CN116206696A - 一种酶动力学参数预测方法及装置 - Google Patents
一种酶动力学参数预测方法及装置 Download PDFInfo
- Publication number
- CN116206696A CN116206696A CN202310470992.3A CN202310470992A CN116206696A CN 116206696 A CN116206696 A CN 116206696A CN 202310470992 A CN202310470992 A CN 202310470992A CN 116206696 A CN116206696 A CN 116206696A
- Authority
- CN
- China
- Prior art keywords
- enzyme
- representation
- sequence
- molecular structure
- kinetic parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000790 Enzymes Proteins 0.000 title claims abstract description 236
- 102000004190 Enzymes Human genes 0.000 title claims abstract description 236
- 238000000034 method Methods 0.000 title claims abstract description 83
- 230000008569 process Effects 0.000 claims abstract description 20
- 238000012549 training Methods 0.000 claims abstract description 12
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 4
- 238000010801 machine learning Methods 0.000 claims description 27
- 239000000758 substrate Substances 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 238000004422 calculation algorithm Methods 0.000 claims description 15
- 230000002255 enzymatic effect Effects 0.000 claims description 5
- 238000007637 random forest analysis Methods 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims 1
- 238000012216 screening Methods 0.000 abstract description 11
- 238000012360 testing method Methods 0.000 description 13
- 150000001413 amino acids Chemical group 0.000 description 8
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 6
- 238000005915 ammonolysis reaction Methods 0.000 description 6
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 238000005094 computer simulation Methods 0.000 description 4
- 230000002687 intercalation Effects 0.000 description 4
- 238000009830 intercalation Methods 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 108010052982 Tyrosine 2,3-aminomutase Proteins 0.000 description 2
- 238000002869 basic local alignment search tool Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002887 multiple sequence alignment Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C10/00—Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
- G16B30/10—Sequence alignment; Homology search
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/70—Machine learning, data mining or chemometrics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Medical Informatics (AREA)
- Computing Systems (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Chemical & Material Sciences (AREA)
- Evolutionary Biology (AREA)
- Biotechnology (AREA)
- Data Mining & Analysis (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Bioethics (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310470992.3A CN116206696B (zh) | 2023-04-27 | 2023-04-27 | 一种酶动力学参数预测方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310470992.3A CN116206696B (zh) | 2023-04-27 | 2023-04-27 | 一种酶动力学参数预测方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116206696A true CN116206696A (zh) | 2023-06-02 |
CN116206696B CN116206696B (zh) | 2024-04-19 |
Family
ID=86514994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310470992.3A Active CN116206696B (zh) | 2023-04-27 | 2023-04-27 | 一种酶动力学参数预测方法及装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116206696B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109486778A (zh) * | 2018-10-22 | 2019-03-19 | 浙江科技学院 | 一种基于共进化网络的ω-转氨酶突变体以及制备方法和应用 |
CN112582031A (zh) * | 2020-12-24 | 2021-03-30 | 江南大学 | 结合高压分子动力学模拟、自由能计算改善水解酶鲁棒性 |
US20220122689A1 (en) * | 2020-10-15 | 2022-04-21 | Salesforce.Com, Inc. | Systems and methods for alignment-based pre-training of protein prediction models |
WO2022185179A1 (en) * | 2021-03-02 | 2022-09-09 | Glaxosmithkline Biologicals Sa | Natural language processing to predict properties of proteins |
US20220359045A1 (en) * | 2021-05-07 | 2022-11-10 | International Business Machines Corporation | Prediction of enzymatically catalyzed chemical reactions |
-
2023
- 2023-04-27 CN CN202310470992.3A patent/CN116206696B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109486778A (zh) * | 2018-10-22 | 2019-03-19 | 浙江科技学院 | 一种基于共进化网络的ω-转氨酶突变体以及制备方法和应用 |
US20220122689A1 (en) * | 2020-10-15 | 2022-04-21 | Salesforce.Com, Inc. | Systems and methods for alignment-based pre-training of protein prediction models |
CN112582031A (zh) * | 2020-12-24 | 2021-03-30 | 江南大学 | 结合高压分子动力学模拟、自由能计算改善水解酶鲁棒性 |
WO2022185179A1 (en) * | 2021-03-02 | 2022-09-09 | Glaxosmithkline Biologicals Sa | Natural language processing to predict properties of proteins |
US20220359045A1 (en) * | 2021-05-07 | 2022-11-10 | International Business Machines Corporation | Prediction of enzymatically catalyzed chemical reactions |
Non-Patent Citations (3)
Title |
---|
ZHIQING XU等: "Enzyme Activity Prediction of Sequence Variants on Novel Substrates using Improved Substrate Encodings and Convolutional Pooling", 《PROCEEDINGS OF MACHINE LEARNING RESEARCH》, vol. 3, pages 78 - 93 * |
卞佳豪等: "人工智能辅助的蛋白质工程", 《合成生物学》, vol. 3, no. 3, pages 437 * |
段力文: "基于改进混合多标签分类器的蛋白质分类研究", 《中国优秀硕士学位论文全文数据库基础科学辑》, no. 01, pages 006 - 433 * |
Also Published As
Publication number | Publication date |
---|---|
CN116206696B (zh) | 2024-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tibbs Cortes et al. | Status and prospects of genome‐wide association studies in plants | |
US11915104B2 (en) | Normalizing text attributes for machine learning models | |
Frichot et al. | LEA: An R package for landscape and ecological association studies | |
Quental et al. | Diversity dynamics: molecular phylogenies need the fossil record | |
Stanley et al. | genepopedit: A simple and flexible tool for manipulating multilocus molecular data in R | |
CN107908536B (zh) | Cpu-gpu异构环境中对gpu应用的性能评估方法及系统 | |
Pei et al. | CLADES: A classification‐based machine learning method for species delimitation from population genetic data | |
Svensson et al. | Quantifying the tradeoff between sequencing depth and cell number in single-cell RNA-seq | |
Azad et al. | Use of artificial genomes in assessing methods for atypical gene detection | |
CN113656183B (zh) | 任务处理方法、装置、设备及存储介质 | |
Jungreuthmayer et al. | Avoiding the enumeration of infeasible elementary flux modes by including transcriptional regulatory rules in the enumeration process saves computational costs | |
WO2022098485A1 (en) | Free energy landscape modeling with parallel paths | |
Frey et al. | Energy-aware neural architecture selection and hyperparameter optimization | |
CN116206696B (zh) | 一种酶动力学参数预测方法及装置 | |
CN113656279B (zh) | 基于残差网络和度量注意机制的代码气味检测方法 | |
Lall et al. | Generating realistic cell samples for gene selection in scRNA-seq data: A novel generative framework | |
US11823066B2 (en) | Enterprise market volatility predictions through synthetic DNA and mutant nucleotides | |
Wang et al. | CTEC: a cross-tabulation ensemble clustering approach for single-cell RNA sequencing data analysis | |
JP4918868B2 (ja) | 入力値選定プログラム、入力値選定方法および入力値選定装置 | |
Hazledine et al. | Nonlinear time series analysis of nodulation factor induced calcium oscillations: evidence for deterministic chaos? | |
Yang et al. | Decoding microbiome and protein family linkage to improve protein structure prediction | |
Martini et al. | Meta-analysis of gene activity (maga) contributions and correlation with gene expression, through gagam | |
KR20210050362A (ko) | 앙상블 모델 프루닝 방법, 유전자 가위를 검출하는 앙상블 모델 생성 방법 및 장치 | |
Johnson et al. | Recombination rate inference via deep learning is limited by sequence diversity | |
Madan et al. | Comparison of benchmarks for machine learning cloud infrastructures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240805 Address after: 2101, Jinjia science and technology building, No.19, kejizhong 2nd Road, Maling community, Yuehai street, Nanshan District, Shenzhen, Guangdong 518000 Patentee after: Senris Biotechnology (Shenzhen) Co.,Ltd. Country or region after: China Address before: 1068 No. 518055 Guangdong city in Shenzhen Province, Nanshan District City Xili University School Avenue Patentee before: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY Country or region before: China |