CN116203973A - 轨道ai巡检机器人智能控制系统 - Google Patents
轨道ai巡检机器人智能控制系统 Download PDFInfo
- Publication number
- CN116203973A CN116203973A CN202310497047.2A CN202310497047A CN116203973A CN 116203973 A CN116203973 A CN 116203973A CN 202310497047 A CN202310497047 A CN 202310497047A CN 116203973 A CN116203973 A CN 116203973A
- Authority
- CN
- China
- Prior art keywords
- representing
- inspection robot
- inspection
- information
- map
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 163
- 238000000034 method Methods 0.000 claims abstract description 36
- 230000008569 process Effects 0.000 claims abstract description 18
- 238000010276 construction Methods 0.000 claims abstract description 10
- 230000006870 function Effects 0.000 claims description 57
- 230000004927 fusion Effects 0.000 claims description 31
- 230000009471 action Effects 0.000 claims description 26
- 238000013528 artificial neural network Methods 0.000 claims description 25
- 239000013598 vector Substances 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 23
- 230000000007 visual effect Effects 0.000 claims description 17
- 239000011159 matrix material Substances 0.000 claims description 12
- 230000007613 environmental effect Effects 0.000 claims description 11
- 241000854291 Dianthus carthusianorum Species 0.000 claims description 10
- 230000006399 behavior Effects 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 10
- 238000005516 engineering process Methods 0.000 claims description 9
- 210000002569 neuron Anatomy 0.000 claims description 9
- 230000004044 response Effects 0.000 claims description 6
- 238000013473 artificial intelligence Methods 0.000 claims description 5
- 238000005457 optimization Methods 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000006978 adaptation Effects 0.000 claims description 3
- 238000007499 fusion processing Methods 0.000 claims description 3
- 238000013178 mathematical model Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 230000002787 reinforcement Effects 0.000 claims description 2
- 238000012549 training Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 230000004438 eyesight Effects 0.000 description 6
- 238000004590 computer program Methods 0.000 description 5
- 230000016776 visual perception Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0274—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Electromagnetism (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种轨道AI巡检机器人智能控制系统,包括环境信息收集模块、环境地图构建模块、智能巡检模块;本发明涉及智能巡检机器人领域,主要解决现有技术中轨道巡检机器人控制系统智能化程度不高、巡检效率低下问题。本发明对巡检机器人所处位置周围进行环境信息提取,将收集的信息进行融合,构建环境地图,根据自身定位和地表环境进行路径规划,巡检过程中主动进行障碍物避让,实现智能巡检。
Description
技术领域
本发明涉及机器人巡检领域,具体地说,涉及一种轨道AI巡检机器人智能控制系统。
背景技术
在生产项目中,需要定期进行巡检,为了减少投入的人力成本,巡检机器人被发明出来,巡检机器人代替人工进行巡检操作,一些重复性劳动被机器人所代替,使用机器人进行巡检,可以提高巡检的次数,大大减少问题发生的概率,也可以及时发现问题,但目前巡检机器人自主性较低,智能性差,对巡检过程中遇到的问题不能主动处理,对周围环境识别不准确,要提高巡检机器人的自主性智能性,本发明提供了一种AI智能巡检机器人,通过多重传感器,融合环境信息,自主的进行巡检任务,通过人工智能算法,自动进行巡检规划,遇到障碍物主动进行等待或避让,大大提高了发现问题的概率,对巡检机器人方面具有较大的突破。
发明内容
本发明的目的在于提供一种轨道AI巡检机器人智能控制系统,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供一种轨道AI巡检机器人智能控制系统,包括环境信息收集模块、环境地图构建模块、智能巡检模块;首先,通过安装在巡检机器人上的传感器,识别周围环境并收集环境信息,对多重信息进行融合,采用视觉感知技术,获取周围物体的立体图像,并通过视觉处理器对图像进行处理分析,构建巡检机器人的视觉系统;其次构建巡检机器人周围地图,且对自身位置进行定位;最后采用人工智能算法,选择需要巡检的关键位置,自动规划巡检路线,且移动过程中主动识别障碍物并避让。
进一步的,所述环境信息收集模块,对巡检机器人周围环境信息进行收集,通过安装在巡检机器人上的距离传感器、视觉传感器、气味传感器、温度传感器,对巡检机器人四周的各种环境信息进行收集,距离传感器高精度的检测周围物体的距离和方位,获取周围环境的几何信息;视觉传感器是巡检机器人实现视觉感知的基础与核心,通过视觉传感器进行图像的测量和判断,帮助构建环境地图;气味传感器检测巡检机器人周围是否有有毒气体,危险化学品;温度传感器收集周围的温度信息,判断工作环境的温度情况。
巡检机器人视觉感知技术通过视觉分析和图像处理,多角度挖掘视觉数据中的不同特征,从而实现对不同环境信息的筛选、分析和表达,本发明采用SURF算法来表示所在周围环境;SURF算法采用方形滤波器,滤波器函数如下:
将信息进行融合,提高巡检机器人对环境信息的获取能力和巡检机器人系统决策的能力,更好的实现障碍物识别避让,巡检机器人路径规划,采用基于改进的神经网络的多信息融合技术,精确的对周围环境进行信号提取融合,根据粒子群算法,构建寻优公式:
、、、分别表示第i个粒子在第k+1、k次迭代时的位置矢量,表示权重,、为加速度常数,、分别代表粒子i的历史最优适应度在第k次迭代的位置和粒子i的历史最优适应度在第k次迭代的位置矢量;采用BAS算法对信息数据进行改进,创建两方向模型:
、分别代表权重系数的最大值和最小值,k代表当前迭代系数,代表总的迭代系数;采用改进的BP神经网络算法对信息进行融合,降低信息特征维数,提高数据融合效率和融合精度,根据LEACN算法完成分簇,将信息传入簇首节点,每轮簇首节点更新,分簇形成后记录节点信息并传入基础节点,基础节点根据传入信息确定BP神经网络结构,选取相匹配的数据集,确定空间维度,每个簇内节点个数就是输入层神经元个数Q,隐藏层神经元个数为O,输出层神经元个数为1,空间维度E为:
初始化位置向量,计算舒适度h,公式如下:
m为样本数据训练数量,代表第i个样本数据的融合预测值,代表i个样本数据实测值,根据适应度,确定粒子的最佳位置,计算行为增量,更新粒子的速度和位置,基础点与BP神经网络链接,将权值和阈值传入簇节点,簇内根据权重和阈值构建相应的BP神经网络,对上传信息进行融合处理,将融合结果传入基础点,完成一轮信息融合。
进一步的,所述环境地图构建模块,本发明采用混合地图,混合地图灵活性强,精确度高,鲁棒性强,有尺度信息,确保地图信息的简洁和准确。
r表示对应半径,、分别表示目标点左右两端的编号,构建栅格地图,栅格地图基于障碍物出现的概率进行构建,栅格地图将环境划分为一系列网格,网格为空取0,网格存在取1,引入贝叶斯模型,更新网格状态,用m表示各个网格,表示位置的网格,如下等式:
网格点状态t为:
对于网格更新了值z时,更新状态为:
得到后验概率为:
带入状态更新方程:
创建拓扑地图,将拓扑节点T的数据结构定义为:
p为后选点,为信息收益,L为巡检机器人位置与目标点之间的欧式距离,表示机器人与目标点之间的连线与机器人正方向之间的夹角绝对值,、分别表示距离和夹角的系数;将拓扑节点分为当前节点,缓存节点,终极节点和标记节点,在更新全局拓扑地图时,要判断缓存节点是否加入地图,对创建的栅格地图和拓扑地图进行融合,形成栅格-拓扑混合地图。
进一步的,在巡检机器人自动巡检之前,人为的在机器人构建的混合地图上进行标记,标记出巡检场地中的重点位置,规划的路径围绕着重点位置。
Q代表价值函数,s表示当前状态,a表示当前动作,r表示再当前状态下执行动作的奖励,表示下一状态,表示下一动作,表示学习率,表示下一动作和下一状态的折扣系数,表示当前状态和当前动作的折扣系数;建立矩阵储存Q值:
选择贪婪策略,基于人工势场法更新价值函数,人工势场法包含引力势场函数和斥力势场函数,引力势场函数为:
巡检机器人向目标点行驶过程中障碍物产生斥力势场,斥力势场函数为:
代表巡检机器人位置与目标点位置的欧几里得距离的梯度,利用贪婪策略在初始状态时执行初始动作,得到奖励r,更新状态;比较巡检机器人与目标点之间的欧几里得距离与目标点斥力作用范围的大小,当取,再根据贪婪策略在新的状态下,更新价值函数:
本发明有益效果:
本发明提供了一种轨道AI巡检机器人智能控制系统,包括环境信息收集模块、环境地图构建模块、智能巡检模块。本发明通过安装在巡检机器人上的传感器,对巡检机器人周围环境信息进行识别收集,通过SURF算法,利用视觉分析和图像处理,多角度挖掘视觉数据中的不同特征,从而实现对不同环境的分析和表达,对四周环境进行感知,用特征向量描述信息特征,对收集到的环境信息,通过神经网络模型进行信息的融合,首先通过粒子群算法,建立寻优公式,进一步的采用BAS算法对信息数据进行改进,创建两方向模型,接着采用改进的BP神经网络算法,降低信息特征维数,提高数据融合效率和融合精度,根据LEACN算法完成分簇,将信息传入簇首节点,根据适应度,确定最佳位置,计算行为增量,通过基础点与BP神经网络链接,将权值和阈值传入簇节点,簇内根据权重和阈值构建相应的BP神经网络,将融合结果传入基础点,完成一轮信息融合。本发明采用灵活性强,精确的高,鲁棒性强的格栅-拓扑混合地图,确保地图信息的简洁和准确。接着构建完整环境地图,在底层通过算法完成定位与地图创建,使用贝叶斯模型估计格栅网格点状态,通过对拓扑节点分类为当前节点,缓存节点,终极节点和标记节点,根据效用函数更新全局拓扑地图,将格栅地图与拓扑地图融合形成混合地图。通过人工智能路径算法,结合重点位置,自动进行巡检路线的规划,巡检线路上遇到突发障碍物时,主动进行避让。本发明提供的轨道AI巡检机器人智能控制系统,能够主动构建环境地图主动规划路线,改变了以往巡检机器人的非智能性,运行过程完全主动,且提供神经网络进行多信息融合,对环境信息处理较为精确,准确识别各种环境信息,路径规划采用人工智能算法,对路线的规划也是较优路线。
附图说明
利用附图对发明创造作进一步说明,但附图中的实施例不构成对本发明创造的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明结构示意图。
具体实施方式
结合以下实例对本发明作进一步描述。
参见图1,本发明旨在提供一种轨道AI巡检机器人智能控制系统,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供一种轨道AI巡检机器人智能控制系统,包括环境信息收集模块、环境地图构建模块、智能巡检模块;首先,通过安装在巡检机器人上的传感器,识别周围环境并收集环境信息,对多重信息进行融合,采用视觉感知技术,获取周围物体的立体图像,并通过视觉处理器对图像进行处理分析,构建巡检机器人的视觉系统;其次构建巡检机器人周围地图,且对自身位置进行定位;最后采用人工智能算法,选择需要巡检的关键位置,自动规划巡检路线,且移动过程中主动识别障碍物并避让。
各个模块的过程如下:
对于环境信息收集模块,对巡检机器人周围环境信息进行收集,通过安装在巡检机器人上的距离传感器、视觉传感器、气味传感器、温度传感器,对巡检机器人四周的各种环境信息进行收集,距离传感器高精度的检测周围物体的距离和方位,获取周围环境的几何信息;视觉传感器是巡检机器人实现视觉感知的基础与核心,通过视觉传感器进行图像的测量和判断,帮助构建环境地图;气味传感器检测巡检机器人周围是否有有毒气体,危险化学品;温度传感器收集周围的温度信息,判断工作环境的温度情况。
巡检机器人视觉感知技术通过视觉分析和图像处理,多角度挖掘视觉数据中的不同特征,实现对不同环境的分析和表达,本发明采用SURF算法来筛选表示所在周围环境;SURF算法采用方形滤波器,滤波器函数如下:
将收集到的信息进行融合,提高巡检机器人对环境信息的获取能力系统决策的能力,实现障碍物识别避让,巡检机器人路径规划,采用基于改进的神经网络的多信息融合技术,精确的对周围环境进行信号提取融合,根据粒子群算法,构建寻优公式:
、、、分别表示第i个粒子在第k+1、k次迭代时的位置矢量,表示权重,、为加速度常数,、分别代表粒子i的历史最优适应度在第k次迭代的位置和粒子i的历史最优适应度在第k次迭代的位置矢量;采用BAS算法对信息数据进行改进,创建两方向模型:
、分别代表权重系数的最大值和最小值,k代表当前迭代系数,代表总的迭代系数;采用改进的BP神经网络算法,降低信息特征维数,提高数据融合效率和融合精度,根据LEACN算法完成分簇,将信息传入簇首节点,利用BP神经网络进行融合,更新簇首节点,分簇形成后,簇首记录节点信息并传入基础节点,基础节点根据传入信息确定BP神经网络结构,选取相匹配的数据集,确定空间维度,每个簇内节点个数就是输入层神经元个数Q,隐藏层神经元个数为O,输出层神经元个数为1,空间维度E为:
初始化位置向量,计算舒适度h,公式如下:
m为样本数据训练数量,代表第i个样本数据的融合预测值,代表i个样本数据实测值,根据适应度,确定每个粒子的最佳位置,计算行为增量,更新粒子的速度和位置,基础点与BP神经网络链接,将权值和阈值传入簇节点,簇内根据权重和阈值构建相应的BP神经网络,对上传信息进行融合处理,并将融合结果传入基础点,完成一轮信息融合。
对于环境地图构建模块,确定环境地图表达方式,方便环境地图更新,本发明采用混合地图,混合地图灵活性强,精确度高,鲁棒性强,有着尺度信息,确保地图信息的简洁和准确。
r表示对应半径,、分别表示目标点左右两端的编号,构建栅格地图,栅格地图的构建必须基于障碍物出现的概率,栅格地图将环境划分为一系列网格,当网格为空时取0,网格存在时取1,引入贝叶斯模型,更新网格状态,用m表示各个网格,表示位置的网格,如下等式:
网格点状态t为:
对于网格更新了值z时,更新状态为:
得到后验概率为:
带入状态更新方程:
创建拓扑地图,拓扑节点T的数据结构定义为:
p为后选点,为信息收益,L为巡检机器人位置与目标点之间的欧式距离,表示机器人与目标点之间的连线与机器人正方向之间的夹角绝对值,、分别表示距离和夹角的系数;将拓扑节点分为当前节点,缓存节点,终极节点和标记节点,在更新全局拓扑地图时,要判断缓存节点是否加入地图,对创建的栅格地图和拓扑地图进行融合,形成栅格-拓扑混合地图。
进一步的,在巡检机器人自动巡检之前,人为的在机器人构建的混合地图上进行标记,标记出巡检场地中的重点位置,标记的重点位置在之后的路径规划上有着更高的权限,使规划的路径围绕着重点位置。
Q代表价值函数,s表示当前状态,a表示当前动作,r表示再当前状态下执行动作的奖励,表示下一状态,表示下一动作,表示学习率,表示下一动作和下一状态的折扣系数,表示当前状态和当前动作的折扣系数;建立矩阵储存Q值:
在动作策略的选择上选择贪婪策略,接着基于人工势场法对价值函数进行更新,人工势场法包含引力势场函数和斥力势场函数;引力势场函数为:
巡检机器人向目标点行驶过程中遇到的障碍物产生斥力势场,与障碍物之间的距离决定着斥力势场的高低;斥力势场函数为:
代表巡检机器人位置与目标点位置的欧几里得距离的梯度,利用贪婪策略在初始状态时执行初始动作,得到奖励r,接着得到一个新的状态;比较巡检机器人与目标点之间的欧几里得距离与目标点斥力作用范围的大小,当取,再根据贪婪策略在新的状态下,更新价值函数:;
进一步的,巡检机器人在巡检现场,会发生临时障碍物,工作人员占据规划好的巡检路线,巡检机器人根据设定好的程序,发出设定好的音频,提醒前方工作人员占据了巡检路线,在规定时间内未移动或占据巡检路线的是障碍物,则启动避让程序,根据算法规划一段避让路线,避让后再移动至初设巡检路线上。
本发明有益效果:
本发明提供了一种轨道AI巡检机器人智能控制系统,包括环境信息收集模块、环境地图构建模块、智能巡检模块。本发明通过安装在巡检机器人上的传感器,对巡检机器人周围环境信息进行识别收集,通过SURF算法,利用视觉分析和图像处理,多角度挖掘视觉数据中的不同特征,从而实现对不同环境的分析和表达,对四周环境进行感知,用特征向量描述信息特征,对收集到的环境信息,通过神经网络模型进行信息的融合,首先通过粒子群算法,建立寻优公式,进一步的采用BAS算法对信息数据进行改进,创建两方向模型,接着采用改进的BP神经网络算法,降低信息特征维数,提高数据融合效率和融合精度,根据LEACN算法完成分簇,将信息传入簇首节点,根据适应度,确定最佳位置,计算行为增量,通过基础点与BP神经网络链接,将权值和阈值传入簇节点,簇内根据权重和阈值构建相应的BP神经网络,将融合结果传入基础点,完成一轮信息融合。本发明采用灵活性强,精确的高,鲁棒性强的格栅-拓扑混合地图,确保地图信息的简洁和准确。接着构建完整环境地图,在底层通过算法完成定位与地图创建,使用贝叶斯模型估计格栅网格点状态,通过对拓扑节点分类为当前节点,缓存节点,终极节点和标记节点,根据效用函数更新全局拓扑地图,将格栅地图与拓扑地图融合形成混合地图。通过人工智能路径算法,结合重点位置,自动进行巡检路线的规划,巡检线路上遇到突发障碍物时,主动进行避让。本发明提供的轨道AI巡检机器人智能控制系统,能够主动构建环境地图主动规划路线,改变了以往巡检机器人的非智能性,运行过程完全主动,且提供神经网络进行多信息融合,对环境信息处理较为精确,准确识别各种环境信息,路径规划采用人工智能算法,对路线的规划也是较优路线。
本发明还提供了一种计算机可读存储介质,该存储介质中存储有至少一条指令,该指令由处理器加载并执行,以实现上述方法。其中,该计算机可读存储介质可以是ROM、随机存取存储器、CD-ROM、磁带、软盘和光数据存储设备等。其内存储的指令可由终端中的处理器加载并执行上述方法。
本发明实施方式是参照根据本发明实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本发明中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本发明所示的这些实施例,而是要符合与本发明所公开的原理和新颖特点相一致的最宽的范围。
Claims (9)
1.一种轨道AI巡检机器人智能控制系统,其特征在于,包括环境信息收集模块、环境地图构建模块、智能巡检模块;首先,通过安装在巡检机器人上的传感器,识别周围环境并收集环境信息,采用SURF算法对环境进行感知,通过改进的BP神经网络,对多重信息进行融合,采用视觉感知技术,获取周围物体的立体图像,并通过视觉处理器对图像进行处理分析,构建巡检机器人的视觉系统;其次构建巡检机器人周围地图,且对自身位置进行定位;最后采用Q-learning人工智能算法,选择需要巡检的关键位置,自动规划巡检路线,在移动过程中主动识别障碍物并避让。
2.根据权利要求1所述一种轨道AI巡检机器人智能控制系统,其特征在于,所述环境信息收集模块,通过安装在巡检机器人上的距离传感器、视觉传感器、气味传感器、温度传感器,对巡检机器人四周的各种环境信息进行收集。
3.根据权利要求1所述一种轨道AI巡检机器人智能控制系统,其特征在于,所述环境信息收集模块,对周围收集的环境信息进行筛选表示,详细过程如下:
巡检机器人采用SURF算法筛选表示所在周围环境;SURF算法采用方形滤波器,滤波器函数如下:
4.根据权利要求1所述一种轨道AI巡检机器人智能控制系统,其特征在于,所述环境信息收集模块,将筛选的信息进行融合,详细过程如下:
采用基于改进的神经网络的多信息融合技术,对周围环境进行信号提取融合,根据粒子群算法构建寻优公式:
、、、分别表示第i个粒子在第k+1、k次迭代时的位置矢量,表示权重,、为加速度常数,、分别代表粒子i的历史最优适应度在第k次迭代的位置和粒子i的历史最优适应度在第k次迭代的位置矢量;采用BAS算法对信息数据进行改进,创建两方向模型:
、分别代表权重系数的最大值和最小值,k代表当前迭代系数,代表总的迭代系数;采用改进的BP神经网络算法,降低信息特征维数,提高数据融合效率和融合精度,根据LEACN算法完成分簇,将信息传入簇首节点,每轮簇首节点更新,分簇形成后,簇首记录节点信息并传入基础节点,基础节点根据传入信息确定BP神经网络结构,选取相匹配的数据集,确定空间维度,簇内节点个数代表输入层神经元个数Q,隐藏层神经元个数为O,输出层神经元个数为1,空间维度E为:
初始化位置向量,计算舒适度h,公式如下:
5.根据权利要求1所述一种轨道AI巡检机器人智能控制系统,其特征在于,所述环境地图构建模块,确定环境地图表达方式,本发明采用混合地图。
6.根据权利要求1所述一种轨道AI巡检机器人智能控制系统,其特征在于,所述环境地图构建模块,构建完整的巡视机器人周围环境地图,详细过程如下:
r表示对应半径,、分别表示目标点左右两端的编号,构建栅格地图,栅格地图的构建必须基于障碍物出现的概率,栅格地图将环境划分成一系列网格,网格为空取0,网格存在取1,引入贝叶斯模型,更新网格状态,用m表示各个网格,表示位置的网格,有如下等式:
网格点状态t为:
状态更新方程为:
创建拓扑地图,将拓扑节点T的数据结构定义为:
7.根据权利要求1所述一种轨道AI巡检机器人智能控制系统,其特征在于,所述环境地图构建模块,在构建的混合地图上标记出巡检场地中的重点位置,规划的路径围绕着重点位置。
8.根据权利要求1所述一种轨道AI巡检机器人智能控制系统,其特征在于,所述智能巡检模块,根据环境信息,自动规划巡检路径,详细过程如下:
Q代表价值函数,s表示当前状态,a表示当前动作,r表示再当前状态下执行动作的奖励,表示下一状态,表示下一动作,表示学习率,表示下一动作和下一状态的折扣系数,表示当前状态和当前动作的折扣系数;建立矩阵储存Q值:
选择贪婪策略,基于人工势场法更新价值函数,人工势场法包含引力势场函数和斥力势场函数,引力势场函数为:
巡检机器人向目标点行驶过程中,障碍物产生斥力势场,斥力势场函数为:
;代表巡检机器人位置与目标点位置的欧几里得距离的梯度,利用贪婪策略在初始状态执行初始动作,得到奖励r,更新状态;比较巡检机器人与目标点之间的欧几里得距离与目标点斥力作用范围的大小,当取,根据贪婪策略在新状态下,更新价值函数:;
通过Q-learning强化学习算法,结合标记的重要位置,自动规划巡检路线。
9.根据权利要求1所述一种轨道AI巡检机器人智能控制系统,其特征在于,所述智能巡检模块
巡检机器人在巡检现场,遇到障碍物、巡检路线被占用问题,巡检机器人根据程序,发出音频,提醒前方,在规定时间内问题未解决,启动避让程序,根据Q-learning算法规划避让路线,避让后再移动至初设巡检路线上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310497047.2A CN116203973B (zh) | 2023-05-05 | 2023-05-05 | 轨道ai巡检机器人智能控制系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310497047.2A CN116203973B (zh) | 2023-05-05 | 2023-05-05 | 轨道ai巡检机器人智能控制系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116203973A true CN116203973A (zh) | 2023-06-02 |
CN116203973B CN116203973B (zh) | 2023-07-21 |
Family
ID=86513339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310497047.2A Active CN116203973B (zh) | 2023-05-05 | 2023-05-05 | 轨道ai巡检机器人智能控制系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116203973B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117809263A (zh) * | 2024-03-01 | 2024-04-02 | 深圳市震有智联科技有限公司 | 一种智慧街区智能巡检控制方法、装置及介质 |
CN118418117A (zh) * | 2024-04-25 | 2024-08-02 | 佑乾(深圳)科技有限公司 | 一种基于大数据的社区运维系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103640018A (zh) * | 2013-12-13 | 2014-03-19 | 江苏久祥汽车电器集团有限公司 | 一种基于surf算法进行定位的方法及机器人 |
CN111553469A (zh) * | 2020-05-18 | 2020-08-18 | 国网江苏省电力有限公司电力科学研究院 | 一种无线传感器网络数据融合方法、装置和存储介质 |
CN113341712A (zh) * | 2021-05-31 | 2021-09-03 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | 无人机自主控制系统智能分层递阶控制选择方法 |
WO2023283186A1 (en) * | 2021-07-06 | 2023-01-12 | The Regents Of The University Of Michigan | Two-wheeled, self-balancing robot |
-
2023
- 2023-05-05 CN CN202310497047.2A patent/CN116203973B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103640018A (zh) * | 2013-12-13 | 2014-03-19 | 江苏久祥汽车电器集团有限公司 | 一种基于surf算法进行定位的方法及机器人 |
CN111553469A (zh) * | 2020-05-18 | 2020-08-18 | 国网江苏省电力有限公司电力科学研究院 | 一种无线传感器网络数据融合方法、装置和存储介质 |
CN113341712A (zh) * | 2021-05-31 | 2021-09-03 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | 无人机自主控制系统智能分层递阶控制选择方法 |
WO2023283186A1 (en) * | 2021-07-06 | 2023-01-12 | The Regents Of The University Of Michigan | Two-wheeled, self-balancing robot |
Non-Patent Citations (7)
Title |
---|
KARTIK MADHIRA 等: "《A Quantitative Study of Mapping and Localization Algorithms on ROS based Differential Robot》", 《2017 NIRMA UNIVERSITY INTERNATIONAL CONFERENCE ON ENGINEERING》, pages 1 - 5 * |
ZHEN LI 等: "《A YOLO-GGCNN based grasping framework for mobile robots in unknown environments》", 《EXPERT SYSTEMS WITH APPLICATIONS》, pages 1 - 14 * |
李天伟: "《变电站智能巡检图像识别技术研究与工程实践》", 《工程科技2辑》, no. 3, pages 9 - 44 * |
李秀智 等: "《基于动态精简式混合地图的移动机器人自主探索》", 《控制与决策》, vol. 32, no. 5, pages 817 - 822 * |
王冰晨 等: "《基于深度Q网络和人工势场的移动 机器人路径规划研究》", 《计算机测量与控制》, no. 11, pages 226 - 239 * |
王虹: "《基于改进粒子群的BP 神经网络 WSN 数据融合算法》", 《中国科学院大学学报》, vol. 37, no. 5, pages 673 - 680 * |
陈超 等: "《多传感器融合的移动机器人同步定位与建图》", 《现代电子技术》, vol. 43, no. 14, pages 164 - 169 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117809263A (zh) * | 2024-03-01 | 2024-04-02 | 深圳市震有智联科技有限公司 | 一种智慧街区智能巡检控制方法、装置及介质 |
CN117809263B (zh) * | 2024-03-01 | 2024-05-10 | 深圳市震有智联科技有限公司 | 一种智慧街区智能巡检控制方法、装置及介质 |
CN118418117A (zh) * | 2024-04-25 | 2024-08-02 | 佑乾(深圳)科技有限公司 | 一种基于大数据的社区运维系统 |
Also Published As
Publication number | Publication date |
---|---|
CN116203973B (zh) | 2023-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116203973B (zh) | 轨道ai巡检机器人智能控制系统 | |
CN114970321A (zh) | 一种基于动态轨迹流的场景流数字孪生方法及系统 | |
CN113705636B (zh) | 一种自动驾驶车辆轨迹预测方法、装置及电子设备 | |
CN107703945A (zh) | 一种多目标融合的智能农用机械路径规划方法 | |
Bruce et al. | Learning deployable navigation policies at kilometer scale from a single traversal | |
CN114802296A (zh) | 一种基于动态交互图卷积的车辆轨迹预测方法 | |
CN103278170A (zh) | 基于显著场景点检测的移动机器人级联地图创建方法 | |
CN112132144B (zh) | 一种基于遥感图像的无人机航线撞地风险评估方法 | |
Saulnier et al. | Information theoretic active exploration in signed distance fields | |
CN115639823B (zh) | 崎岖起伏地形下机器人地形感知与移动控制方法及系统 | |
CN109508003A (zh) | 一种无人驾驶道路机械机群动态避让方法 | |
CN114494329B (zh) | 用于移动机器人在非平面环境自主探索的导引点选取方法 | |
CN110281949A (zh) | 一种自动驾驶统一分层决策方法 | |
CN114706400A (zh) | 一种越野环境下基于改进的a*算法的路径规划方法 | |
Hardouin et al. | Surface-driven Next-Best-View planning for exploration of large-scale 3D environments | |
CN118279876B (zh) | 一种基于图像处理的清洁车自动避障方法及系统 | |
CN115062529A (zh) | 基于长短期记忆和多图卷积网络融合的汽车行为预测方法 | |
CN113741480B (zh) | 一种基于动态障碍物提取与代价地图相结合的避障方法 | |
Short et al. | Abio-inspiredalgorithminimage-based pathplanning and localization using visual features and maps | |
Wu et al. | Multi-objective reinforcement learning for autonomous drone navigation in urban areas with wind zones | |
CN117369479B (zh) | 一种基于倾斜摄影测量技术的无人机障碍预警方法及系统 | |
US20230342614A1 (en) | Model generation apparatus, pathfinding apparatus, model generation method, and computer-readable storage medium storing a model generation program | |
CN118210307A (zh) | 一种适用于崎岖地形的移动机器人自主探索方法 | |
Masmoudi et al. | Autonomous car-following approach based on real-time video frames processing | |
Abbas et al. | Autonomous canal following by a micro-aerial vehicle using deep cnn |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |