CN116233750A - 一种抗差加权室内定位方法 - Google Patents

一种抗差加权室内定位方法 Download PDF

Info

Publication number
CN116233750A
CN116233750A CN202211557521.8A CN202211557521A CN116233750A CN 116233750 A CN116233750 A CN 116233750A CN 202211557521 A CN202211557521 A CN 202211557521A CN 116233750 A CN116233750 A CN 116233750A
Authority
CN
China
Prior art keywords
value
node
positioning
distance
positioning method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211557521.8A
Other languages
English (en)
Inventor
张婷
郭翱逸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202211557521.8A priority Critical patent/CN116233750A/zh
Publication of CN116233750A publication Critical patent/CN116233750A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种抗差加权室内定位方法,针对室内定位需求,通过建立室内信号传播消耗模型数学模型,改进了基于三边测量定位模型。通过发射站与接收站之间的距离,对发射节点的可信度进行加权和抗差改进,在使用较少发射器的情况下减少定位误差。当发射器数量到达7个时,无论累积误差概率为25%还是50%,提出的定位方法均能有较好的定位精度,可以满足实际应用需求。

Description

一种抗差加权室内定位方法
技术领域
本发明涉及室内定位系统技术领域,尤其涉及一种抗差加权室内定位方法。
背景技术
室内环境由于建筑物的覆盖,使得利用卫星实现室外定位的技术不能很好地用于室内。因此,研制高精度、方便可行且价格合理的室内定位系统成为相关应用单位的迫切需求。基于红外线定位系统(如Active Badge)、基于超声波的定位系统、基于磁场或者基于光源(如照相机)等定位系统需要特殊的硬件支持,而且需要较高的部署条件和高额的维护代价。
从1992年AT&T Laboratories Cambridge开发基于无线网络的室内定位系统Active Badge至今,研究人员一直致力于这一领域的研究,已有许多系统和算法能够解决室内定位的问题。但这些系统用于定位的物理现象、定位精度、网络组成、能量需求、基础设施和时空复杂度等诸多方面都有着不同的表现。基于专用网络的定位系统都需要额外的硬件去支持网络和用户定位。微软开发的RADAR系统仅需要较少的发射器,节省了系统部署费用。接收信号强度由于在低成本、低功耗、不需要额外的硬件支持,成为了大部分研究者进行室内定位的优选方案。蓝牙技术、ZigBee技术、无线局域网技术和射频识别(RFID)技术等等大部分室内定位系统均采用该方法进行定位。
当前,基于接收信号强度、到达角度、到达时间、到达时间差的TOA(Time ofArrival),TDOA(Time Difference On Arrival),AOA(Angle of Arrival)和RSSI(Received Signal Strength Indicator)测距技术是主流常见的定位方法。基于测距技术的定位通常是通过测量节点间的距离或角度信息,使用三边测量或三角测量等方法计算节点位置。TOA技术是根据信号从一个节点传播到另一个节点所需要的时间,来计算节点间的距离。TOA技术需要节点间精确的时间同步,这使得当节点间相对松散时,定位精度较低;TDOA技术是根据两种不同传播速度的信号从一个节点传播到另一个节点所需要的时间之差,来计算节点间距离,其缺点是受限于超声波传播距离有限和NLOS问题对超声波信号传播的影响;AOA技术则是根据节点接收到信号相对于自身轴线的角度,来确定节点间距离的。相比于上述的测距方法,基于接收信号强度(Received Signal Strength Indication,RSSI)的测距方法符合低功率、低成本的要求,而且不需要额外硬件的支持。但仅通过信号强度值来计算节点间距离的方法,很可能由于环境中多径传播的影响,而产生±50%的测距误差。
发明内容
本发明针对现有基于无线网络的室内定位系统需要较多发射器,导致在一定定位精度约束下的计算量较大、实时性不高、鲁棒性不强等不足,提出一种抗差加权室内定位方法。
为了实现上述目的,本发明提供如下技术方案:
一种抗差加权室内定位方法,通过对室内信号传播建立数学模型,基于信号传播模型计算发射站与接收站之间的距离,基于加权三边测量定位法,从而定位接收站的位置。
进一步地,上述的抗差加权室内定位方法,包括以下步骤:
S1、在数据包中解析出参考节点的接收信号强度值,根据信号传播模型求得对应距离;
S2、利用加权三边测量定位法求得的坐标值作为初始位置,初始化迭代次数;
S3、利用初始值计算权值系数,更新权矩阵;
S4、求出位置的修正值,迭代次数加1;
S5、判断是否超过规定的迭代次数,若超过则以最后的迭代值作为方程解;若未超过则更新迭代值,判断修正值是否满足精度,若不满足则重复步骤S3~S4,若满足则以该迭代值作为最终的方程解。
进一步地,步骤S2将参考节点位置与定位节点和参考节点的距离代入下式,求得的坐标值作为初始位置:
Figure SMS_1
其中,d为真实距离值,d′表示最近参考节点距定位节点的距离,(x0,y0)表示定位节点坐标位置,(xi,yi)为第i(1≤i≤n)个参考节点坐标,(x′,y′)表示最近参考节点的位置坐标,且1≤i≤n,xi≠x′,yi≠y′。
进一步地,步骤S3将初始值带入下式计算权值系数:
Figure SMS_2
Figure SMS_3
Figure SMS_4
其中,bi为B的第i个元素,ai为A的第i行元素,c为回归因子,取6~12之间的值,用于平衡抗差的能力与效,med代表取中位数,e是m×1阶误差向量。
进一步地,步骤S4利用下式求出位置的修正值:
Figure SMS_5
其中,P为权系数矩阵,A是m×n阶系数矩阵,m>n,B是阶观测向量。
与现有技术相比,本发明的有益效果为:
本发明提出的抗差加权室内定位方法,针对室内定位需求,基于室内信号传播消耗模型数学模型,建立并改进了基于三边测量定位模型。通过发射站与接收站之间的距离,对发射节点的可信度进行加权和抗差改进,在使用较少发射器的情况下减少定位误差。当发射器数量到达7个时,无论累积误差概率为25%还是50%,提出的定位方法均能有较好的定位精度,可以满足实际应用需求。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为三边测量定位示意图。图中,(a)显示测量三个参考节点到定位节点的距离;(b)显示三个参考节点圆范围。
图2为本发明实施例提供的抗差加权室内定位方法流程图。
图3为仿真实验场地平面图。
图4为基于经验值方法与基于基础模型方法对比图。
图5为不同数量参考节点定位精度对比图。
图6为改进模型和基础模型误差距离对比图。
图7为三种算法误差距离对比图。
图8为四种算法误差距离对比图。
具体实施方式
针对现有基于无线网络的室内定位系统需要较多发射器,导致在一定定位精度约束下的计算量较大、实时性不高、鲁棒性不强等不足,本发明基于室内信号传播消耗模型建立数学模型,以发射站与接收站之间的距离为依据对发射节点的可信度进行加权,改进了基于三边测量定位模型,建立了基于节点可信度的抗差加权的室内定位方法。
为了更好地理解本技术方案,下面结合附图对本发明的方法做详细的说明。
1、信号传播消耗模型
无线传感网络中节点与其相邻节点通信时,信号强度值可以被接收者直接测量出来。因此,通过建立信号传播模型来计算节点间距离,不需要增加节点硬件设计。但是,对于射频信道,室内环境的信号传播主要受建筑结构的发射、衍射、散射的影响。发射信号通常需要通过多个路径才能到达接收器(称为多径效应)。多径现象导致了接收信号包络和相位的波动,信号成分包含直接路径和间接路径,从而导致了接收信号的扭曲。
接收信号强度(RSSI)是一种指示当前介质中电磁波能量大小的数值。由于电磁波在传输过程中存在路径损耗,使得RSSI值随距离的增加而减少,因此根据信号强度就可以判断节点所对应距离的远近。平均路径消耗按距离指数增长,即平均路径消耗是距离的函数:
Figure SMS_6
其中,
Figure SMS_7
是平均路径消耗;n是路径消耗指数,它表示随着距离的增长路径消耗的速度,与周围环境和障碍物有关;d0为参考距离,单位为m;d为发射端与接收端的距离,单位为米。
将式(1)方程两边取对数,将其转化为线性形式。绝对平均路径消耗定义为发射器到参考距离d0的路径消耗,假设
Figure SMS_8
为发射器在自由空间传播。由此可得包含式(1)描述的额外路径消耗的电磁波路径消耗模型:
Figure SMS_9
式(2)仅表示当距离为d时,接收到的平均能量。将环境内在因素设定为随机量且满足对数正态分布,即以dB为单位满足高斯分布,则可得但当距离一定时,完整无线信号传播衰减模型为:
Figure SMS_10
其中,Xδ是标准差为σ的高斯分布函数,单位是dB,且σ取决于当前环境。
式(3)所示统计学模型是理想环境下模型的扩展,即当节点接近通信范围边缘时能否通信将是一个随机事件。
2、基于节点可信度的定位方法
2.1三边测量定位法
未知节点相对于一些参考节点的距离,限制了该未知节点的位置,这种定位思想叫做三边定位。图1是三边测量定位的例子,三个参考节点精确的定位到一点,即定位节点(节点0)相对于其他三个已知位置的参考节点(节点1,2,3)。显然,定位节点的位置在分别以三个节点位置为中心,与定位节点的距离为半径的三个圆的交点上。
根据上述思想,设定位节点坐标位置为(x0,y0),第i(1≤i≤n)个参考节点坐标为(xi,yi),定位节点与参考节点之间计算得到的距离估计值为di′。设di是与第i个参考节点的真实欧式距离,即:
Figure SMS_11
计算距离与真实距离之间的误差可以表示为ρi=di′-di。由于计算存在误差,在实际情况下ρi一般是非零值。为了使
Figure SMS_12
最小,采用最小二乘法来求解定位节点坐标(x0,y0)。因此,定位问题可以转化为超定线性方程组的数值求解问题。超定线性方程组可以根据公式(4)推导而得。对式(4)平方和重排序,可以得到n个如式(5)的方程,即:
Figure SMS_13
将式(5)的第i=n个方程依次减去其他方程(1≤i<n),则可以得到n-1个方程:
Figure SMS_14
方程组左边均为已知量,方程组右边只有x0和y0未知,其他均为已知参数。由此推导出线性关系:
Ax=B. (7)
其中,A是(n-1)×2矩阵,而矩阵的第i行是[2(xi-xn)2(yi-yn)];B是n-1个列向量,它的第i项为
Figure SMS_15
x是定位节点坐标的列向量[x0 y0]T
实际上,根据信号衰减模型估计得到的节点间距离值d′,往往与真实距离值d存在一定偏差。因此,只能用估计值di′来代替di,计算得来的B′来代替B,从而使用最小二乘法来求解一个估计的x使得||Ax′-B′||2最小,即求解列向量x′公式为:
x′=(ATA)-1ATB′ (8)
2.2模型的抗差改进
利用基本三边测量法和最小二乘法的思想,往往定位精度有限。由2.1节的求解过程可知,采用最小二乘法求解公式(4)解的准确程度受限于最后一个方程的误差。如果最后一个方程误差较小,那么结果的精确性取决于前n-1个方程;但若最后一个方程误差很大,它将破坏前n-1个方程的精确性,从而导致结果误差很大。
信号在无线信道内传播主要受以下几个方面因素的影响而产生衰减:多径传播、非视距、天线增益的不同等等。但是距离越近的节点受到上述因素的影响可能越小,从而计算出的距离误差也有可能越小,亦即距离越近的节点可信度越高。因此,将距离定位节点最近的参考节点方程作为最后一个被差方程,并以此提高定位精度,推导超定线性方程组得到:
Figure SMS_16
其中,d′表示最近参考节点距定位节点的距离,(x′,y′)表示最近参考节点的位置坐标,且1≤i≤n,xi≠x′,yi≠y′。
基于上述传播消耗的假设,由于信号传播模型中包含高斯白噪声函数,每次求得的距离值都会在一定范围内波动,而非恒定值不变。因此,距离目标节点较远时,参考节点的距离信息中携带的误差扰动更多,则可以为其分配较小的误差加权,以此来弱化该距离对结果的影响;反之,距离目标较近的节点分配较大权值,对应的求解方程为:
Figure SMS_17
式(10)中,P是加权对角阵,对角线上的元素pi=f(d)为距离权值系数,且f是单调递减函数。定义该函数为:
Figure SMS_18
实践证明,参考节点与定位节点距离越近,误差越小,其反映的距离越接近真实距离。因此,以其为基础求解得到的位置估计值就越接近真实距离。但是,一旦距离最近的节点有着较大误差,那么这个假设将不再成立。因此,将全部的信任都放在一个节点上的做法不具有鲁棒性。此外,对于严格的正态分布数据,最小二乘估计具有最优一致无偏且方差最小的特点。但是实验证明,信号强度值不严格服从正态分布,基于RSSI测距方法有时会产生高达50%的误差。这个误差是不属于系统误差和偶然误差的离群误差,即是粗差。测量结果中若包含这部分粗差信息,且经典最小二乘法不具备抗粗差的能力,那么定位精度可想而知。
为此,本发明提出将风险均摊,让每个节点都发挥权值不同的作用;同时,对经典最小二乘法进行改进,形成抗差最小二乘用以减少粗差对参数估计的影响,最终建立基于RSSI的抗差加权定位模型。
存在误差的线性方程组可以表示为:
Ax+e=B. (12)
其中,A是m×n阶系数矩阵(m>n),e是m×1阶误差向量,B是阶观测向量,x是n×1阶未知参数向量。
经典的最小二乘法的准则函数为
Figure SMS_19
不具备排除粗差影响的能力,而抗差M估计的准则函数为/>
Figure SMS_20
通过选取一个合适的ρ,使得粗差对该函数的影响尽可能地小从而排除其影响,这样就使求解出的未知参数尽可能的贴近真实值,而不会因为粗差的存在偏离真实值太多。多变量函数取极值条件可得:
Figure SMS_21
其中,P为权系数矩阵,
Figure SMS_22
函数是ρ的导数。最终求得位置参数为:
Figure SMS_23
通常,准则函数的选择有Tukey双权法、Huber法、Hampel法、ICG法等。本发明选择Tukey双全法进行抗差估计,该方法属于有淘汰区的M估计,其准则函数为:
Figure SMS_24
其中,
Figure SMS_25
Figure SMS_26
其中,bi为B的第i个元素,ai为A的第i行元素,c为回归因子,一般取6~12之间的值,用于平衡抗差的能力与效,med代表取中位数。
对n个统计量进行排序,若n为奇数,中位数就是排序统计量的对称中心;若n为偶数,中位数就是位于中间两个排序统计量的平均值。中位数之所以具有抗差性质在于它只利用了误差的排序信息,其大小只取决于中间一两个排序统计量的大小,而粗差只影响中位数取值在对称中心周围很小范围内变化。
综上所述,本发明的方法具体可描述如下:
S1、在数据包中解析出参考节点的RSSI值,根据信号传播模型求得对应距离;
S2、将参考节点位置,与定位节点和参考节点的距离代入公式(9),将加权三边测量法求得的坐标值作为初始位置,初始化迭代次数;
S3、将初始值代入公式(15)和(16),计算权值系数,更新权矩阵;
S4、计算公式(14),求出位置的修正值,迭代次数加1;
S5、判断是否超过规定的迭代次数,若超过则以最后的迭代值作为方程解;若未超过则更新迭代值,判断修正值是否满足精度(在室内实验中,阈值设为0.5),若不满足则重复步骤S3~S4,若满足则以该迭代值作为最终的方程解。
本发明的方法流程如图2所示。
3、仿真实验与分析
3.1实验设置
仿真实验场地选用某一个楼层,如图3所示。该实验环境相对较为复杂,包括阻碍较少的走廊,阻挡较多的工作区和封闭的办公室。实验中每一个发射器会覆盖该楼层的一部分区域,且保证参与实验的所有发射器会覆盖整个楼层。
实验环境的七个不同位置分别放置一台发射器,同时在走廊内的49个采样位置收集数据,且每个收集位置收集每个发射站样本数据包超过60个。模型中参数分别设置为,参考信号强度
Figure SMS_27
路径消耗指数n=5以及标准差为σ=9.6。
仿真实验中
Figure SMS_28
设为在d0=1m时所测量得出RSSI值;Xδ采用高斯正态分布函数,采用的是BOX-Muller算法实现,其基本思想是先生成服从均匀分布的随机数,再将服从均匀分布的随机数转为服从正态分布的随机数。
仿真实验分析将对比基于三边测量模型的定位方法在定位精度上的表现,以及随着参考节点(发射器)数量的增加定位精度的变化。即比较发射器为三个时,基于SS-Map经验值方法和基于三边测量基础模型的定位方法分别在累积误差概率在25%和50%情况下的定位精度;然后对比参考节点(发射器)数量从最少的3个增加到7个时定位精度的变化。
3.2仿真分析:
图4的主图中展示了当前室内定位采用的基于经验值方法和基于三边测量基础模型方法(发射器数目为3)的误差距离累积分布函数;辅图中展示了两种方法分别在概率为25%、50%情况下的误差距离。其中,25%可能性的误差距离是5.03米(经验值中2.87米的1.75倍),50%可能性的误差距离是9.78米(经验值中4.83米的2.02倍)。由此可以看出,仅基于三个反射器的基础三边测量模型定位精度很不理想。
图5的主图展示了不同数量发射器情况下基于经验值方法和基于基础模型方法的误差距离累积分布函数;辅图中展示了不同方法分别在概率为25%、50%情况下的误差距离。
由图5可以看出,随着参考节点数量的增加定位精度逐渐提高;但当节点数量为5(或者大于5)时,定位精度提高也随之减慢。当发射器数量增加到7,25%可能性的误差距离是2.66米(优于经验值2.87米7.3%),50%可能性的误差距离是5.86米(低于经验值中4.83米1.21倍)。具体误差距离如表1所示。
表1发射器数量不同在25%和50%情况下的误差距离
发射器数量(个数) 3 4 5 6 7
25%误差距离(米) 5.03 4.31 3.94 3.16 2.66
50%误差距离(米) 9.78 8.50 7.64 6.90 5.86
基于节点可信度将三边测量定位法的基础模型进行改进,继续进行多次实验,并将结果求平均值,累计概率分别在25%和50%时,误差距离均有一定的减小,如图6所示,具体结果数据如表2和表3所示。
表2在25%情况下改进模型和基础模型误差距离对比数据
发射器数量(个数) 4 5 6 7
基础模型 4.31 3.94 3.16 2.66
改进模型 4.07 3.31 2.83 2.47
表3在50%情况下改进模型和基础模型误差距离对比数据
发射器数量(个数) 4 5 6 7
基础模型 8.50 7.64 6.90 5.86
改进模型 7.60 6.52 5.85 5.50
结合距离目标节点的远近,采用加权最小二乘法对定位算法继续加以改进,并进行实验对比分析。实验结果表明,加权模型较比之前的改进模型精度更好,除了在25%且发射器数量为6时精度有小幅度下降,其他结果均表明加权模型的结果更优,如图7所示。此外,由于仅在算法中增加了定位节点与参考节点之间距离的排序,算法复杂度增加较小。
室内实验迭代次数的阈值设为10、精度阈值设为0.5,进行节点均摊误差改进算法的仿真实验。实验结果显示,累积误差概率为50%且参考节点数量为7时,抗差模型的分辨率为4.48米,相比于基于经验值模型的最好分辨率为3.67米,最强信号的分辨为8.89米;累计误差概率为25%且参考节点数量为7时,抗差模型的分辨率为2.34米,相比于基于经验值模型的最好分辨率为2.87米,最强信号的分辨为6.25米。而且实验结果也验证了抗差模型一般经历2~4次迭代就能够收敛到指定精度。四种算法误差距离对比如图8所示。
综上,本发明针对室内定位需求,通过建立室内信号传播消耗模型数学模型,改进了基于三边测量定位模型。通过发射站与接收站之间的距离,对发射节点的可信度进行加权和抗差改进,在使用较少发射器的情况下减少定位误差。当发射器数量到达7个时,无论累积误差概率为25%还是50%,提出的定位方法均能有较好的定位精度,可以满足实际应用需求。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (5)

1.一种抗差加权室内定位方法,其特征在于,通过对室内信号传播建立数学模型,基于信号传播模型计算发射站与接收站之间的距离,基于加权三边测量定位法,从而定位接收站的位置。
2.根据权利要求1所述的抗差加权室内定位方法,其特征在于包括以下步骤:
S1、在数据包中解析出参考节点的接收信号强度值,根据信号传播模型求得对应距离;
S2、利用加权三边测量定位法求得的坐标值作为初始位置,初始化迭代次数;
S3、利用初始值计算权值系数,更新权矩阵;
S4、求出位置的修正值,迭代次数加1;
S5、判断是否超过规定的迭代次数,若超过则以最后的迭代值作为方程解;若未超过则更新迭代值,判断修正值是否满足精度,若不满足则重复步骤S3~S4,若满足则以该迭代值作为最终的方程解。
3.根据权利要求1所述的抗差加权室内定位方法,其特征在于,步骤S2将参考节点位置与定位节点和参考节点的距离代入下式,求得的坐标值作为初始位置:
Figure FDA0003983265080000011
其中,d为真实距离值,d′表示最近参考节点距定位节点的距离,(x0,y0)表示定位节点坐标位置,(xi,yi)为第i(1≤i≤n)个参考节点坐标,(x′,y′)表示最近参考节点的位置坐标,且1≤i≤n,xi≠x′,yi≠y′。
4.根据权利要求1所述的抗差加权室内定位方法,其特征在于,步骤S3将初始值带入下式计算权值系数:
Figure FDA0003983265080000012
Figure FDA0003983265080000021
Figure FDA0003983265080000022
其中,bi为B的第i个元素,ai为A的第i行元素,c为回归因子,取6~12之间的值,用于平衡抗差的能力与效,med代表取中位数,e是m×1阶误差向量。
5.根据权利要求1所述的抗差加权室内定位方法,其特征在于,步骤S4利用下式求出位置的修正值:
Figure FDA0003983265080000023
其中,P为权系数矩阵,A是m×n阶系数矩阵,m>n,B是阶观测向量。
CN202211557521.8A 2022-12-06 2022-12-06 一种抗差加权室内定位方法 Pending CN116233750A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211557521.8A CN116233750A (zh) 2022-12-06 2022-12-06 一种抗差加权室内定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211557521.8A CN116233750A (zh) 2022-12-06 2022-12-06 一种抗差加权室内定位方法

Publications (1)

Publication Number Publication Date
CN116233750A true CN116233750A (zh) 2023-06-06

Family

ID=86588084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211557521.8A Pending CN116233750A (zh) 2022-12-06 2022-12-06 一种抗差加权室内定位方法

Country Status (1)

Country Link
CN (1) CN116233750A (zh)

Similar Documents

Publication Publication Date Title
US9521512B2 (en) Determining a designated wireless device lacks a fixed geographic location and using the determination to improve location estimates
Kaemarungsi et al. Modeling of indoor positioning systems based on location fingerprinting
US8138976B2 (en) Method for position estimation using generalized error distributions
CN1951027B (zh) 无线网络里的位置确定和位置跟踪
Diaz et al. Bluepass: An indoor bluetooth-based localization system for mobile applications
CN110045324B (zh) 一种基于uwb和蓝牙技术的室内定位融合方法
He et al. INTRI: Contour-based trilateration for indoor fingerprint-based localization
US20140243025A1 (en) Positioning method
Will et al. The membership degree min-max localization algorithm
JP2011214920A (ja) 位置推定装置、位置推定方法及びプログラム
KR101709411B1 (ko) 가중치 삼변측량법에 기반한 위치 측정 방법과 이를 이용한 실내 측위 방법
CN110636436A (zh) 基于改进chan算法的三维uwb室内定位方法
Maung et al. Comparative study of RSS-based indoor positioning techniques on two different Wi-Fi frequency bands
CN110673181A (zh) 一种基于网格能量遍历搜索的gnss干扰源定位方法
CN112180323A (zh) 基于Wi-Fi的TOA与AOA室内联合定位算法研究
Retscher Fusion of location fingerprinting and trilateration based on the example of differential Wi-Fi positioning
Si et al. An adaptive weighted Wi-Fi FTM-based positioning method in an NLOS environment
Pan et al. Map-aided and UWB-based anchor placement method in indoor localization
CN113378272B (zh) 用于构建多墙体遮挡下超宽带测距误差模型的方法及系统
Kokoreva et al. A combined location method with indoor signal strength measurement
Tian et al. A weighted least-squares method using received signal strength measurements for WLAN indoor positioning system
Bohidar et al. A comparative view on received signal strength (RSS) based location estimation in WSN
KR20190001386A (ko) 저전력 블루투스 기반의 실내 측위 방법 및 장치
Gu et al. The effect of ground truth accuracy on the evaluation of localization systems
CN116233750A (zh) 一种抗差加权室内定位方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination