带处理器,其中所述第一组值包括用于限制所述第三组值的对应值的相应限制。
4.根据权利要求1所述的基带处理器,其中所述第一组值和所述第二组值是作为配置授权的配置信息的一部分而被接收的。
5.根据权利要求1所述的基带处理器,其中所述第三组值包括以下中的一项或多项:
每次重复的传输持续时间;
重复次数;
调制编码方案级别;
占用频率;或者
由所述设备掩蔽的循环冗余校验位。
6.根据权利要求1所述的基带处理器,其中所述第一组值包括以下中的一项或多项:
最大传输持续时间;
最大传输功率;
调制编码方案级别范围;或者
最大占用频率。
7.根据权利要求1所述的基带处理器,其中所述第二传输参数包括以下中的一项或多项:
调制顺序;
编码速率;
时间和频率资源元素;或者
解调参考信号配置。
8.一种设备,所述设备包括:
无线电电路,所述无线电电路被配置为促进所述设备的无线通信;以及
处理器,所述处理器通信地耦接到所述无线电电路并被配置为执行包括以下的操作:
从基站接收对应于第一传输参数的第一组值,所述第一传输参数用于至少部分地配置用于设备的上行链路数据传输的资源;
从所述基站接收对应于第二传输参数的第二组值,所述第二传输参数用于至少部分地配置用于所述设备的上行链路控制信息传输的资源;
至少基于所述设备的当前无线流量需求和所述第一组值来确定对应于所述第一传输参数的第三组值;以及
在使用至少所述第二组值配置的资源上向所述基站传输包括至少所述第三组值的上行链路控制信息。
9.根据权利要求8所述的设备,其中所述处理器被配置为执行包括以下的另外操作:
在使用至少所述第三组值配置的资源上向所述基站传输上行链路数据。
10.根据权利要求8所述的设备,其中所述第一组值包括用于限制所述第三组值的对应值的相应限制。
11.根据权利要求8所述的设备,其中所述第一组值和所述第二组值是作为配置授权的配置信息的一部分而被接收的。
12.根据权利要求8所述的设备,其中所述第三组值包括以下中的一项或多项:
每次重复的传输持续时间;
重复次数;
调制编码方案级别;
占用频率;或者
由所述设备掩蔽的循环冗余校验位。
13.根据权利要求8所述的设备,其中所述第一组值包括以下中的一项或多项:
最大传输持续时间;
最大传输功率;
调制编码方案级别范围;或者
最大占用频率。
14.根据权利要求8所述的设备,其中所述第二传输参数包括以下中的一项或多项:
调制顺序;
编码速率;
时间和频率资源元素;或者
解调参考信号配置。
15.一种存储指令的非暂态存储器元件,所述指令能够由处理器执行以执行包括以下的操作:
从基站接收对应于第一传输参数的第一组值,所述第一传输参数用于至少部分地配置用于设备的上行链路数据传输的资源;
从所述基站接收对应于第二传输参数的第二组值,所述第二传输参数用于至少部分地配置用于所述设备的上行链路控制信息传输的资源;
至少基于所述设备的当前无线流量需求和所述第一组值来确定对应于所述第一传输参数的第三组值;以及
在使用至少所述第二组值配置的资源上向所述基站传输包括至少所述第三组值的上行链路控制信息。
16.根据权利要求15所述的非暂态存储器元件,其中所述指令能够由所述处理器执行以执行包括以下的另外操作:
在使用至少所述第三组值配置的资源上向所述基站传输上行链路数据。
17.根据权利要求15所述的非暂态存储器元件,其中所述第一组值和所述第二组值是作为配置授权的配置信息的一部分而被接收的;并且
其中所述第一组值包括用于限制所述第三组值的对应值的相应限制。
18.根据权利要求15所述的非暂态存储器元件,其中所述第三组值包括以下中的一项或多项:
每次重复的传输持续时间;
重复次数;
调制编码方案级别;
占用频率;或者
由所述设备掩蔽的循环冗余校验位。
19.根据权利要求18所述的非暂态存储器元件,其中所述第一组值包括以下中的一项或多项:
最大传输持续时间;
最大传输功率;
调制编码方案级别范围;或者
最大占用频率。
20.根据权利要求15所述的非暂态存储器元件,其中所述第二传输参数包括以下中的一项或多项:
调制顺序;
编码速率;
时间和频率资源元素;或者
解调参考信号配置。
CN202080104664.6A 2020-08-05 2020-08-05 用于实现增强的配置授权的移动设备和方法 Pending CN116250192A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107030 WO2022027294A1 (en) 2020-08-05 2020-08-05 Mobile devices and methods for implementing enhanced configured grants

Publications (1)

Publication Number Publication Date
CN116250192A true CN116250192A (zh) 2023-06-09

Family

ID=80119447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080104664.6A Pending CN116250192A (zh) 2020-08-05 2020-08-05 用于实现增强的配置授权的移动设备和方法

Country Status (4)

Country Link
US (1) US20220304042A1 (zh)
EP (1) EP4158809A4 (zh)
CN (1) CN116250192A (zh)
WO (1) WO2022027294A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023201464A1 (en) * 2022-04-18 2023-10-26 Lenovo (Beijing) Limited Methods and apparatuses for resource selection for sidelink transmission

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098358A1 (ko) * 2012-12-18 2014-06-26 엘지전자 주식회사 데이터 수신 방법 및 장치
US10075309B2 (en) * 2014-04-25 2018-09-11 Qualcomm Incorporated Modulation coding scheme (MCS) indication in LTE uplink
KR20160019867A (ko) * 2014-08-12 2016-02-22 뉴라컴 인코포레이티드 고효율 무선랜 디바이스 전송 전력 제어
CN108702239B (zh) * 2016-02-15 2021-01-29 华为技术有限公司 使用ue选择的调制编码方案的上行链路发送器和接收器
CN108023708B (zh) * 2016-11-03 2022-09-13 中兴通讯股份有限公司 一种信息发送方法、装置、系统及相关设备
US11950250B2 (en) 2018-08-09 2024-04-02 Ipla Holdings Inc. UCI design for UL transmission with configured grant
US11252754B2 (en) 2019-01-09 2022-02-15 Ofinno, Llc Configured grant for unlicensed cells

Also Published As

Publication number Publication date
EP4158809A4 (en) 2023-08-02
WO2022027294A1 (en) 2022-02-10
EP4158809A1 (en) 2023-04-05
US20220304042A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
WO2021155124A1 (en) Dynamic spectrum sharing between 4g and 5g wireless networks
EP3917256B1 (en) Method, device and computer program product for reporting a capability for support of multiple downlink control information
EP3777421A1 (en) Dynamic prioritization of uplink traffic
WO2022027308A1 (en) Enhanced configured grants
US11950249B2 (en) Two-stage grant for uplink data transmission in new radio-unlicensed (NR-U)
US20240032087A1 (en) Enhanced Physical Uplink Shared Channel Transmission in Wireless Communications
CN116711430A (zh) 无线通信中的参考信号传输的动态适应
CN115769656A (zh) 在无线通信中对服务质量流的快速资源分配调整和介质访问控制感知
US11129187B2 (en) Network-assisted sidelink scheduling techniques
WO2022082589A1 (en) Multimedia broadcast and multicast service (mbms) transmission and reception in connected state during wireless communications
CN116349192A (zh) 由设备进行的用于请求定位资源的物理层信令
WO2021226994A1 (en) Control signaling for physical control channel reliability enhancement
US20220304042A1 (en) Enhanced Configured Grants
WO2022077352A1 (en) Technologies for reliable physical data channel reception in wireless communications
US20220417957A1 (en) Multi-receiver scheduling using sub-slot based physical sidelink shared channels
US11825475B2 (en) Multi-transmitter scheduling using sub-slot based physical sidelink shared channels
EP4195808A1 (en) Terminal and sidelink communication control method
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
EP4346143A1 (en) User equipment and base station involved in time-division communication
US20240155672A1 (en) Sidelink resource pool configurations including sidelink synchronization signal block slots

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination