CN116246349A - 一种基于渐进式子域挖掘的单源域领域泛化步态识别方法 - Google Patents
一种基于渐进式子域挖掘的单源域领域泛化步态识别方法 Download PDFInfo
- Publication number
- CN116246349A CN116246349A CN202310498977.XA CN202310498977A CN116246349A CN 116246349 A CN116246349 A CN 116246349A CN 202310498977 A CN202310498977 A CN 202310498977A CN 116246349 A CN116246349 A CN 116246349A
- Authority
- CN
- China
- Prior art keywords
- domain
- gait
- gait recognition
- training
- samples
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005021 gait Effects 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000005065 mining Methods 0.000 title claims abstract description 33
- 230000000750 progressive effect Effects 0.000 title claims abstract description 18
- 238000012549 training Methods 0.000 claims abstract description 39
- 238000012360 testing method Methods 0.000 claims abstract description 11
- 238000005070 sampling Methods 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 4
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 3
- 102000009331 Homeodomain Proteins Human genes 0.000 claims description 3
- 108010048671 Homeodomain Proteins Proteins 0.000 claims description 3
- 206010023126 Jaundice Diseases 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 abstract 1
- 238000009412 basement excavation Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 108020001568 subdomains Proteins 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
- G06V40/23—Recognition of whole body movements, e.g. for sport training
- G06V40/25—Recognition of walking or running movements, e.g. gait recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/762—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
- G06V10/763—Non-hierarchical techniques, e.g. based on statistics of modelling distributions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Medical Informatics (AREA)
- Probability & Statistics with Applications (AREA)
- Human Computer Interaction (AREA)
- Social Psychology (AREA)
- Psychiatry (AREA)
- Image Analysis (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种基于渐进式子域挖掘的单源域领域泛化步态识别方法,属于步态识别技术领域,该方法为:在多个域中分别采集独立的数据集;构建渐进式子域挖掘步态识别框架,并嵌入GaitPart步态识别网络模型,构成步态识别模型;对步态识别模型进行基础训练;设计子域信息挖掘模块,根据聚类结果将源域划分为多个子域和异常值;对多个子域进行域泛化训练;在多个目标域上测试训练好的模型参数,评估步态识别模型最终的泛化性能。本发明采用无监督聚类将单个大域分解成多个小域,并设计两个损失函数约束步态识别网络提取域不变特征,减少不同域之间的域间隙,提高步态识别网络的域泛化能力。
Description
技术领域
本发明属于步态识别技术领域,具体涉及一种基于渐进式子域挖掘的单源域领域泛化步态识别方法。
背景技术
步态识别已经被研究多年,并且有各种不同的方法被提出。受益于深度学习的快速发展,现有的步态识别方法大多使用深度神经网络来提取识别身份的深度特征,并使用全监督学习来训练网络。根据描述人体的数据类型,现存方法可以被分为基于模型的方法和基于外观的方法。基于模型的方法使用二维或三维骨架数据来构建个体的步态特征。LiX等人在训练时使用多个视角的骨架数据来提高模型对视角变化的鲁棒性。基于外观的方法通常使用分割好的步态序列来构建步态特征。Chao H等人提出的GaitSet网络,认为步态序列的顺序对步态特征的构建没有影响,以此实现了多视角序列的识别。Li X等人设计了一个解耦网络,将步态特征与无关特征分类,实现特征对遮挡的鲁棒性。当在相同场景进行训练和测试时,上述方法都表现出了良好的性能。在这种设定下,不存在域泛化问题。模型很容易过拟合数据收集场景的分布,以获取更好的性能。自然地,当考虑域泛化性能时,由于场景的变化,上述模型的性能会大打折扣。为了更好的增强模型的泛化能力,Zheng J等人提出了TraND框架,TraND通过领域选择和邻域发现来弥合源域与目标域之间的域偏移,使模型在目标域拥有较好的性能。
上述算法使用全监督方法或UDA方法,当需要在新场景应用时,仍然需要收集数据和更新模型。为此,本发明提出了一个单源域领域泛化步态识别框架,该框架仅需要一个源域,通过子域信息挖掘,将单个源域分割成多个子域,同时使用两个域泛化损失约束模型学习域不变特征,有效提高模型的域泛化能力。
发明内容
针对现有技术中存在的上述问题,本发明提出了一种基于渐进式子域挖掘的单源域领域泛化步态识别方法,设计合理,解决了现有技术的不足,具有良好的效果。
一种基于渐进式子域挖掘的单源域领域泛化步态识别方法,包括以下步骤:
步骤1:在多个域中分别采集独立的数据集;
步骤3:对步态识别模型进行基础训练,使其具有基本的步态特征提取能力;
进一步地,所述步骤1具体包括:在N个不同域中录制步态视频,使用预处理算法提取步态轮廓图,并统一图像大小为64×44,由此得到多个数据集:,每个数据集包括多个样本,一个样本为一个步态序列,其中一个数据集作为训练集,其余数据集作为测试集。
进一步地,所述步骤2中,步态识别网络模型为GaitSet、GaitPart或GaitGL模型。
其中,为一个迷你批中的样本数,代表迷你批中的第个样本由提取的特征,,,分别代表锚点的特征,与锚点标签相同的另一样本的特征,与锚点标签不同的另一样本的特征;代表两个特征之间的欧氏距离,是一个手工指定的边距;
进一步地,所述步骤5中,每次域泛化训练过程包括两步:
使用整个子域所有特征的平均值来估算域特征,如下式所示:
本发明带来的有益技术效果:
1)相比于现有步态识别网络,本发明对步态识别网络域跨域识别提出了有效的、针对性的训练策略。主要设计了两个域泛化损失约束步态识别网络提取域不变特征,有效减少了步态识别网络提取的特征中的域信息,提高了步态识别网络跨域能力;
2)由于单源域领域泛化有且仅有一个源域用于训练,为此本发明提出SIM模块。SIM模块可以根据样本特征的相似程度将一个域划分为多个子域,使得单个源域可以应用多源域领域泛化方法。
附图说明
图1为本发明中基于渐进式子域挖掘的单源域领域泛化步态识别框架流程图。
图2为本发明中子域信息挖掘模块流程图。
图3为子域信息挖掘模块第一次运行时挖掘出子域的分布与数量结果图。
图4为子域信息挖掘模块第五次运行时挖掘出子域的分布与数量结果图。
图5为子域信息挖掘模块第十次运行时,挖掘出子域的分布与数量结果图。
图6为训练过程中每次执行子域挖掘模块后各个子域的样本数量结果图。
具体实施方式
下面结合具体实施例对本发明的具体实施方式做进一步说明:
下面结合具体实施例对本发明的具体实施方式做进一步说明:
一种基于渐进式子域挖掘的单源域领域泛化步态识别方法,如图1所示,包括以下步骤:
步骤1:在多个域中分别采集独立的数据集;
步骤1具体包括:在N个不同域中录制步态视频,使用预处理算法提取步态轮廓图,并统一图像大小为64×44,由此得到多个数据集:,每个数据集包括多个样本,一个样本为一个步态序列,其中一个数据集作为训练集,其余数据集作为测试集。
其中,步态识别网络模型为GaitSet、GaitPart或GaitGL模型。
步骤3:对步态识别模型进行基础训练,使其具有基本的步态特征提取能力;
由于三元组损失能够有效较小类内距离,增加类间距离,如下式:
其中,为一个迷你批中的样本数,代表迷你批中的第个样本由提取的特征,,,分别代表锚点的特征,与锚点标签相同的另一样本的特征,与锚点标签不同的另一样本的特征;代表两个特征之间的欧氏距离,是一个手工指定的边距,将其设置为0.2;
步骤4、为了更好的将单个域模拟成多个域,设计子域信息挖掘模块SIM,如图2所示,SIM使用提取源域所有样本的特征,源域为训练集,目标域为测试集,计算每个特征之间的欧式距离,其次使用无监督聚类方法DBSCAN对提取的特征进行聚类,根据聚类结果将源域划分为多个子域和异常值;
使用整个子域所有特征的平均值来估算域特征,如下式所示:
图3到图5分别展示了第1次、第5次、第10次执行子域挖掘模块后,子域划分的情况,图6则是每次执行子域挖掘模块后,各个子域的样本数量以及所有子域样本数量的和。可以明显看出,随着训练的进行,子域(3)的样本数量逐渐减少直至消失,以及子域(1)和子域(2)随着子域挖掘模块的执行样本数在逐渐减少,说明了本发明中的步态识别模型可以有效提取域不变特征。
为了进一步验证本发明带来的效果,在步骤2中分别采用GaitSet、GaitPart或GaitGL三个步态识别网络模型,经过本发明中的训练方法得到三个步态识别模型PSIMGaitSet、PSIMGaitPart,PSIMGaitGL,并通过表1、表2、表3展示了使用GaitSet、GaitPart、GaitGL三个步态识别网络模型与使用本发明训练方法再进行跨域后的步态识别模型PSIMGaitSet、PSIMGaitPart,PSIMGaitGL,在CASIA-B和OU-MVLP数据集上不同条件下直接跨域进行测试的对比结果。
表1:在CASIA-B和OU-MVLP数据集上包含自身视角下的识别准确率对比结果;
表2:在CASIA-B数据集上排除自身视角后,在多个行走条件、多个目标视角下的识别准确率对比结果;
表3:在OU-MVLP数据集上排除自身视角后,在多个目标视角下的识别准确率对比结果;
通过表1、表2、表3可以明显看出使用本发明训练的步态识别模型在多个数据集的不同条件下均可以达到较原模型更优的结果。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。
Claims (6)
1.一种基于渐进式子域挖掘的单源域领域泛化步态识别方法,其特征在于,包括以下步骤:
步骤1:在多个域中分别采集独立的数据集;
步骤3:对步态识别模型进行基础训练,使其具有基本的步态特征提取能力;
3.根据权利要求1所述的一种基于渐进式子域挖掘的单源域领域泛化步态识别方法,其特征在于,所述步骤2中,步态识别网络模型为GaitSet、GaitPart或GaitGL模型。
4.根据权利要求1所述的一种基于渐进式子域挖掘的单源域领域泛化步态识别方法,其特征在于,所述步骤3中,每次基础训练过程为:每个步态序列随机抽取30帧,按照时间顺序输入步态识别模型,使用三元组损失约束,交叉熵损失约束,使用与的和作为基础训练的总损失,如下式所示:
其中,为一个迷你批中的样本数,代表迷你批中的第个样本由提取的特征,,,分别代表锚点的特征,与锚点标签相同的另一样本的特征,与锚点标签不同的另一样本的特征;代表两个特征之间的欧氏距离,是一个手工指定的边距;
6.根据权利要求1所述的一种基于渐进式子域挖掘的单源域领域泛化步态识别方法,其特征在于,所述步骤5中,每次域泛化训练过程包括两步:
使用整个子域所有特征的平均值来估算域特征,如下式所示:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310498977.XA CN116246349B (zh) | 2023-05-06 | 2023-05-06 | 一种基于渐进式子域挖掘的单源域领域泛化步态识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310498977.XA CN116246349B (zh) | 2023-05-06 | 2023-05-06 | 一种基于渐进式子域挖掘的单源域领域泛化步态识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116246349A true CN116246349A (zh) | 2023-06-09 |
CN116246349B CN116246349B (zh) | 2023-08-15 |
Family
ID=86635277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310498977.XA Active CN116246349B (zh) | 2023-05-06 | 2023-05-06 | 一种基于渐进式子域挖掘的单源域领域泛化步态识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116246349B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117173476A (zh) * | 2023-09-05 | 2023-12-05 | 北京交通大学 | 一种单源域泛化行人再识别方法 |
CN118379799A (zh) * | 2024-06-21 | 2024-07-23 | 山东大学 | 基于解耦和鉴别联合学习的跨视角步态识别方法及系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111931619A (zh) * | 2020-07-31 | 2020-11-13 | 杭州电子科技大学 | 一种基于优化聚类算法的跨域步态重识别方法 |
US20210042356A1 (en) * | 2019-08-06 | 2021-02-11 | International Business Machines Corporation | Data generalization for predictive models |
WO2021097774A1 (en) * | 2019-11-21 | 2021-05-27 | Beijing Didi Infinity Technology And Development Co., Ltd. | Systems and methods for multi-source domain adaptation for semantic segmentation |
CN113505719A (zh) * | 2021-07-21 | 2021-10-15 | 山东科技大学 | 基于局部-整体联合知识蒸馏算法的步态识别模型压缩系统及方法 |
CN113642547A (zh) * | 2021-10-18 | 2021-11-12 | 中国海洋大学 | 一种基于密度聚类的无监督域适应人物重识别方法及系统 |
WO2022001489A1 (zh) * | 2020-06-28 | 2022-01-06 | 北京交通大学 | 一种无监督域适应的目标重识别方法 |
CN114463848A (zh) * | 2022-01-28 | 2022-05-10 | 浙江大学 | 一种基于记忆增强的渐进式学习步态识别方法 |
CN114580492A (zh) * | 2021-12-03 | 2022-06-03 | 北京航空航天大学 | 一种基于互学习的跨域行人重识别方法 |
CN114821809A (zh) * | 2022-05-25 | 2022-07-29 | 东南大学 | 基于标记分布学习的多源域领域泛化行人重识别系统及方法 |
CN115690534A (zh) * | 2022-10-26 | 2023-02-03 | 中国科学院计算技术研究所 | 一种基于迁移学习的图像分类模型的训练方法 |
-
2023
- 2023-05-06 CN CN202310498977.XA patent/CN116246349B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210042356A1 (en) * | 2019-08-06 | 2021-02-11 | International Business Machines Corporation | Data generalization for predictive models |
WO2021097774A1 (en) * | 2019-11-21 | 2021-05-27 | Beijing Didi Infinity Technology And Development Co., Ltd. | Systems and methods for multi-source domain adaptation for semantic segmentation |
WO2022001489A1 (zh) * | 2020-06-28 | 2022-01-06 | 北京交通大学 | 一种无监督域适应的目标重识别方法 |
CN111931619A (zh) * | 2020-07-31 | 2020-11-13 | 杭州电子科技大学 | 一种基于优化聚类算法的跨域步态重识别方法 |
CN113505719A (zh) * | 2021-07-21 | 2021-10-15 | 山东科技大学 | 基于局部-整体联合知识蒸馏算法的步态识别模型压缩系统及方法 |
CN113642547A (zh) * | 2021-10-18 | 2021-11-12 | 中国海洋大学 | 一种基于密度聚类的无监督域适应人物重识别方法及系统 |
CN114580492A (zh) * | 2021-12-03 | 2022-06-03 | 北京航空航天大学 | 一种基于互学习的跨域行人重识别方法 |
CN114463848A (zh) * | 2022-01-28 | 2022-05-10 | 浙江大学 | 一种基于记忆增强的渐进式学习步态识别方法 |
CN114821809A (zh) * | 2022-05-25 | 2022-07-29 | 东南大学 | 基于标记分布学习的多源域领域泛化行人重识别系统及方法 |
CN115690534A (zh) * | 2022-10-26 | 2023-02-03 | 中国科学院计算技术研究所 | 一种基于迁移学习的图像分类模型的训练方法 |
Non-Patent Citations (6)
Title |
---|
HAN-KAI HSU 等: "Progressive Domain Adaptation for Object Detection", 《2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV)》, pages 738 - 746 * |
XINYU ZHANG 等: "Self-Training With Progressive Augmentation for Unsupervised Cross-Domain Person Re-Identification", 《2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV)》, pages 8221 - 8230 * |
XU SONG 等: "Distilled light GaitSet: Towards scalable gait recognition", 《PATTERN RECOGNITION LETTERS》, vol. 157, pages 27 - 34 * |
YAOYU LI 等: "Intra-Domain Consistency Enhancement for Unsupervised Person Re-Identification", 《IEEE TRANSACTIONS ON MULTIMEDIA》, vol. 24, pages 415 - 425, XP011898301, DOI: 10.1109/TMM.2021.3052354 * |
戴阳: "基于无监督域不变特征学习的行人重识别方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》, vol. 2023, no. 1, pages 138 - 1295 * |
李琳: "面向环境无关的Wi-Fi人体行为识别方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》, vol. 2023, no. 2, pages 136 - 1193 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117173476A (zh) * | 2023-09-05 | 2023-12-05 | 北京交通大学 | 一种单源域泛化行人再识别方法 |
CN117173476B (zh) * | 2023-09-05 | 2024-05-24 | 北京交通大学 | 一种单源域泛化行人再识别方法 |
CN118379799A (zh) * | 2024-06-21 | 2024-07-23 | 山东大学 | 基于解耦和鉴别联合学习的跨视角步态识别方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN116246349B (zh) | 2023-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116246349B (zh) | 一种基于渐进式子域挖掘的单源域领域泛化步态识别方法 | |
CN109389180A (zh) | 一款基于深度学习的电力设备图像识别方法及巡查机器人 | |
CN111583210B (zh) | 基于卷积神经网络模型集成的乳腺癌图像自动识别方法 | |
CN112861671B (zh) | 一种对深度伪造人脸图像和视频的鉴别方法 | |
CN103136504A (zh) | 人脸识别方法及装置 | |
CN109086794B (zh) | 一种基于t-lda主题模型的驾驶行为模式识方法 | |
CN104915926A (zh) | 图像处理设备和图像处理方法 | |
CN111563404B (zh) | 用于基于视频的人再识别的全局局部时间表示方法 | |
CN112329832A (zh) | 一种基于深度卷积生成对抗网络的无源定位目标轨迹数据增强方法及系统 | |
CN102236786B (zh) | 一种光照自适应的人体肤色检测方法 | |
CN111723852B (zh) | 针对目标检测网络的鲁棒训练方法 | |
CN113822377B (zh) | 基于对比自学习的伪造人脸检测方法 | |
Yang et al. | Local path integration for attribution | |
CN116110113A (zh) | 一种基于深度学习的虹膜识别方法 | |
CN115331012A (zh) | 基于零样本学习的联合生成式图像实例分割方法及系统 | |
CN112508860B (zh) | 一种免疫组化图像核阳性的人工智能判读方法及系统 | |
CN117877068A (zh) | 一种基于掩码自监督遮挡像素重建的遮挡行人重识别方法 | |
CN117636096A (zh) | 基于域间共性特征迁移生成的小样本表面缺陷识别方法 | |
CN111127407B (zh) | 一种基于傅里叶变换的风格迁移伪造图像检测装置及方法 | |
CN114821809B (zh) | 基于标记分布学习的多源域领域泛化行人重识别系统及方法 | |
CN109635849A (zh) | 一种基于三支c-means决策的目标聚类方法及系统 | |
CN105701499A (zh) | 一种用于脑部mri图像分类的图像处理方法 | |
CN112800959B (zh) | 一种用于人脸识别中数据拟合估计的困难样本发掘方法 | |
CN113392786B (zh) | 基于归一化和特征增强的跨域行人重识别方法 | |
CN113505692B (zh) | 基于受试者工作特征曲线下部分面积优化的人脸识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |