CN116208567A - Method and system for flow scheduling of SDN network resources of cross-domain data center - Google Patents
Method and system for flow scheduling of SDN network resources of cross-domain data center Download PDFInfo
- Publication number
- CN116208567A CN116208567A CN202310126810.0A CN202310126810A CN116208567A CN 116208567 A CN116208567 A CN 116208567A CN 202310126810 A CN202310126810 A CN 202310126810A CN 116208567 A CN116208567 A CN 116208567A
- Authority
- CN
- China
- Prior art keywords
- data center
- cross
- domain data
- energy consumption
- sdn network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000005457 optimization Methods 0.000 claims abstract description 67
- 230000006870 function Effects 0.000 claims abstract description 65
- 238000005265 energy consumption Methods 0.000 claims abstract description 56
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 39
- 238000013178 mathematical model Methods 0.000 claims abstract description 19
- 230000002068 genetic effect Effects 0.000 claims abstract description 10
- 230000008569 process Effects 0.000 claims description 9
- 238000005516 engineering process Methods 0.000 abstract description 5
- 238000004891 communication Methods 0.000 abstract description 3
- 238000005070 sampling Methods 0.000 description 16
- 238000004364 calculation method Methods 0.000 description 10
- 230000010354 integration Effects 0.000 description 10
- 230000008901 benefit Effects 0.000 description 8
- 238000011160 research Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 210000000349 chromosome Anatomy 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
- G06N3/126—Evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/145—Network analysis or design involving simulating, designing, planning or modelling of a network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/78—Architectures of resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/80—Actions related to the user profile or the type of traffic
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Theoretical Computer Science (AREA)
- Computational Linguistics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Genetics & Genomics (AREA)
- Physiology (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明涉及网络通信技术领域,尤其涉及一种跨域数据中心SDN网络资源的流量调度的方法和系统,方法包括:将跨域数据中心的计算能力和边缘服务器的网络性能能耗加入到多目标优化模型NSGA‑II算法,并分别为跨域数据中心的计算能力和边缘服务器的网络性能能耗建立相应的目标函数,得到流量调度优化目标模型;分别为SDN网络资源的每个SDN网络特征建立相应的目标函数和约束条件,并添加到流量调度优化目标模型中;采用带精英策略的非支配遗传算法对流量调度优化数学模型进行求解,得到用于对SDN网络资源进行流量调度的流量调度方案,实现与网络流量动态化相适应的网络资源及时调整技术,节约数据中心内部的流量带宽成本。
The present invention relates to the field of network communication technology, and in particular to a method and system for traffic scheduling of SDN network resources in a cross-domain data center. The method includes: adding the computing capability of the cross-domain data center and the network performance and energy consumption of the edge server Optimize the model NSGA‑II algorithm, and establish corresponding objective functions for the computing power of the cross-domain data center and the network performance and energy consumption of the edge server, and obtain the optimization target model of traffic scheduling; respectively establish for each SDN network characteristic of SDN network resources The corresponding objective function and constraint conditions are added to the traffic scheduling optimization target model; the non-dominated genetic algorithm with elite strategy is used to solve the traffic scheduling optimization mathematical model, and the traffic scheduling scheme for traffic scheduling of SDN network resources is obtained , realize the timely adjustment technology of network resources adapted to the dynamic network traffic, and save the traffic bandwidth cost inside the data center.
Description
技术领域technical field
本发明涉及网络通信技术领域,尤其涉及一种跨域数据中心SDN网络资源的流量调度的方法和系统。The present invention relates to the technical field of network communication, and in particular to a method and system for traffic scheduling of cross-domain data center SDN network resources.
背景技术Background technique
提出面向算网融合的跨域SDN网络资源统一管理和敏捷调度理论。首先,基于不同算力业务之间在业务特征与服务质量需求上存在的差异,按照按需适度和全局最优的服务原则建立差异化的服务体系与评价方法,为算网融合资源高效调度系统的设计与优化提供理论基础。A cross-domain SDN network resource unified management and agile scheduling theory for computing and network integration is proposed. First of all, based on the differences in business characteristics and service quality requirements among different computing power businesses, a differentiated service system and evaluation method are established in accordance with the service principles of moderate on-demand and global optimization, and an efficient scheduling system for computing and network integration resources. The design and optimization of the system provide a theoretical basis.
具体来看,在满足严格时延要求情况下,对全网中的计算资源、存储资源、传输链路通信资源等多类型资源进行协同调度,为算网融合业务提供严格业务质量保障,并实现整网多维资源配置最优。然后,以时延和能耗为性能指标,通过建立不同目标函数,将边缘节点算力,云计算节点算力、计算任务分配比例,用户分配调度策略、差异化延迟等作为约束目标,建立数学模型,对网络资源和计算资源的合理分配,确保在资源有限、任务优先级等约束条件下优化计算任务时延和系统能耗。Specifically, in the case of meeting strict delay requirements, collaborative scheduling is performed on multiple types of resources such as computing resources, storage resources, and transmission link communication resources in the entire network to provide strict service quality assurance for computing-network integration services, and realize Optimal allocation of multi-dimensional resources across the network. Then, taking time delay and energy consumption as performance indicators, by establishing different objective functions, taking edge node computing power, cloud computing node computing power, computing task allocation ratio, user allocation scheduling strategy, differentiated delay, etc. as constraint objectives, a mathematical Model, the reasonable allocation of network resources and computing resources, to ensure the optimization of computing task delay and system energy consumption under constraints such as limited resources and task priority.
网络资源的调度问题一直是互联网研究的基础关键问题。SDN的出现为此方面的研究带来了新的机遇。针对SDN环境下的流量调度,美国康奈尔大学的Cui等根据对SDN数据中心组播流量异构性的分析,提出了可扩展组播解决方案即对偶结构组播。提出了一种应用于数据中心的SDN资源优化方案。实验结果显示,相对于传统方案,这种方案可以将链路效率提高12%,将丢包率降低51%。通过SDN控制器控制群组成员及相关管理信息,并提出了一种基于贪心算法的控制策略以用来动态分配光信号网络资源。提出了一种单控制器下的等价多路由方案(ECMP),从同一网域下的全局网络资源考虑来优化整体拓扑,从而提升网络资源利用率并降低了丢包率。指出目前网络资源多路径优化算法往往只能针对某个数据中心内部的固定拓扑进行实施,很难达到通用化要求,因此该文献提出了一种改进的蚁群优化算法,从而在未知拓扑的情况下感知拓扑状态,以满足多路径优化算法的通用性需求。针对多路径路由编排,一些研究者也在进行尝试研究,提出了分层的多路径编排优化,从而提升网络性能;另一种方法则通过拥塞感知和自动识别的技术来优化路由提升资源利用率。2019年,针对跨域的分布式数据中心的多路径自适应路由算法也开始被研究人员关注。由此可见在统一网络资源调度方面,软件定义网络结合未来云边融合的跨域数据中心的统一调度理论还处于研究的初始阶段,目前主要存在如下问题:Scheduling of network resources has always been a fundamental and key issue in Internet research. The emergence of SDN has brought new opportunities for research in this area. For traffic scheduling in the SDN environment, Cui et al. from Cornell University in the United States proposed a scalable multicast solution, namely dual-structure multicast, based on the analysis of the heterogeneity of multicast traffic in SDN data centers. A SDN resource optimization scheme applied to data centers is proposed. Experimental results show that, compared with the traditional scheme, this scheme can increase the link efficiency by 12%, and reduce the packet loss rate by 51%. The group members and related management information are controlled by the SDN controller, and a control strategy based on a greedy algorithm is proposed to dynamically allocate optical signal network resources. An Equal Cost Multiple Routing Scheme (ECMP) under a single controller is proposed, which optimizes the overall topology from the perspective of global network resources in the same network domain, thereby improving the utilization of network resources and reducing the packet loss rate. It is pointed out that the current network resource multi-path optimization algorithm can only be implemented for a fixed topology inside a data center, and it is difficult to meet the generalization requirements. Therefore, this document proposes an improved ant colony Down-aware topology status to meet the general requirements of multi-path optimization algorithms. Aiming at multi-path routing orchestration, some researchers are also trying to study, and proposed hierarchical multi-path orchestration optimization to improve network performance; another method uses congestion sensing and automatic identification technologies to optimize routing and improve resource utilization. . In 2019, multi-path adaptive routing algorithms for cross-domain distributed data centers also began to attract the attention of researchers. It can be seen that in terms of unified network resource scheduling, the unified scheduling theory of software-defined networks combined with future cloud-edge fusion cross-domain data centers is still in the initial stage of research. At present, there are mainly the following problems:
1)面向未来云边融合的跨域数据中心环境,如何结合SDN网络特征指标,建立软件定义网络资源优化目标函数,对相应的网络流量与资源策略进行调整规划,是本专利解决的技术问题之一。1) Facing the future cross-domain data center environment of cloud-edge integration, how to combine SDN network characteristic indicators to establish a software-defined network resource optimization objective function and adjust and plan corresponding network traffic and resource strategies is one of the technical problems solved by this patent one.
2)如何在面向云边融合的跨域数据中心环境中,将分数据中心和边缘计算节点的计算能力、存储能力结合,实现基于全局网络情况的低延迟、低负载的全局流量调度,也是本专利解决的另一技术问题。2) In the cross-domain data center environment oriented to cloud-edge integration, how to combine the computing power and storage capacity of sub-data centers and edge computing nodes to achieve low-latency, low-load global traffic scheduling based on global network conditions is also an issue of this topic. Another technical problem solved by the patent.
发明内容Contents of the invention
本发明所要解决的技术问题是针对现有技术的不足,提供了一种跨域数据中心SDN网络资源的流量调度的方法和系统。The technical problem to be solved by the present invention is to provide a method and system for traffic scheduling of cross-domain data center SDN network resources in view of the deficiencies of the prior art.
本发明的一种跨域数据中心SDN网络资源的流量调度的方法的技术方案如下:The technical scheme of a method for traffic scheduling of cross-domain data center SDN network resources of the present invention is as follows:
将跨域数据中心的计算能力和边缘服务器的网络性能能耗加入到多目标优化模型NSGA-II算法,并分别为所述跨域数据中心的计算能力和所述边缘服务器的网络性能能耗建立相应的目标函数,得到流量调度优化目标模型;The computing power of the cross-domain data center and the network performance and energy consumption of the edge server are added to the multi-objective optimization model NSGA-II algorithm, and the computing power of the cross-domain data center and the network performance and energy consumption of the edge server are respectively established The corresponding objective function is used to obtain the objective model of traffic scheduling optimization;
分别为SDN网络资源的每个SDN网络特征建立相应的目标函数和约束条件,并添加到所述流量调度优化目标模型中,得到流量调度优化数学模型;Establishing corresponding objective functions and constraint conditions for each SDN network feature of the SDN network resources respectively, and adding them to the traffic scheduling optimization target model to obtain a traffic scheduling optimization mathematical model;
采用带精英策略的非支配遗传算法对所述流量调度优化数学模型进行求解,得到用于对所述SDN网络资源进行流量调度的流量调度方案。The non-dominated genetic algorithm with elitist strategy is used to solve the traffic scheduling optimization mathematical model to obtain a traffic scheduling scheme for traffic scheduling of the SDN network resources.
本发明的一种跨域数据中心SDN网络资源的流量调度的系统的技术方案如下:The technical scheme of a system for traffic scheduling of cross-domain data center SDN network resources of the present invention is as follows:
包括第一添加建立模块、第二添加建立模块和求解模块;Including a first addition building module, a second addition building module and a solving module;
所述第一添加建立模块用于:将跨域数据中心的计算能力和边缘服务器的网络性能能耗加入到多目标优化模型NSGA-II算法,并分别为所述跨域数据中心的计算能力和所述边缘服务器的网络性能能耗建立相应的目标函数,得到流量调度优化目标模型;The first addition building module is used to: add the computing power of the cross-domain data center and the network performance energy consumption of the edge server to the multi-objective optimization model NSGA-II algorithm, and respectively calculate the computing power of the cross-domain data center and The network performance and energy consumption of the edge server establishes a corresponding objective function to obtain a traffic scheduling optimization objective model;
所述第二添加建立模块用于:分别为SDN网络资源的每个SDN网络特征建立相应的目标函数和约束条件,并添加到所述流量调度优化目标模型中,得到流量调度优化数学模型;The second adding and establishing module is used to: respectively establish corresponding objective functions and constraint conditions for each SDN network characteristic of the SDN network resource, and add them to the traffic scheduling optimization target model to obtain a traffic scheduling optimization mathematical model;
所述求解模块用于:采用带精英策略的非支配遗传算法对所述流量调度优化数学模型进行求解,得到用于对所述SDN网络资源进行流量调度的流量调度方案。The solving module is used to solve the traffic scheduling optimization mathematical model by using a non-dominated genetic algorithm with an elitist strategy, and obtain a traffic scheduling scheme for traffic scheduling of the SDN network resources.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
在面向未来云边融合的跨域数据中心环境中,能够有效实现基于全局网络情况低延迟的、低负载的全局流量调度,揭示计算、存储、网络等资源调度之间的内在关联,优化软件定义网络资源使用率和用户体验,实现与网络流量动态化相适应的网络资源及时调整技术,节约数据中心内部的流量带宽成本,从而能够为相关数据中心及服务节约成本,获得间接的经济效益。In the future-oriented cross-domain data center environment of cloud-edge integration, it can effectively realize low-latency and low-load global traffic scheduling based on global network conditions, reveal the internal relationship between computing, storage, network and other resource scheduling, and optimize software definition Network resource utilization and user experience, realize timely network resource adjustment technology that adapts to network traffic dynamics, save traffic bandwidth costs within the data center, thereby saving costs for related data centers and services, and obtaining indirect economic benefits.
附图说明Description of drawings
图1为本发明实施例的一种跨域数据中心SDN网络资源的流量调度的方法的流程示意图;1 is a schematic flow diagram of a method for traffic scheduling of cross-domain data center SDN network resources according to an embodiment of the present invention;
图2为采用带精英策略的非支配遗传算法对流量调度优化数学模型进行求解的流程示意图;Fig. 2 is a schematic flow diagram of solving the flow scheduling optimization mathematical model by using a non-dominated genetic algorithm with an elitist strategy;
图3为本发明实施例的一种跨域数据中心SDN网络资源的流量调度的系统的结构示意图。FIG. 3 is a schematic structural diagram of a system for traffic scheduling of cross-domain data center SDN network resources according to an embodiment of the present invention.
具体实施方式Detailed ways
软件定义网络特征即SDN网络特征有些可以直接检测,但有些需要经过计算(即度量)获知。此外,SDN网络特征的特征度量通常需要检测过程。特征检测采用以下技术路线:Some software-defined network features, that is, SDN network features, can be directly detected, but some need to be calculated (ie, measured). In addition, feature measurement of SDN network characteristics usually requires detection process. Feature detection adopts the following technical route:
1)分析OpenFlow协议的网络状态相关特性,如统计交换机端口信息(收到字节数、丢包数、持续时间等),指导各个SDN网络特征数据的采集;1) Analyze the network state-related characteristics of the OpenFlow protocol, such as statistics of switch port information (number of received bytes, number of lost packets, duration, etc.), and guide the collection of characteristic data of each SDN network;
2)调研目前常用的采样算法,如均匀采样、自适应随机采样、分组采样及阈值采样等算法,分析各采样算法的优缺点,进一步结合SDN网络的特点和所要研究的不同网络特征度量指标,提出适合不同SDN网络特征的采样算法;2) Investigate currently commonly used sampling algorithms, such as uniform sampling, adaptive random sampling, group sampling, and threshold sampling, analyze the advantages and disadvantages of each sampling algorithm, and further combine the characteristics of SDN networks and different network characteristic metrics to be studied. Propose a sampling algorithm suitable for different SDN network characteristics;
3)研究分析采样算法中采样频率与负载、准确性的定性和定量关系,减少数据采样给控制器带来的负载开销。在网络中预安装流条目,形成覆盖全网的检测路线。根据项目组对网络特征数学模型的调研和预研结果,优化各数学模型并提出新的模型。下面介绍一下本发明中初步定义的各SDN网络特征数学,具体地:3) Study and analyze the qualitative and quantitative relationship between sampling frequency, load and accuracy in the sampling algorithm, and reduce the load overhead brought by data sampling to the controller. Pre-install flow entries in the network to form detection routes covering the entire network. According to the research and pre-research results of the project team on the mathematical model of network characteristics, optimize each mathematical model and propose a new model. Introduce the characteristic mathematics of each SDN network initially defined in the present invention below, specifically:
①链路带宽:① Link bandwidth:
符号释义:其中UB表示链路带宽,Bt1和Bt2分别表示采样时间间隔内初始的字节数和结束的字节数,p表示采样时间间隔。Symbol interpretation: where UB represents the link bandwidth, Bt 1 and Bt 2 represent the initial number of bytes and the number of ending bytes in the sampling time interval, respectively, and p represents the sampling time interval.
②丢包率:②Packet loss rate:
符号释义:采样样本区间为[i-1,i],采样时间区间为[time(i-1),time(i)],droped表示交换机响应信息中包含的丢弃字节数。Symbol interpretation: the sampling interval is [i-1,i], the sampling time interval is [time(i-1),time(i)], and dropped indicates the number of discarded bytes contained in the switch response information.
③延迟:③Delay:
Delays1&s2=Totaltime-Delayc&s1-Delayc&s2 Delay s1&s2 =Totaltime-Delay c&s1 -Delay c&s2
符号释义:Delays1&s2表示交换机s1和s2之间的延迟,Totaltime表示从数据包发起的源头到数据包终止的总时间,Delayc&s1,Delayc&s2分别表示控制器和交换机s1、s2之间的延迟。Symbol interpretation: Delay s1&s2 represents the delay between switches s1 and s2, Totaltime represents the total time from the origin of the data packet to the termination of the data packet, Delay c&s1 and Delay c&s2 represent the delay between the controller and switches s1 and s2, respectively.
④抖动:④ Jitter:
符号释义:采样样本区间为[i-1,i],该区间的延迟为Delay(i-1,i),θ为噪声影响。Symbol interpretation: The sampling interval is [i-1, i], the delay of this interval is Delay(i-1, i), and θ is the noise effect.
现阶段对数据中心的算力资源进行优化约束时,一般只考虑时延、带宽、丢包率等指标因素,本发明将分数据中心的计算能力和边缘服务器的存储能力加入到流量调度优化目标模型中,以时延、能耗、带宽等作为性能指标,通过建立不同目标函数,将云边缘节点算力、差异化延迟、存储能力等作为约束目标,建立数学模型,对网络资源和计算资源的合理分配,确保在资源有限、任务优先级等约束条件下优化计算任务时延和系统能耗等。At this stage, when optimizing and constraining the computing power resources of the data center, generally only consider the index factors such as delay, bandwidth, and packet loss rate. In the model, time delay, energy consumption, bandwidth, etc. are used as performance indicators. By establishing different objective functions, cloud edge node computing power, differentiated delay, and storage capacity are used as constraint targets to establish a mathematical model. Network resources and computing resources Reasonable allocation of computing tasks to ensure that computing task delays and system energy consumption are optimized under constraints such as limited resources and task priorities.
多目标优化问题由决策变量参数、目标函数和约束条件组成,整个网络的优化目标函数分为最小化服务时延、最大化分数据中心体验质量、最小化边缘服务器能耗、最小化链路丢包率、最大化网络路径带宽、最小化链路抖动率:The multi-objective optimization problem is composed of decision variable parameters, objective functions and constraints. The optimization objective functions of the entire network are divided into minimizing service delay, maximizing the experience quality of sub-data centers, minimizing energy consumption of edge servers, and minimizing link loss. Packet rate, maximize network path bandwidth, minimize link jitter rate:
minf1=Taverage (1)minf 1 = T average (1)
maxQoE(2)maxQoE(2)
min∑lgl(xl)=C (3)min∑ l g l (x l )=C (3)
DTxuv≤d (13)D T x uv ≤ d (13)
JTxuv≤j (14)J T x uv ≤ j (14)
∏LossRate(i)≤L (15)∏LossRate(i)≤L (15)
对上述公式(1)至公式(15)的解释如下:The explanations to the above formula (1) to formula (15) are as follows:
1)公式(1)表示最小化用户服务的平均时延,包括上传到云计算分数据中心的时延,表示为Dem表示应用m上传到云数据中心的时延,表示在第i个边缘服务器上上传到云计算数据中心的应用m的请求的总数,还包括Delays1&s2表示交换机s1和s2之间的延迟。公式(1)中,f1表示时延函数,minf1表示最小化时延目标函数,Taverage表示网络流调度总平均时延。1) Formula (1) expresses the minimum average delay of user services, including the delay uploaded to the cloud computing sub-data center, expressed as De m represents the delay when application m is uploaded to the cloud data center, Indicates the total number of requests of the application m uploaded to the cloud computing data center on the i-th edge server, and Delay s1&s2 also indicates the delay between switches s1 and s2. In formula (1), f 1 represents the delay function, minf 1 represents the objective function of minimizing the delay, and T average represents the total average delay of network flow scheduling.
2)公式(2)表示与最大化分数据中心体验质量Qoe,与计算能力相关。公式(2)中,QoE表示分数据中心网络服务体验质量指标函数,maxQoE表示最大化体验质量QoE,maxQoE是一种人为设置的网络体验质量的评价标准;2) Equation (2) expresses that maximizing the quality of experience Qoe of the sub-data center is related to computing power. In the formula (2), QoE represents the quality of experience index function of the network service of the sub-data center, maxQoE represents the maximum quality of experience QoE, and maxQoE is an evaluation standard of the network quality of experience set artificially;
3)公式(3)表示最小化边缘服务器网络性能能耗,与边缘服务器存储能力相关,公式(3)中,∑lgl(xl)表示链路上的能耗服从函数,min∑lgl(xl)表示最小化链路能耗,C表示整个边缘网络中总的功耗。3) Equation (3) means to minimize the energy consumption of the edge server network performance, which is related to the storage capacity of the edge server. In the formula (3), ∑ l g l (x l ) means that the energy consumption on the link obeys the function, min∑ l g l (x l ) represents the minimized link energy consumption, and C represents the total power consumption in the entire edge network.
4)公式(4)表示最小化链路丢包率,list表示链路集合。公式(4)中,Llist表示链路list的丢包率函数,表示最小化链路中采样区间i到n的丢包率,4) Formula (4) represents the minimum link packet loss rate, and list represents the link set. In the formula (4), L list represents the packet loss rate function of the link list, Indicates to minimize the packet loss rate of the sampling interval i to n in the link,
5)公式(5)为最大化网络路径的带宽利用率,UB表示链路带宽。公式(5)中,Ulist表示链路List的带宽计算目标函数,表示最大化网络路径le的带宽利用率,UB表示带宽计算公式,le表示某一链路;5) Formula (5) is to maximize the bandwidth utilization of the network path, and UB represents the link bandwidth. In the formula (5), U list represents the bandwidth calculation objective function of the link List, Indicates to maximize the bandwidth utilization of the network path l e , UB indicates the bandwidth calculation formula, and l e indicates a certain link;
6)公式(6)表示链路丢包率。公式(6)中,Jlist表示链路List的抖动率计算,表示最小化链路List的抖动率,Jitter(i)为抖动率计算公式,le表示某一链路。6) Equation (6) represents the link packet loss rate. In the formula (6), J list represents the calculation of the jitter rate of the link List, Indicates the jitter rate of the minimized link List, Jitter(i) is the formula for calculating the jitter rate, and l e indicates a certain link.
7)公式(7)表示分数据中心最大计算能力限制与时间t节点的能耗关系。公式(7)中,表示时间T内每个t时间节点内N个计算节点的平均能耗计算函数,其中,Q是分数据中心计算能力限制,/>为时间t节点的能耗,T为总时间,N为算力节点。7) Equation (7) expresses the relationship between the maximum computing capacity limit of the sub-data center and the energy consumption of the node at time t. In formula (7), Indicates the average energy consumption calculation function of N computing nodes in each t time node in time T, where Q is the computing capacity limit of the sub-data center, /> is the energy consumption of the node at time t, T is the total time, and N is the computing power node.
8)公式(8)表示分数据中心的最大存储容量的限制约束条件;公式(8)中,表示存储K节点内的总存储能力计算,/>表示时间节点t的数据中心计算任务,Cn表示存储容量限制,ck表示k存储节点的容量表示。8) Formula (8) represents the limitation constraint condition of the maximum storage capacity of the sub-data center; in formula (8), Indicates the calculation of the total storage capacity in the storage K node, /> Represents the data center computing task at time node t, C n represents the storage capacity limit, and c k represents the capacity representation of k storage nodes.
9)公式(9)表示分数据中心的网络带宽的最大限制约束条件。公式(9)中,表示时间t节点时,数据中心a节点和b节点任务之间的带宽需求,表示n个节点网络带宽的最大限制。9) Equation (9) represents the maximum limit constraint condition of the network bandwidth of the sub-data center. In formula (9), Indicates the bandwidth requirement between the tasks of node a and node b in the data center at time t node, Indicates the maximum limit of the network bandwidth of n nodes.
10)公式(10)(11)(12)表示最小化的边缘服务器网络性能能耗代价,与边缘服务器存储能力及网络节点性能等条件相关。公式(10)中,为能耗服从函数(3)中∑lgl(xl)的自变量,xl为存储能力,/>表示i和j节点在l任务集合下的k服务节点资源利用率,i和j表示边缘服务器,l表示某个任务,E为任务集合,k为服务节点。10) Formulas (10), (11) and (12) represent the minimized edge server network performance and energy consumption costs, which are related to conditions such as edge server storage capacity and network node performance. In formula (10), is the independent variable of ∑ l g l (x l ) in the energy consumption obedience function (3), x l is the storage capacity, /> Indicates the utilization rate of k service node resources of i and j nodes under the l task set, i and j represent the edge server, l represents a certain task, E is the task set, and k is the service node.
公式(11)中,表示xl为最大存储能力限制为cl。In formula (11), Indicates that x l is the maximum storage capacity limited to c l .
公式(12)中,表示边缘服务器i和j在k下的网络节点的性能评估表示,dij为性能评估值。In formula (12), Indicates the performance evaluation representation of the network nodes of edge servers i and j under k, and d ij is the performance evaluation value.
11)公式(13)表示d表示网络应用对时延约束的边界,D表示各边时延的列向量,xuv表示一条链路。公式(13)中,DTxuv≤d,表示d表示网络应用对时延约束的边界,D表示各边时延的列向量,xuv表示一条链路。11) Equation (13) indicates that d represents the boundary of the network application on the delay constraint, D represents the column vector of the delay of each side, and x uv represents a link. In the formula (13), D T x uv ≤ d, which means that d represents the boundary of the delay constraint of the network application, D represents the column vector of the delay of each side, and x uv represents a link.
12)公式(14)链路抖动低于约束界限,j表示网络应用对抖动约束的边界,J表示各边抖动的列向量。公式(14)中,JTxuv≤j,链路抖动低于约束界限,j表示网络应用对抖动约束的边界,J表示各边抖动的列向量。12) Formula (14) link jitter is lower than the constraint limit, j represents the boundary of the network application on jitter constraints, and J represents the column vector of jitter on each side. In formula (14), J T x uv ≤ j, the link jitter is lower than the constraint limit, j represents the boundary of the network application on jitter constraints, and J represents the column vector of jitter on each side.
13)公式(15)L表示对丢包率的最大要求。公式(15)中,∏LossRate(i)≤L,LossRate(i)表示丢包率总和,L表示对丢包率的最大要求。13) Formula (15) L represents the maximum requirement on the packet loss rate. In formula (15), ∏LossRate(i)≤L, LossRate(i) represents the sum of the packet loss rate, and L represents the maximum requirement for the packet loss rate.
如图1所示,本发明实施例的一种跨域数据中心SDN网络资源的流量调度的方法,包括如下步骤:As shown in Figure 1, a method for traffic scheduling of cross-domain data center SDN network resources according to an embodiment of the present invention includes the following steps:
S1、将跨域数据中心的计算能力和边缘服务器的网络性能能耗加入到多目标优化模型NSGA-II算法,并分别为跨域数据中心的计算能力和边缘服务器的网络性能能耗建立相应的目标函数,得到流量调度优化目标模型;S1. Add the computing power of the cross-domain data center and the network performance and energy consumption of the edge server to the multi-objective optimization model NSGA-II algorithm, and respectively establish the corresponding calculation capabilities for the computing power of the cross-domain data center and the network performance and energy consumption of the edge server Objective function to get the traffic scheduling optimization objective model;
其中,跨域数据中心的的计算过程如下:Among them, the calculation process of the cross-domain data center is as follows:
S010、根据跨域数据中心的性能参数建立第一约束条件;S010. Establish a first constraint condition according to the performance parameters of the cross-domain data center;
其中,跨域数据中心的性能参数包括缓存空间和网络链路带宽等。建立的第一约束条件包括公式(7)、公式(8)以及公式(9),即:Among them, the performance parameters of the cross-domain data center include cache space and network link bandwidth. The established first constraint condition includes formula (7), formula (8) and formula (9), namely:
其中,Q是计算能力限制,Cn是最大存储容量,网络带宽的最大限制,/>时间t节点的能耗。Among them, Q is the computing power limit, C n is the maximum storage capacity, The maximum limit of network bandwidth, /> Energy consumption at time t node.
S011、利用添加第一约束条件的多目标优化模型,并结合为跨域数据中心的计算能力所建立的目标函数,计算得到跨域数据中心的计算能力;S011. Using the multi-objective optimization model with the first constraint added, combined with the objective function established for the computing capability of the cross-domain data center, to calculate the computing capability of the cross-domain data center;
其中,多目标优化模型的解释如下:Among them, the interpretation of the multi-objective optimization model is as follows:
现阶段对数据中心的算力资源进行约束时,跨数据中心通过纯网络的调度,一般考虑的是时延、带宽等因素。综合考虑分数据中心和边缘服务器的算力资源、网络性能等。分数据中心和总调度之间是SDN架构的,需要扩展openflow协议;个别分数据中心是通过传统互联网和总调度相连的,数据采集,需要考虑这个特殊情况,在传统算力资源调控的基础上,将跨域数据中心的计算能力和边缘服务器的网络性能能耗存储能力加入到多目标优化模型NSGA-II算法中。At this stage, when constraining the computing resources of data centers, scheduling across data centers through a pure network generally considers factors such as delay and bandwidth. Comprehensively consider the computing power resources and network performance of the sub-data center and edge server. The sub-data center and the general dispatching are based on the SDN architecture, and the openflow protocol needs to be extended; individual sub-data centers are connected to the general dispatching through the traditional Internet. For data collection, this special situation needs to be considered. On the basis of traditional computing resource regulation , adding the computing power of the cross-domain data center and the network performance, energy consumption and storage capacity of the edge server into the multi-objective optimization model NSGA-II algorithm.
其中,为跨域数据中心的计算能力所设置的目标函数为公式(2);Among them, the objective function set for the computing power of the cross-domain data center is formula (2);
在添加第一约束条件的多目标优化模型的算法实现过程中,通过公式(2)和第一约束条件,就能够计算出跨域数据中心的计算能力。In the algorithm implementation process of the multi-objective optimization model with the first constraint added, the computing capability of the cross-domain data center can be calculated through the formula (2) and the first constraint.
其中,边缘服务器的最优网络性能能耗的计算过程如下:Among them, the calculation process of the optimal network performance and energy consumption of the edge server is as follows:
S020、根据边缘服务器的性能参数建立第二约束条件;S020. Establish a second constraint condition according to the performance parameters of the edge server;
边缘服务器的性能参数包括存储能力和网络性能等,建立的第二约束条件包括公式(10)、公式(11)以及公式(12)为:The performance parameters of the edge server include storage capacity and network performance, etc., and the established second constraints include formula (10), formula (11) and formula (12) as follows:
S021、利用在第二约束条件下的能耗服从函数结合边缘服务器的网络性能能耗对应的目标函数,计算边缘服务器的最优网络性能能耗。S021. Using the energy consumption obedience function under the second constraint condition and the objective function corresponding to the network performance and energy consumption of the edge server, calculate the optimal network performance and energy consumption of the edge server.
其中,对边缘服务器的网络性能能耗所建立的目标函数为公式(3);Among them, the objective function established for the network performance and energy consumption of the edge server is formula (3);
能耗服从函数为gl(xl)=μlxlα,其中,μl和α是边缘服务器的算力网络节点设备相关的参数,cl为存储能力,dij为网络节点的性能评估,在该算法实现过程中,通过公式(3)计算即可求出目标函数权衡之后的能耗最优解即得到边缘服务器的最优网络性能能耗。The energy consumption obedience function is g l (x l ) = μ l x l α, where μ l and α are parameters related to the computing power of the edge server network node equipment, c l is the storage capacity, and d ij is the performance of the network node Evaluation, in the implementation process of the algorithm, the optimal solution of energy consumption after the objective function trade-off can be obtained through the calculation of formula (3), that is, the optimal network performance energy consumption of the edge server can be obtained.
其中,多目标优化模型NSGA-II算法的具体解释如下:Among them, the specific explanation of the multi-objective optimization model NSGA-II algorithm is as follows:
多目标优化模型NSGA-II算法是带有精英保留策略的快速非支配多目标优化算法,是一种基于Pareto最优解的多目标优化算法,它降低了非劣排序遗传算法的复杂性,具有运行速度快,解集的收敛性好,引入拥挤度和拥挤度比较算子,这不但克服了NSGA算法中需要人为指定共享参数的缺陷,而且将拥挤度作为种群中个体之间的比较准则,使得准Pareto域中的种群个体能均匀扩展到整个Pareto域,从而保证了种群的多样性。The multi-objective optimization model NSGA-II algorithm is a fast non-dominated multi-objective optimization algorithm with an elite retention strategy. It is a multi-objective optimization algorithm based on the Pareto optimal solution. It reduces the complexity of the non-inferior sorting genetic algorithm and has The running speed is fast, the convergence of the solution set is good, and the crowding degree and the crowding degree comparison operator are introduced, which not only overcomes the defect of manually specifying the shared parameters in the NSGA algorithm, but also uses the crowding degree as a comparison criterion between individuals in the population, The population individuals in the quasi-Pareto domain can be evenly expanded to the entire Pareto domain, thereby ensuring the diversity of the population.
在多目标优化求解中,优化目标函数有些是求最大值,有些是求最小值,为了方便计算,通常将所有目标函数求最大值的转换为求最小值。本文中多目标优化问题的数学描述为:In the multi-objective optimization solution, some optimization objective functions seek the maximum value and some seek the minimum value. For the convenience of calculation, the maximum value of all objective functions is usually converted to the minimum value. The mathematical description of the multi-objective optimization problem in this paper is:
MinF(X)=[f1(X),f2(X),…,fm(X)]MinF(X)=[f 1 (X),f 2 (X),…,f m (X)]
stgi(X)≤0,i=1,2.,…kstg i (X)≤0,i=1,2.,…k
hj(X)=0,j=1,2…lh j (X)=0,j=1,2...l
其中F(X)=[f1(X),f2(X),…,fm(X)]T为问题的目标,所在的空间称为目标空间,为子目标的个数,X=[x1,x2,…,xn]T为给定的Rn空间上的n维向量,称X所在的空间为问题的决策空间,hj(X)=0,j=1,2,…l为等式约束,gi(X)≤0,i=1,2…k为不等式约束。Among them, F(X)=[f 1 (X),f 2 (X),…,f m (X)] T is the goal of the problem, and the space where it is located is called the target space, which is the number of sub-goals, X= [x 1 ,x 2 ,…,x n ] T is an n-dimensional vector on a given R n space, the space where X is called is the decision space of the problem, h j (X)=0, j=1,2 ,...l is an equality constraint, g i (X)≤0, i=1, 2...k is an inequality constraint.
S2、分别为SDN网络资源的每个SDN网络特征建立相应的目标函数和约束条件,并添加到流量调度优化目标模型中,得到流量调度优化数学模型;S2. Establish corresponding objective functions and constraint conditions for each SDN network characteristic of the SDN network resources, and add them to the traffic scheduling optimization target model to obtain the traffic scheduling optimization mathematical model;
其中,SDN网络资源的SDN网络特征包括:链路带宽、丢包率、延迟和抖动。具体地:Among them, the SDN network characteristics of SDN network resources include: link bandwidth, packet loss rate, delay and jitter. specifically:
为链路带宽建立的目标函数为公式(5),为链路带宽建立的约束条件为公式(9),为丢包率建立的目标函数为公式(4),为丢包率建立的约束条件为公式(15),为延迟建立的目标函数为公式(1),为延迟建立的约束条件为公式(13),为抖动建立的目标函数为公式(6),为链路带宽建立的约束条件为公式(14)。The objective function established for link bandwidth is formula (5), the constraint condition established for link bandwidth is formula (9), the objective function established for packet loss rate is formula (4), and the constraint condition established for packet loss rate is formula (15), the objective function established for delay is formula (1), the constraint condition established for delay is formula (13), the objective function established for jitter is formula (6), and the constraint condition established for link bandwidth is formula (14).
S3、采用带精英策略的非支配遗传算法对流量调度优化数学模型进行求解,得到用于对SDN网络资源进行流量调度的流量调度方案,如图2所示,具体地:S3. Using a non-dominated genetic algorithm with an elite strategy to solve the traffic scheduling optimization mathematical model, and obtain a traffic scheduling scheme for traffic scheduling of SDN network resources, as shown in Figure 2, specifically:
优化的目的是使用多路径分配的优化策略之后的全局网络路径部署相对于优化之前的网络丢包率、传输时延及边缘服务器能耗最小,且业务会更倾向于流向更加轻载的链路上,网络对将来到达的连接请求具有更高的接纳能力,而不需要对已存在的连接进行重路由,采用带精英策略的非支配遗传算法对流量调度优化数学模型进行求解的具体过程如下:The purpose of optimization is to use the multi-path allocation optimization strategy to deploy the global network path with the smallest packet loss rate, transmission delay, and edge server energy consumption compared to the network before optimization, and the business will tend to flow to lighter links In general, the network has a higher acceptance capacity for incoming connection requests without rerouting existing connections. The specific process of solving the traffic scheduling optimization mathematical model by using the non-dominated genetic algorithm with elite strategy is as follows:
S31、初始定义参数为SDN网络拓扑图G(V,E,C),其中,V代表交换机节点集合,E代表检测到的链路集合,带宽集合C,用户主机数量为P,边缘服务器数量N,边缘服务器存储能力xl,分数据中心计算能力限制Q,上传分数据中心的时延分数据中心数量Dn,/>表示数据中心链路带宽限制,表示控制器数量K等。S31. The initial definition parameter is the SDN network topology graph G(V, E, C), where V represents the set of switch nodes, E represents the set of detected links, the set of bandwidth C, the number of user hosts is P, and the number of edge servers is N , the edge server storage capacity x l , the computing capacity limit Q of the sub-data center, and the upload delay of the sub-data center The number of sub-data centers D n , /> Indicates the data center link bandwidth limit, indicates the number of controllers K, etc.
S32、种群的初始化,随机创建种群大小为N的父代种群P,每个个体含有L个染色体,L代表候选数据流数目,每个个体可用如下基因表示:S32. Initialization of the population. Randomly create a parent population P with a population size of N. Each individual contains L chromosomes, and L represents the number of candidate data streams. Each individual can be represented by the following genes:
其中每个染色体中的数字代表该候选路径选择的路径,数字和候选路径具有如下简单对应关系如下表1所示。The number in each chromosome represents the path selected by the candidate path, and the number and the candidate path have the following simple correspondence as shown in Table 1 below.
表1:Table 1:
S33、模型针对上述提出的多约束条件对每个个体进行评估,通过定义的算法参数计算最小化平均时延,最大化分数据中心体验质量,最小化边缘服务器上的网络性能能耗,最小化链路丢包率、抖动率以及最大化网络路径的带宽利用率这六个目标函数的值。S33. The model evaluates each individual based on the multiple constraints proposed above, and calculates the minimum average delay through the defined algorithm parameters, maximizes the experience quality of the sub-data center, minimizes the network performance and energy consumption on the edge server, and minimizes The value of the six objective functions of link packet loss rate, jitter rate and maximizing network path bandwidth utilization.
S34、结合目标函数对种群进行快速非支配排序,对每个个体赋予相应的非支配适应度值。根据适应度函数:S34. Perform a fast non-dominated sorting on the population in combination with the objective function, and assign a corresponding non-dominated fitness value to each individual. According to the fitness function:
f=Af1+BQoE+C∑lgl(xl)+DLlist+EUlist+JHlist这六个优化目标进行构造,其中A,B,C,D,E,F为权重系数,不同的权重系数来表示对这六个目标优化的重要程度,为体现整体的均衡性,将权重系数全部设置为1。目标函数值越小,则说明个体越优越。f=Af 1 +BQoE+C∑ l g l (x l )+DL list +EU list +JH list These six optimization objectives are constructed, where A, B, C, D, E, and F are weight coefficients, different The weight coefficients are used to indicate the importance of the optimization of these six objectives. In order to reflect the overall balance, the weight coefficients are all set to 1. The smaller the value of the objective function, the better the individual.
快速非支配排序根据不同的目标函数对于初始解空间中的每一条染色体进行非支配排序,根据排序结果生成不同等级的解集合。例如可对步骤S32中给出的部分初始种群进行非支配排序后得到的不同等级分类为:Fast non-dominated sorting performs non-dominated sorting on each chromosome in the initial solution space according to different objective functions, and generates different levels of solution sets according to the sorting results. For example, the different grades obtained after performing non-dominated sorting on the partial initial population given in step S32 are:
Rank0={Label2,Label3},Rank1={Label1,Label3},Rank2={Label3},Rank3={Label5,Label7}......Rank0={Label2, Label3}, Rank1={Label1, Label3}, Rank2={Label3}, Rank3={Label5, Label7}...
S35、利用二进制锦标赛算法生成种群的第一代子种群,其中包含对种群进行选择、交叉、变异操作。锦标赛方法选择策略首先从种群中随机选择k个个体,这里k为N/2。然后每次从这k个个体组成的种群中取出2个个体,选择其中最好的个体进入配对池,重复该步骤,直到配对池中的个体数量达到设定值,这里为N。采用的交叉算子和变异算子分别为两点交叉和单点变异,利用这2个算子对配对池中的个体进行操作生成子代种群。交叉率为0.8,变异率为0.1。S35. Generate a first-generation sub-population of the population using a binary tournament algorithm, which includes performing selection, crossover, and mutation operations on the population. The tournament method selection strategy first randomly selects k individuals from the population, where k is N/2. Then take 2 individuals from the population composed of k individuals each time, select the best individual to enter the pairing pool, and repeat this step until the number of individuals in the pairing pool reaches the set value, here is N. The crossover operator and mutation operator used are two-point crossover and single-point mutation respectively, and these two operators are used to operate on the individuals in the matching pool to generate offspring populations. The crossover rate is 0.8 and the mutation rate is 0.1.
S36、将父代和子代的种群进行合并,生成新的种群,合并后种群数量是父代和子代种群数量的和。S36. Merge the populations of the parent generation and the child generation to generate a new population, the number of the merged population is the sum of the populations of the parent generation and the child generation.
S37、再次通过快速非支配排序算法计算非支配等级,同时计算种群中个体的拥挤度;根据非支配排序和计算出来的拥挤度选择种群中优异的个体形成新的父代种群。S37. Calculate the non-dominated level again through the fast non-dominated sorting algorithm, and calculate the crowding degree of individuals in the population at the same time; select excellent individuals in the population to form a new parent population according to the non-dominated sorting and the calculated crowded degree.
S38、对迭代次数进行判断,可设置为T=50,100,150...,当达到预设的代数值时,对生成的种群进行聚类,并在每一类中选择一个体进行强化,然后与父代种群相比,择优留下成为新的父代种群;当没达到预设值的迭代次数时,调转到S39执行;S38. Judging the number of iterations, which can be set to T=50, 100, 150..., when the preset algebraic value is reached, cluster the generated population, and select an individual in each class to strengthen, and then combine with the parent Compared with the generation population, select the best and leave it as the new parent population; when the number of iterations of the preset value is not reached, transfer to S39 for execution;
S39、利用二进制锦标赛算法对新生成的种群进行选择、交叉、变异操作产生新的子代种群,并判断是否达到最大迭代次数,若达到,结束算法,若没有达到,则继续进行迭代,跳转到S36执行。S39. Use the binary tournament algorithm to perform selection, crossover, and mutation operations on the newly generated population to generate a new subpopulation, and judge whether the maximum number of iterations is reached. If it is reached, the algorithm is terminated. If it is not reached, continue to iterate and jump to S36 for execution.
S40、根据实际情况分析各目标的重要程度,获取到最终的一组Pareto最优解集,并在该Pareto最优解集中选取出合适的解作为最终最优调度方案。S40. Analyze the importance of each goal according to the actual situation, obtain a final set of Pareto optimal solutions, and select a suitable solution from the Pareto optimal solution set as the final optimal scheduling scheme.
可选地,在上述技术方案中,跨域数据中心的计算能力的获取过程,包括:Optionally, in the above technical solution, the acquisition process of the computing capability of the cross-domain data center includes:
由于网络流量调度问题是多目标优化问题,所求的最终解并不是唯一的解,而是一个可供多个选择的最优解集,需要根据实际情况分析各目标的重要程度,选择最佳调度方案,本发明设计的优化结果应首先满足第一二三目标函数,为了控制边缘服务器能耗与传输时延问题,在选择优化策略时,在一定程度上需兼顾第四、第五和第六目标函数。模型针对不同用户需求综合考虑多种情况,当对流量调度的实时性要求比较高,可增加时延函数的重要程度,选取时延函数值最小的调度方案,以保证数据传输的实时性。当在边缘网络部署的服务增多时,更多的用户请求在与之相连的边缘节点被处理,在这种情况下就不会产生传输时延以及上传到云计算分数据中心的时延,所以用户可以得到一个较低的网络时延和较好的用户体验。但是相应的功耗就会增加,这是因为为了获得一个较低的网络时延,部署的服务就会增多,使得边缘服务器开机数量增多,负载也会增多,从而使得功耗增加。所以该算法可以提升网络资源利用效率,节约数据中心内部的流量带宽成本,从而能够为相关数据中心及服务节约成本,获得间接的经济效益。Since the network traffic scheduling problem is a multi-objective optimization problem, the final solution sought is not the only solution, but an optimal solution set for multiple choices. It is necessary to analyze the importance of each objective according to the actual situation and choose the best solution. Scheduling scheme, the optimization result designed by the present invention should first satisfy the first, second and third objective functions. In order to control the energy consumption and transmission delay of the edge server, when selecting the optimization strategy, it is necessary to take into account the fourth, fifth and third objective functions to a certain extent. Six objective functions. The model comprehensively considers a variety of situations for different user needs. When the real-time requirements for traffic scheduling are relatively high, the importance of the delay function can be increased, and the scheduling scheme with the smallest delay function value can be selected to ensure the real-time performance of data transmission. When the number of services deployed on the edge network increases, more user requests will be processed on the edge nodes connected to it. In this case, there will be no transmission delay and delay in uploading to the cloud computing sub-data center, so Users can get a lower network delay and better user experience. However, the corresponding power consumption will increase. This is because in order to obtain a lower network delay, more deployed services will increase the number of edge servers powered on, and the load will also increase, resulting in increased power consumption. Therefore, this algorithm can improve the utilization efficiency of network resources and save the cost of traffic bandwidth inside the data center, thereby saving costs for related data centers and services and obtaining indirect economic benefits.
在实际的应用中,可以从NSGA-II得到的这些非支配解中,根据需要选择特地的一种方案来部署。比如可以选择一些折中的解,在满足用户和应用对网络时延的情况下,尽量选择一些功耗较小的解来进行实际的流量调度部署,以获得最大的收益。In practical applications, one of the non-dominated solutions obtained from NSGA-II can be selected for deployment as required. For example, you can choose some compromise solutions, and try to choose some solutions with lower power consumption for actual traffic scheduling deployment under the condition of satisfying the network delay of users and applications, so as to obtain the maximum benefit.
本发明人的有益效果如下:The inventor's beneficial effects are as follows:
软件定义网络应用范围不仅包括云计算、企业网领域,骨干网运营商也将部分应用SDN技术。因此,SDN对于网络应用的商业模式会产生深入影响,能进一步推动互联网应用的产业革新,具有广阔而深远的应用价值和产业化前景。而本专利着眼于未来云边融合的跨域数据中心,提供云计算和边缘计算融合服务,这种云边融合的服务模式综合了云计算和边缘计算两者的互补优势,伴随着互联网应用的不断深入,本专利研究成果具有确切的市场发展潜力。The application scope of software-defined network not only includes cloud computing and enterprise network fields, but also backbone network operators will partially apply SDN technology. Therefore, SDN will have a profound impact on the business model of network applications, can further promote the industrial innovation of Internet applications, and has broad and far-reaching application value and industrialization prospects. This patent focuses on the future cross-domain data center of cloud-edge integration, providing cloud computing and edge computing integration services. This cloud-edge integration service model combines the complementary advantages of cloud computing and edge computing. With the development of Internet applications, With continuous deepening, the research results of this patent have definite market development potential.
在经济效益方面,本项目技术成果可直接为未来云边融合的跨域数据中心提供软件定义网络部署解决方案和技术支持从而取得相关直接经济效益。另外,通过本专利研究的软件定义网络资源统一管理和流量调度理论可以提升网络资源利用效率,节约数据中心内部的流量带宽成本,从而能够为相关数据中心及服务节约成本,获得间接的经济效益。In terms of economic benefits, the technical achievements of this project can directly provide software-defined network deployment solutions and technical support for cross-domain data centers with cloud-edge integration in the future, so as to obtain relevant direct economic benefits. In addition, the unified management of software-defined network resources and traffic scheduling theory studied in this patent can improve the utilization efficiency of network resources and save the cost of traffic bandwidth inside the data center, thereby saving costs for related data centers and services and obtaining indirect economic benefits.
在上述各实施例中,虽然对步骤进行了编号S1、S2等,但只是本申请给出的具体实施例,本领域的技术人员可根据实际情况调整S1、S2等的执行顺序,此也在本发明的保护范围内,可以理解,在一些实施例中,可以包含如上述各实施方式中的部分或全部。In each of the above-mentioned embodiments, although the steps are numbered S1, S2, etc., they are only specific embodiments provided by the application, and those skilled in the art can adjust the execution order of S1, S2, etc. according to the actual situation. Within the protection scope of the present invention, it can be understood that, in some embodiments, part or all of the foregoing implementation manners may be included.
如图3所示,本发明实施例的一种跨域数据中心SDN网络资源的流量调度的系统200,包括第一添加建立模块210、第二添加建立模块220和求解模块230;As shown in FIG. 3 , a
第一添加建立模块210用于:将跨域数据中心的计算能力和边缘服务器的网络性能能耗加入到多目标优化模型NSGA-II算法,并分别为跨域数据中心的计算能力和边缘服务器的网络性能能耗建立相应的目标函数,得到流量调度优化目标模型;The first
第二添加建立模块220用于:分别为SDN网络资源的每个SDN网络特征建立相应的目标函数和约束条件,并添加到流量调度优化目标模型中,得到流量调度优化数学模型;The second addition and
求解模块230用于:采用带精英策略的非支配遗传算法对流量调度优化数学模型进行求解,得到用于对SDN网络资源进行流量调度的流量调度方案。The
可选地,在上述技术方案中,还包括第一获取模块,第一获取模块用于:Optionally, in the above technical solution, a first acquisition module is also included, and the first acquisition module is used for:
根据跨域数据中心的性能参数建立第一约束条件;Establishing the first constraint condition according to the performance parameters of the cross-domain data center;
利用添加第一约束条件的多目标优化模型,并结合为跨域数据中心的计算能力所建立的目标函数,计算得到跨域数据中心的计算能力。The computing capability of the cross-domain data center is calculated by using the multi-objective optimization model with the first constraint and combining with the objective function established for the computing capability of the cross-domain data center.
可选地,在上述技术方案中,还包括第二获取模块,第二获取模块用于:Optionally, in the above technical solution, a second acquisition module is also included, and the second acquisition module is used for:
根据边缘服务器的性能参数建立第二约束条件;establishing a second constraint condition according to the performance parameter of the edge server;
利用在第二约束条件下的能耗服从函数,并结合边缘服务器的网络性能能耗对应的目标函数,计算边缘服务器的最优网络性能能耗。Using the energy consumption obedience function under the second constraint condition, combined with the objective function corresponding to the network performance and energy consumption of the edge server, the optimal network performance and energy consumption of the edge server is calculated.
可选地,在上述技术方案中,边缘服务器的存储能力的目标函数为:边缘服务器的最优网络性能能耗。Optionally, in the above technical solution, the objective function of the storage capability of the edge server is: optimal network performance and energy consumption of the edge server.
可选地,在上述技术方案中,SDN网络资源的SDN网络特征包括:链路带宽、丢包率、延迟和抖动。Optionally, in the above technical solution, the SDN network characteristics of the SDN network resources include: link bandwidth, packet loss rate, delay and jitter.
上述关于本发明的一种跨域数据中心SDN网络资源的流量调度的系统中的各参数和各个单元模块实现相应功能的步骤,可参考上文中关于一种跨域数据中心SDN网络资源的流量调度的方法的实施例中的各参数和步骤,在此不做赘述。For the steps of realizing the corresponding functions of each parameter and each unit module in the system of traffic scheduling of a cross-domain data center SDN network resource of the present invention, please refer to the above-mentioned traffic scheduling of a cross-domain data center SDN network resource The parameters and steps in the embodiment of the method will not be repeated here.
本发明实施例的一种电子设备,包括存储器、处理器及存储在所述存储器上并在所述处理器上运行的程序,所述处理器执行所述程序时实现上述任一实施的一种跨域数据中心SDN网络资源的流量调度的方法的步骤。An electronic device according to an embodiment of the present invention includes a memory, a processor, and a program stored in the memory and run on the processor. When the processor executes the program, any one of the above-mentioned implementations can be realized. Steps of a method for traffic scheduling of cross-domain data center SDN network resources.
其中,电子设备可以选用电脑、手机等,相对应地,其程序为电脑软件或手机APP等,且上述关于本发明的一种电子设备中的各参数和步骤,可参考上文中一种跨域数据中心SDN网络资源的流量调度的方法的实施例中的各参数和步骤,在此不做赘述。Among them, the electronic device can be a computer, a mobile phone, etc. Correspondingly, its program is a computer software or a mobile phone APP, etc., and the above-mentioned parameters and steps in an electronic device of the present invention can refer to the above-mentioned cross-domain The parameters and steps in the embodiment of the method for traffic scheduling of data center SDN network resources will not be repeated here.
所属技术领域的技术人员知道,本发明可以实现为系统、方法或计算机程序产品。Those skilled in the art know that the present invention can be implemented as a system, method or computer program product.
因此,本公开可以具体实现为以下形式,即:可以是完全的硬件、也可以是完全的软件(包括固件、驻留软件、微代码等),还可以是硬件和软件结合的形式,本文一般称为“电路”、“模块”或“系统”。此外,在一些实施例中,本发明还可以实现为在一个或多个计算机可读介质中的计算机程序产品的形式,该计算机可读介质中包含计算机可读的程序代码。Therefore, the present disclosure can be specifically implemented in the following forms, that is: it can be complete hardware, it can also be complete software (including firmware, resident software, microcode, etc.), and it can also be a combination of hardware and software. Called a "circuit", "module" or "system". Furthermore, in some embodiments, the present invention can also be implemented in the form of a computer program product embodied in one or more computer-readable media having computer-readable program code embodied therein.
可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是一一但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM),只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer-readable storage media include: electrical connections with one or more leads, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above. In this document, a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, those skilled in the art can make the above-mentioned The embodiments are subject to changes, modifications, substitutions and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310126810.0A CN116208567A (en) | 2023-02-15 | 2023-02-15 | Method and system for flow scheduling of SDN network resources of cross-domain data center |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310126810.0A CN116208567A (en) | 2023-02-15 | 2023-02-15 | Method and system for flow scheduling of SDN network resources of cross-domain data center |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116208567A true CN116208567A (en) | 2023-06-02 |
Family
ID=86515558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310126810.0A Pending CN116208567A (en) | 2023-02-15 | 2023-02-15 | Method and system for flow scheduling of SDN network resources of cross-domain data center |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116208567A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116708446A (en) * | 2023-08-03 | 2023-09-05 | 山东省计算中心(国家超级计算济南中心) | Computing network scheduling service method and system based on comprehensive weight decision-making of network performance |
CN117201536A (en) * | 2023-09-08 | 2023-12-08 | 中国矿业大学 | An SDN cross-domain IoT private network sensing device management and control computing power resource allocation system |
CN118381708A (en) * | 2024-04-10 | 2024-07-23 | 山东省计算中心(国家超级计算济南中心) | A management and scheduling method and system for cross-domain heterogeneous storage clusters |
CN118394488A (en) * | 2024-06-27 | 2024-07-26 | 苏州元脑智能科技有限公司 | Task scheduling method, device, equipment, system, program product and medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112084026A (en) * | 2020-09-02 | 2020-12-15 | 国网河北省电力有限公司石家庄供电分公司 | Low-energy-consumption edge computing resource deployment system and method based on particle swarm |
WO2022252496A1 (en) * | 2021-06-01 | 2022-12-08 | 苏州路之遥科技股份有限公司 | Software-defined cloud-side collaborative network energy consumption optimisation method and system |
-
2023
- 2023-02-15 CN CN202310126810.0A patent/CN116208567A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112084026A (en) * | 2020-09-02 | 2020-12-15 | 国网河北省电力有限公司石家庄供电分公司 | Low-energy-consumption edge computing resource deployment system and method based on particle swarm |
WO2022252496A1 (en) * | 2021-06-01 | 2022-12-08 | 苏州路之遥科技股份有限公司 | Software-defined cloud-side collaborative network energy consumption optimisation method and system |
Non-Patent Citations (2)
Title |
---|
WEI ZHANG等: ""Network Resource Scheduling For Cloud/Edge Data Centers"", 《2020 IEEE 39TH INTERNATIONAL PERFORMANCE COMPUTING AND COMMUNICATIONS CONFERENCE (IPCCC)》, 5 April 2021 (2021-04-05) * |
蓝色蛋黄包: ""【多目标优化】2. 非支配排序遗传算法 —(NSGA、NSGA-II)"", pages 2, Retrieved from the Internet <URL:https://blog.csdn.net/haha0332/article/details/88672634> * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116708446A (en) * | 2023-08-03 | 2023-09-05 | 山东省计算中心(国家超级计算济南中心) | Computing network scheduling service method and system based on comprehensive weight decision-making of network performance |
CN116708446B (en) * | 2023-08-03 | 2023-11-21 | 山东省计算中心(国家超级计算济南中心) | Network performance comprehensive weight decision-based computing network scheduling service method and system |
CN117201536A (en) * | 2023-09-08 | 2023-12-08 | 中国矿业大学 | An SDN cross-domain IoT private network sensing device management and control computing power resource allocation system |
CN117201536B (en) * | 2023-09-08 | 2024-05-17 | 中国矿业大学 | A SDN cross-domain IoT private network perception device control computing resource allocation system |
CN118381708A (en) * | 2024-04-10 | 2024-07-23 | 山东省计算中心(国家超级计算济南中心) | A management and scheduling method and system for cross-domain heterogeneous storage clusters |
CN118394488A (en) * | 2024-06-27 | 2024-07-26 | 苏州元脑智能科技有限公司 | Task scheduling method, device, equipment, system, program product and medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jiang et al. | An energy-efficient networking approach in cloud services for IIoT networks | |
CN116208567A (en) | Method and system for flow scheduling of SDN network resources of cross-domain data center | |
CN109818865B (en) | SDN enhanced path boxing device and method | |
Liu et al. | DRL-R: Deep reinforcement learning approach for intelligent routing in software-defined data-center networks | |
CN108259367B (en) | A service-aware flow policy customization method based on software-defined network | |
CN107094115B (en) | An Ant Colony Optimization Load Balancing Routing Algorithm Based on SDN | |
CN108174394A (en) | An orchestration algorithm for 5G network slicing | |
Torkzadeh et al. | Energy-aware routing considering load balancing for SDN: a minimum graph-based Ant Colony Optimization | |
Gong et al. | A fuzzy delay-bandwidth guaranteed routing algorithm for video conferencing services over SDN networks | |
Li et al. | A delay-aware caching algorithm for wireless D2D caching networks | |
CN117762597A (en) | Yun Bian-based cooperative intelligent scheduling algorithm | |
CN105743804A (en) | Data flow control method and system | |
Sarasvathi et al. | QoS guaranteed intelligent routing using hybrid PSO-GA in wireless mesh networks | |
Mi et al. | Software-defined green 5G system for big data | |
Chen et al. | Deep learning-based traffic prediction for energy efficiency optimization in software-defined networking | |
CN106211344B (en) | A kind of Ad Hoc network bandwidth management method based on context aware | |
Zhang et al. | DSOQR: Deep Reinforcement Learning for Online QoS Routing in SDN‐Based Networks | |
Li et al. | A fuzzy-based fast routing algorithm with guaranteed latency-throughput over software defined networks | |
CN115150893B (en) | MEC task unloading strategy method based on task division and D2D | |
CN113139639B (en) | MOMBI-oriented smart city application multi-target computing migration method and device | |
Jiang et al. | Intelligent optimization-based energy-efficient networking in cloud services for multimedia big data | |
Pang et al. | Research on SDN-based data center network traffic management and optimization | |
Liu et al. | Distributed decisions on optimal load balancing in loss networks | |
Lv et al. | Mobile edge computing oriented multi-agent cooperative routing algorithm: a Drl-based approach | |
Cong et al. | A deep reinforcement learning-based routing scheme with two modes for dynamic networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |