CN116244940A - Dual-beam ultra-wideband array antenna optimization layout method - Google Patents
Dual-beam ultra-wideband array antenna optimization layout method Download PDFInfo
- Publication number
- CN116244940A CN116244940A CN202310161926.8A CN202310161926A CN116244940A CN 116244940 A CN116244940 A CN 116244940A CN 202310161926 A CN202310161926 A CN 202310161926A CN 116244940 A CN116244940 A CN 116244940A
- Authority
- CN
- China
- Prior art keywords
- array
- optimization
- dual
- ultra
- layout
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 238000005457 optimization Methods 0.000 title claims abstract description 56
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 4
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 4
- 230000009977 dual effect Effects 0.000 claims description 20
- 230000005855 radiation Effects 0.000 claims description 9
- 230000014509 gene expression Effects 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 3
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 238000003491 array Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
技术领域Technical Field
本发明属于天线技术领域,具体是一种双波束超宽带阵列天线优化布局方法。The invention belongs to the technical field of antennas, and in particular relates to a dual-beam ultra-wideband array antenna optimization layout method.
背景技术Background Art
超宽带阵列天线可在最高工作频点与最低工作频点之比大于3的情况下实现有效辐射,因此它广泛用于无线通信系统和雷达系统。但是,设计高性能的超宽带阵列天线通常会面对一个两难的抉择,即最小单元间距的选择。一方面,选择以最高频点的半波长作为最小单元间距,例如紧耦合技术。该技术虽然可以实现极大的工作带宽,但是需要较多的通道数量以及有源驻波比抑制困难。另一方面,选择以最低频点的半波长作为最小单元间距,但是这样会导致高频栅瓣被引入到阵列方向图中。因此,目前大多数方法采用稀疏阵列布局方法对阵列天线单元的位置进一步优化。例如:文献1利用第一类贝塞尔函数的特点来表示阵列因子,提出了一种解析计算环半径和环内元素个数的设计方法,实验结果表面该方法可实现低副瓣电平的宽带宽角扫描稀疏同心圆环阵列。Ultra-wideband array antennas can achieve effective radiation when the ratio of the highest operating frequency to the lowest operating frequency is greater than 3, so they are widely used in wireless communication systems and radar systems. However, the design of high-performance ultra-wideband array antennas usually faces a dilemma, that is, the choice of the minimum unit spacing. On the one hand, half the wavelength of the highest frequency point is selected as the minimum unit spacing, such as tight coupling technology. Although this technology can achieve a very large working bandwidth, it requires a large number of channels and has difficulty in suppressing the active standing wave ratio. On the other hand, half the wavelength of the lowest frequency point is selected as the minimum unit spacing, but this will cause high-frequency grating lobes to be introduced into the array radiation pattern. Therefore, most current methods use sparse array layout methods to further optimize the position of array antenna units. For example:
尽管上述方法可综合满足设计指标要求的双波束超宽带阵列天线,但是它通过对影响天线单元布局的参数在某个合理取值范围内进行检索,从而解析地找到可实现最优辐射性能的天线单元位置。但是,尽管上述方法的求解速度较快,但是求解范围有限导致算法的优化性能受限。同时,在优化过程中如何保证宽带及波束扫描性能的同时,考虑最小单元间距,避免天线阵元之间的物理重叠,也是一个极大的挑战。最后,在已有的超宽带阵列综合方法中,仅有采用稀疏阵列布局方法对单波束线阵进行综合,而将稀疏阵列布局方法用于综合双波束超宽带平面阵列,且实现最小单元间距控制的方法很少。Although the above method can synthesize a dual-beam ultra-wideband array antenna that meets the design index requirements, it searches for parameters that affect the layout of the antenna units within a reasonable range of values to analytically find the antenna unit position that can achieve the best radiation performance. However, although the solution speed of the above method is fast, the limited solution range limits the optimization performance of the algorithm. At the same time, how to ensure broadband and beam scanning performance while considering the minimum unit spacing and avoiding physical overlap between antenna elements during the optimization process is also a great challenge. Finally, among the existing ultra-wideband array synthesis methods, only the sparse array layout method is used to synthesize single-beam linear arrays, and the sparse array layout method is used to synthesize dual-beam ultra-wideband planar arrays, and there are few methods to achieve minimum unit spacing control.
中国专利CN202110281818.5公开了一种超大间距阵列无栅瓣大角度扫描布阵方法,该专利首先将整个阵列天线按x轴分为Ⅰ、Ⅱ、Ⅲ,三个平面阵区域,对平面阵区域Ⅰ和区域Ⅲ的平面阵进行斜角布阵,并对整个二维平面阵列进行外形调整,增大空间利用率,实验结果表面,该方法可实现3倍频以上超宽带无栅瓣稀疏阵。但是该方法所综合的平面超宽带阵列是解析地对影响布局的参数进行检索,所优化的阵元布局结果仍然有进一步优化的空间。Chinese patent CN202110281818.5 discloses a method for arranging an array with large-angle scanning without grating lobes in an ultra-large-spacing array. The patent first divides the entire array antenna into three planar array areas, Ⅰ, Ⅱ, and Ⅲ, according to the x-axis, arranges the planar arrays in planar array area Ⅰ and area Ⅲ at an oblique angle, and adjusts the shape of the entire two-dimensional planar array to increase space utilization. Experimental results show that this method can achieve an ultra-wideband grating-free sparse array with a frequency of more than 3 times. However, the planar ultra-wideband array synthesized by this method analytically retrieves the parameters that affect the layout, and the optimized array element layout results still have room for further optimization.
发明内容Summary of the invention
针对上述现有技术的不足,本发明提供一种双波束超宽带阵列天线优化布局方法,采用费马螺旋线布局作为阵列初始布局,并保证其满足所要求的最小单元间距;最后,采用迭代凸优化方法对阵元位置进行连续微扰优化,在超宽带工作频率(最高工作频点与最低工作频点之比大于3)范围内,以波束指向不同方向的双波束最大副瓣电平最小化为优化目标。在优化过程中设置最大副瓣电平约束、阵元位置微扰量幅值约束和最小单元间距约束。优化后的阵元布局,可实现具有超宽带及波束扫描性能的双波束平面阵列,且满足要求的最小单元间距以满足实际的应用需求。In view of the deficiencies of the above-mentioned prior art, the present invention provides a dual-beam ultra-wideband array antenna optimization layout method, which adopts the Fermat spiral layout as the initial layout of the array and ensures that it meets the required minimum unit spacing; finally, the iterative convex optimization method is used to perform continuous perturbation optimization on the array element position, and within the ultra-wideband operating frequency (the ratio of the highest operating frequency to the lowest operating frequency is greater than 3), the dual-beam maximum sidelobe level with beams pointing in different directions is minimized as the optimization goal. During the optimization process, the maximum sidelobe level constraint, the array element position perturbation amplitude constraint and the minimum unit spacing constraint are set. The optimized array element layout can realize a dual-beam planar array with ultra-wideband and beam scanning performance, and meet the required minimum unit spacing to meet actual application needs.
为达上述技术目的,本发明采用如下技术方案予以实现:In order to achieve the above technical objectives, the present invention adopts the following technical solutions:
一种双波束超宽带阵列天线优化布局方法,包括以下步骤:A dual-beam ultra-wideband array antenna optimization layout method comprises the following steps:
(1)确定平面阵列天线阵元数目以及最小阵元间距,采用费马螺旋线阵列布局方法对平面阵列天线阵元进行初始化布局;(1) Determine the number of planar array antenna elements and the minimum element spacing, and use the Fermat spiral array layout method to initialize the layout of the planar array antenna elements;
(2)采用迭代凸优化方法对阵元位置进行微扰优化,在超宽带工作频率范围内,以波束指向不同方向的双波束最大副瓣电平最小化为优化目标,在优化过程中设置最大副瓣电平约束、阵元位置微扰量幅值约束和最小阵元间距约束;其中,超宽带工作频率为最高工作频点与最低工作频点之比大于3。(2) An iterative convex optimization method is used to perform perturbation optimization on the array element position. Within the ultra-wideband operating frequency range, the optimization goal is to minimize the maximum sidelobe level of the dual beams pointing in different directions. During the optimization process, the maximum sidelobe level constraint, the array element position perturbation amplitude constraint, and the minimum array element spacing constraint are set; the ultra-wideband operating frequency is the ratio of the highest operating frequency to the lowest operating frequency that is greater than 3.
进一步的,步骤1中采用费马螺旋线阵列布局方法对平面阵列天线阵元进行初始化布局,具体为:Furthermore, in
在极坐标系下,基于费马螺旋线平面阵列的第n,n=1,...,N个阵元的极径与极角分别为In the polar coordinate system, the polar diameters and polar angles of the nth, n=1,...,Nth array elements based on the Fermat spiral plane array are
式中,为黄金角,归一化因子dmin为最小单元间距,即最低频点的半波长,N为平面阵列天线阵元数目,将天线阵元极坐标系下的位置信息通过式(3)和(4)转换为xoy面的直角坐标系位置信息;In the formula, is the golden angle, normalization factor dmin is the minimum unit spacing, that is, the half wavelength of the lowest frequency point, N is the number of planar array antenna elements, and the position information of the antenna element in the polar coordinate system is converted into the rectangular coordinate system position information of the xoy plane through equations (3) and (4);
xn=ρncos(φn) (3)x n =ρ n cos(φ n ) (3)
yn=ρnsin(φn) (4) yn = ρn sin( φn ) (4)
基于式(3)和式(4)得到的阵元位置,在第k=1,...,K个频点的双波束平面阵列阵因子表达式如(5)所示Based on the array element positions obtained from equations (3) and (4), the array factor expression of the dual-beam planar array at the k=1,...,Kth frequency point is shown in (5):
其中,xn和yn分别表示位于阵列中第n个天线阵元在x轴和y轴的位置,表示第n个天线阵元在第k个频点的有源单元方向图,θ和分别表示从z和x轴测量的观测方向,βk=2πfk/c表示在第k个频点自由空间的波数,且fk=fL+(fH-fL)*k/K,fL和fH分别表示工作频点的最低和最高频点,以及和和分别表示两个波束的期望指向,u和v分别表示球坐标系投影到xoy面后的横坐标与纵坐标。in, x n and y n represent the position of the nth antenna element in the array on the x-axis and y-axis respectively. represents the active unit radiation pattern of the nth antenna element at the kth frequency point, θ and denote the observation directions measured from the z and x axes, respectively; β k =2πf k /c denotes the wave number in free space at the kth frequency point; and f k =f L +(f H -f L )*k/K, where f L and f H denote the lowest and highest frequency points of the operating frequency points, respectively. as well as and and They represent the desired pointing directions of the two beams respectively, and u and v represent the horizontal and vertical coordinates after the spherical coordinate system is projected onto the xoy plane.
进一步的,步骤2具体为:Furthermore,
采用迭代凸优化方法对阵元位置进行连续微扰优化,在超宽带工作频率范围内,以波束指向不同方向的双波束最大副瓣电平最小化为优化目标,在最小间距可控的基础上,降低栅瓣/副瓣区域的峰值电平,得到最优的平面阵列天线阵元布局;其中微扰法的基本原理为将式(5)中阵元位置xn和yn变成xn+Δxn和yn+Δyn,Δxn和Δyn分别代表阵元在x和y方向的位置微扰量,并通过一阶泰勒展开为线性表达式,且在进行优化过程中,保证满足双波束的副瓣电平约束、位置微扰幅度约束和最小间距约束三个约束条件,具体约束条件设置如下:The iterative convex optimization method is used to continuously perturb the element position. Within the ultra-wideband operating frequency range, the optimization goal is to minimize the maximum sidelobe level of the dual beams pointing in different directions. On the basis of controllable minimum spacing, the peak level of the grating lobe/sidelobe area is reduced to obtain the optimal planar array antenna element layout. The basic principle of the perturbation method is to transform the element positions xn and yn in equation (5) into xn +Δxn and yn + Δyn , where Δxn and Δyn represent the position perturbations of the element in the x and y directions, respectively, and expand them into linear expressions through first-order Taylor expansion. In the optimization process, the three constraints of the dual beam sidelobe level constraint, the position perturbation amplitude constraint and the minimum spacing constraint are guaranteed to be met. The specific constraints are set as follows:
1)双波束的副瓣电平约束:在超宽带工作频率范围内,引入设定辅助变量ε,约束双波束方向图在第k个频点副瓣区域的取值小于ε;1) Dual-beam sidelobe level constraint: In the ultra-wideband operating frequency range, an auxiliary variable ε is introduced to constrain the dual-beam pattern in the sidelobe area of the kth frequency point. The value of is less than ε;
2)位置微扰幅度约束:对于n=1,…,N均满足|βHΔxn|≤μ和|βHΔyn|≤μ,βH为工作频段中最高频的自由空间波数,μ为设定值,μ决定了位置微扰的幅度;2) Position perturbation amplitude constraint: For n=1,…, N , | βHΔxn |≤μ and | βHΔyn | ≤μ are satisfied, where βH is the highest frequency free space wave number in the working frequency band and μ is the set value, which determines the amplitude of the position perturbation;
3)最小间距约束:在微扰过程中,对于任意两个天线阵元p和q,之间的距离需大于设置的最小单元间距dmin,p&q=1,…,N&p≠q且p≠q;3) Minimum spacing constraint: During the perturbation process, for any two antenna elements p and q, the distance between them must be greater than the set minimum unit spacing dmin , p&q=1,…,N&p≠q and p≠q;
最后,阵列综合问题表示为式(6),通过迭代凸优化方法进行求解,在第l=1,...,L次迭代的优化目标为最小化栅\副瓣区域的峰值电平;Finally, the array synthesis problem is expressed as Equation (6) and solved by an iterative convex optimization method. The optimization objective in the l=1,...,Lth iteration is to minimize the peak level in the grating\sidelobe region;
式中,ε为引入的辅助变量对阵列方向图的峰值电平进行约束,表示第k个频点的副瓣区域,双波束分别指向和(xp,yp)和(xq,yq)分别为天线阵元p和q的坐标,θa&θb∈{0°,θmax}表示在优化过程中考虑的双波束分别指向的2个俯仰角为{0°,θmax},θmax为考虑的最大俯仰角,表示在优化过程中考虑的双波束分别指向的4个方位角为{0°,45°,90°,135°};在满足以上约束条件,通过迭代凸优化法对阵元位置进行多步微扰,降低栅瓣/副瓣区域的峰值电平;在每一步迭代求解出x和y方向的位置微扰量Δxn和Δyn后,将xn和yn变成xn+Δxn和yn+Δyn以更新阵元位置,当新阵列的栅瓣/副瓣区域的峰值电平保持不变且阵列布局也不变时,即得到最优化阵列布局。Where ε is the auxiliary variable introduced to constrain the peak level of the array pattern. Indicates the sidelobe area of the kth frequency point, and the dual beams point to and (x p , y p ) and (x q , y q ) are the coordinates of antenna elements p and q respectively. θ a &θ b ∈{0°,θ max } means that the two elevation angles of the dual beams considered in the optimization process are {0°,θ max } respectively. θ max is the maximum elevation angle considered. It indicates that the four azimuth angles pointed by the dual beams considered in the optimization process are {0°, 45°, 90°, 135°} respectively; when the above constraints are met, the array element position is perturbed in multiple steps through the iterative convex optimization method to reduce the peak level in the grating lobe/side lobe area; after solving the position perturbations Δxn and Δyn in the x and y directions in each iterative step, xn and yn are converted into xn + Δxn and yn + Δyn to update the array element position. When the peak level of the grating lobe/side lobe area of the new array remains unchanged and the array layout remains unchanged, the optimized array layout is obtained.
本发明可通过优化天线单元布局综合具有超宽带及双波束波束扫描性能的平面阵列,且可有效控制最小单元间距以满足实际的应用需求。The present invention can synthesize a planar array with ultra-wideband and dual-beam scanning performance by optimizing the antenna unit layout, and can effectively control the minimum unit spacing to meet actual application requirements.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的技术方案流程图。FIG1 is a flow chart of the technical solution of the present invention.
图2为基于费马螺旋线阵列布局方法的初始天线单元位置。FIG. 2 shows the initial antenna unit positions based on the Fermat spiral array layout method.
图3为采用迭代凸优化对阵列天线单元位置优化过程中的副瓣峰值电平。FIG3 shows the sidelobe peak levels during the process of optimizing the position of array antenna elements using iterative convex optimization.
图4为迭代凸优化后的阵列天线单元位置。FIG4 shows the position of the array antenna elements after iterative convex optimization.
图5为3GHz频点双波束分布指向法向和俯仰角和方位角为45度时的阵列方向图。Figure 5 shows the array radiation pattern of the dual-beam distribution pointing normal and elevation angles at 3 GHz frequency and when the azimuth angle is 45 degrees.
图6为13GHz频点双波束分布指向法向和俯仰角和方位角为45度时的阵列方向图。Figure 6 shows the array radiation pattern of the dual-beam distribution pointing to the normal direction, elevation angle and azimuth angle of 45 degrees at the 13 GHz frequency point.
具体实施方式DETAILED DESCRIPTION
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施案例,并参照附图,对本发明进一步详细说明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention is further described in detail below in combination with specific implementation cases and with reference to the accompanying drawings.
下面结合一个实例对本发明做进一步解释。设计目标:工作频率范围在3Hz~13GHz之间,最低频率fL=3GHz和fH=13GHz;考虑2个频点K=2,以及双波束在俯仰角的最大角度为θmax=45°;栅瓣/副瓣区域的峰值电平保持不变的稀疏平面阵列。The present invention is further explained below with reference to an example. Design objectives: operating frequency range between 3 Hz and 13 GHz, minimum frequency f L =3 GHz and f H =13 GHz; considering two frequency points K=2, and the maximum angle of the dual beam at the elevation angle is θ max =45°; sparse planar array with the peak level of the grating lobe/side lobe region remaining unchanged.
如图1所示,按下面步骤实施:As shown in Figure 1, follow the steps below:
步骤1:采用费马螺旋线阵列布局方法进行初始布局。在极坐标系下,基于费马螺旋线平面阵列的第n,n=1,...,N个阵元的极径与极角分别为Step 1: Use the Fermat spiral array layout method to perform initial layout. In the polar coordinate system, the polar diameters and polar angles of the nth, n=1,...,Nth array elements based on the Fermat spiral plane array are respectively
其中阵元数目N=140,为黄金角,归一化因子时,dmin=λL/2=0.05m为最小单元间距(最低工作频点波长的一半)。将天线阵元极坐标系下的位置信息通过式(3)和(4)转换为xoy面的直角坐标系位置信息。图2给出了基于费马螺旋线阵列布局方法完成的天线单元位置。The number of array elements N = 140, is the golden angle, normalization factor When d min = λ L /2 = 0.05 m is the minimum unit spacing (half the wavelength of the lowest operating frequency). The position information of the antenna element in the polar coordinate system is converted into the rectangular coordinate system position information of the xoy plane through equations (3) and (4). Figure 2 shows the antenna element position completed based on the Fermat spiral array layout method.
xn=pncos(φn) (3)x n = p n cos(φ n ) (3)
yn=pnsin(φn) (4) yn = pn sin( φn ) (4)
基于式(3)和式(4)得到的阵元位置,在第k=1,...,K个频点的双波束平面阵列阵因子表达式如(5)所示。Based on the array element positions obtained from equations (3) and (4), the array factor expression of the dual-beam planar array at the k=1,...,Kth frequency points is shown in (5).
其中,xn和yn分别表示位于阵列中第n个天线阵元在x轴和y轴的位置,表示第n个天线阵元在第k个频点的有源单元方向图,θ和分别表示从z和x轴测量的观测方向,βk=2πfk/c表示在第k个频点自由空间的波数,且fk=fL+(fH-fL)*k/K,fL和fH分别表示工作频点的最低和最高频点,以及和和分别表示两个波束的期望指向,u和v分别表示球坐标系投影到xoy面后的横坐标与纵坐标。in, x n and y n represent the position of the nth antenna element in the array on the x-axis and y-axis respectively. represents the active unit radiation pattern of the nth antenna element at the kth frequency point, θ and denote the observation directions measured from the z and x axes, respectively; β k =2πf k /c denotes the wave number in free space at the kth frequency point; and f k =f L +(f H -f L )*k/K, where f L and f H denote the lowest and highest frequency points of the operating frequency points, respectively. as well as and and They represent the desired pointing directions of the two beams respectively, and u and v represent the horizontal and vertical coordinates after the spherical coordinate system is projected onto the xoy plane.
步骤2:采用迭代凸优化方法对阵元位置进行连续微扰优化,以超宽带工作频率(最高工作频点与最低工作频点之比大于3)内的波束指向不同方向的双波束最大副瓣电平最小化为优化目标,在最小间距可控的基础上,最大程度地降低栅瓣/副瓣区域的峰值电平,得到最优的平面阵列天线单元布局。微扰法的基本原理在于将式(5)中阵元位置xn和yn变成xn+Δxn和yn+Δyn,Δxn和Δyn分别代表阵元在x和y方向的位置微扰量,并通过一阶泰勒展开为线性表达式。此外,在进行优化过程中,需要保证满足双波束的副瓣电平约束、位置微扰幅度约束和最小间距约束三个约束条件,具体约束条件设置如下:Step 2: Use the iterative convex optimization method to continuously perturb the array element position, with the optimization goal of minimizing the maximum sidelobe level of the dual beams pointing in different directions within the ultra-wideband operating frequency (the ratio of the highest operating frequency to the lowest operating frequency is greater than 3). On the basis of controllable minimum spacing, the peak level of the grating lobe/sidelobe area is minimized to obtain the optimal planar array antenna unit layout. The basic principle of the perturbation method is to transform the array element positions xn and yn in equation (5) into xn + Δxn and yn + Δyn , where Δxn and Δyn represent the position perturbations of the array element in the x and y directions, respectively, and expand them into linear expressions through the first-order Taylor expansion. In addition, during the optimization process, it is necessary to ensure that the three constraints of the dual beam sidelobe level constraint, position perturbation amplitude constraint and minimum spacing constraint are met. The specific constraints are set as follows:
1)双波束的副瓣电平约束:在超宽带工作频率(最高工作频点与最低工作频点之比大于3)范围内,为了保证优化过程中波束指向不同角度的双波束在栅瓣/副瓣区域的峰值电平最大程度地降低,引入辅助变量ε,约束双波束方向图在第k个频点副瓣区域的取值小于ε。1) Dual-beam sidelobe level constraint: In the ultra-wideband operating frequency range (the ratio of the highest operating frequency to the lowest operating frequency is greater than 3), in order to ensure that the peak level of the dual beams pointing at different angles in the grating lobe/side lobe area is minimized during the optimization process, an auxiliary variable ε is introduced to constrain the dual-beam pattern in the sidelobe area of the kth frequency point. The value of is less than ε.
2)位置微扰幅度约束:为了保证位置微扰的近似精度,对于n=1,2,…,N均满足|βHΔxn|≤μ和|βHΔyn|≤μ,βH为工作频段中最高频的自由空间波数,而μ的大小决定了位置微扰的幅度,设置为μ=1.4m m。2) Position perturbation amplitude constraint: In order to ensure the approximate accuracy of the position perturbation, for n = 1, 2, …, N, |β H Δx n | ≤ μ and |β H Δy n | ≤ μ are satisfied, where β H is the highest frequency free space wave number in the working frequency band, and the size of μ determines the amplitude of the position perturbation, which is set to μ = 1.4 mm.
3)最小间距约束:为了降低天线单元设计的困难度,提高天线阵布局的实用性,并且在工作频段范围内希望天线单元耦合越小,在实际天线阵布局过程中,阵元间距需要满足最小间距约束。因此,当设置了阵元之间的最小单元间距dmin=50mm(最低工作频点的半波长)后,对于任意两个天线单元p和q在微扰过程中,它们之间的距离需要大于设置的最小单元间距dmin(最低工作频点的半波长),p&q=1,…,N&p≠q且p≠q。3) Minimum spacing constraint: In order to reduce the difficulty of antenna unit design, improve the practicality of antenna array layout, and to minimize the coupling of antenna units within the working frequency band, the array element spacing needs to meet the minimum spacing constraint during the actual antenna array layout. Therefore, when the minimum unit spacing d min = 50 mm (half wavelength of the lowest working frequency) between array elements is set, for any two antenna units p and q during the perturbation process, the distance between them needs to be greater than the set minimum unit spacing d min (half wavelength of the lowest working frequency), p&q = 1,…, N&p≠q and p≠q.
最后,此阵列综合问题可以表示为式(6),通过迭代凸优化方法进行求解,在第l=1,...,L次迭代的优化目标为最小化栅\副瓣区域的峰值电平;Finally, this array synthesis problem can be expressed as Equation (6), which is solved by an iterative convex optimization method. The optimization goal in the l=1,...,Lth iteration is to minimize the peak level in the grating\sidelobe region;
式中,ε为引入的辅助变量对阵列方向图的峰值电平进行约束,表示第k个频点的副瓣区域,双波束分别指向和(xp,yp)和(xq,yq)分别为天线阵元p和q的坐标,θa&θb∈{0°,θmax}表示在优化过程中考虑的双波束分别指向的2个俯仰角为{0°,θmax},θmax为考虑的最大俯仰角,表示在优化过程中考虑的双波束分别指向的4个方位角为{0°,45°,90°,135°};在满足以上约束条件,通过迭代凸优化法对阵元位置进行多步微扰,降低栅瓣/副瓣区域的峰值电平;在每一步迭代求解出x和y方向的位置微扰量Δxn和Δyn后,将xn和yn变成xn+Δxn和yn+Δyn以更新阵元位置,当新阵列的栅瓣/副瓣区域的峰值电平保持不变且阵列布局也不变时,即得到最优化阵列布局。图3给出了每步微扰结果的栅瓣/副瓣区域的峰值电平值,大约70次迭代后,栅瓣/副瓣区域的峰值电平降到大约-15.43dB,随后基本保持不变,通过迭代凸优化之后栅瓣/副瓣区域的峰值电平总共降低了4.26dB。图4给出了迭代凸优化之后的阵列位置。图5和图6分别给出了3GHz和13GHz频点时双波束分别指向法向以及的平面阵列方向图,此时栅瓣/副瓣区域的峰值电平分别为-14.28dB和-10.68dB。Where ε is the auxiliary variable introduced to constrain the peak level of the array pattern. Indicates the sidelobe area of the kth frequency point, and the dual beams point to and (x p , y p ) and (x q , y q ) are the coordinates of antenna elements p and q respectively. θ a &θ b ∈{0°,θ max } means that the two elevation angles of the dual beams considered in the optimization process are {0°,θ max } respectively. θ max is the maximum elevation angle considered. Indicates that the four azimuth angles of the dual beams considered in the optimization process are {0°, 45°, 90°, 135°}; Under the above constraints, the array element position is perturbed in multiple steps by the iterative convex optimization method to reduce the peak level of the grating lobe/side lobe area; After solving the position perturbation values Δxn and Δyn in the x and y directions in each iteration, xn and yn are converted into xn + Δxn and yn + Δyn to update the array element position. When the peak level of the grating lobe/side lobe area of the new array remains unchanged and the array layout remains unchanged, the optimal array layout is obtained. Figure 3 shows the peak level value of the grating lobe/side lobe area of each perturbation result. After about 70 iterations, the peak level of the grating lobe/side lobe area drops to about -15.43dB, and then remains basically unchanged. After iterative convex optimization, the peak level of the grating lobe/side lobe area is reduced by 4.26dB in total. Figure 4 shows the array position after iterative convex optimization. Figures 5 and 6 show the dual beams pointing to the normal and The planar array radiation pattern, at this time the peak levels of the grating lobe/side lobe area are -14.28dB and -10.68dB respectively.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310161926.8A CN116244940A (en) | 2023-02-24 | 2023-02-24 | Dual-beam ultra-wideband array antenna optimization layout method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310161926.8A CN116244940A (en) | 2023-02-24 | 2023-02-24 | Dual-beam ultra-wideband array antenna optimization layout method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116244940A true CN116244940A (en) | 2023-06-09 |
Family
ID=86630938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310161926.8A Pending CN116244940A (en) | 2023-02-24 | 2023-02-24 | Dual-beam ultra-wideband array antenna optimization layout method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116244940A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116632561A (en) * | 2023-07-19 | 2023-08-22 | 南京纳特通信电子有限公司 | Design method of thin-fabric high-gain antenna array and storage medium |
CN117078863A (en) * | 2023-08-30 | 2023-11-17 | 电子科技大学 | Rapid beam forming method of heterogeneous array antenna |
-
2023
- 2023-02-24 CN CN202310161926.8A patent/CN116244940A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116632561A (en) * | 2023-07-19 | 2023-08-22 | 南京纳特通信电子有限公司 | Design method of thin-fabric high-gain antenna array and storage medium |
CN116632561B (en) * | 2023-07-19 | 2023-09-19 | 南京纳特通信电子有限公司 | Design method of thin-fabric high-gain antenna array and storage medium |
CN117078863A (en) * | 2023-08-30 | 2023-11-17 | 电子科技大学 | Rapid beam forming method of heterogeneous array antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116244940A (en) | Dual-beam ultra-wideband array antenna optimization layout method | |
CN105789877B (en) | Four wave beam micro-strips transmission array antenna and its design method based on super surface | |
CN106650104B (en) | Synthesis method of broadband invariant sparse array considering mutual coupling effect | |
CN108736158B (en) | A design method for ultra-low sidelobe to the ground | |
CN105977649B (en) | The fast determination method of large-scale parabola antenna active panel adjustment amount towards figuration face | |
CN114357767B (en) | Sum and difference beam sparse array synthesis method for wide-bandwidth angular beam scanning | |
CN108920767A (en) | The double constraint lobe array antenna optimum design methods of cosecant quadratic sum synthesis phase | |
CN115084874B (en) | Beam scanning array optimization design method based on heterogeneous subarray non-uniform layout | |
CN109346843B (en) | Design method of space one-dimensional scanning lens antenna and beam scanning method | |
CN107026686A (en) | A kind of arbitrary shape wave beam quick shaping method of null tracking source | |
CN102122765A (en) | Method for optimizing linear array antenna radiation pattern | |
CN110600879A (en) | Method for generating omnidirectional circularly polarized vortex electromagnetic wave | |
JP2023512699A (en) | Reflect array antenna for improved radio coverage area | |
Saka et al. | Pattern optimization of a reflector antenna with planar-array feeds and cluster feeds | |
CN109522658A (en) | A kind of VICTS antenna four-point track algorithm | |
CN117634115B (en) | A method for miniaturizing antenna array | |
CN109742555B (en) | Space lens scanning antenna and beam scanning method thereof | |
CN111291493B (en) | A Design Method for Elevation Detection Beamforming of Airborne Early Warning Conformal Array | |
CN113517570B (en) | Special-shaped yagi antenna and beam control method thereof | |
Botha et al. | A contoured beam synthesis technique for planar antenna arrays with quadrantal and centro-symmetry | |
CN114709616A (en) | Suppression method of edge effect of ultra-wideband strongly coupled antenna array based on amplitude and phase control | |
Lee | A simple method of dual‐reflector geometrical optics synthesis | |
CN115275644A (en) | Spherical conformal phased-array antenna and electronic equipment | |
CN113708090B (en) | Taylor weight optimization method based on ring conformality | |
CN113203897B (en) | A Sidelobe Suppression and Beamforming Method for Arbitrary Two-Dimensional Antenna Arrays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |