CN116199522A - PU sponge-based silicon aerogel felt and preparation method thereof - Google Patents
PU sponge-based silicon aerogel felt and preparation method thereof Download PDFInfo
- Publication number
- CN116199522A CN116199522A CN202310056919.1A CN202310056919A CN116199522A CN 116199522 A CN116199522 A CN 116199522A CN 202310056919 A CN202310056919 A CN 202310056919A CN 116199522 A CN116199522 A CN 116199522A
- Authority
- CN
- China
- Prior art keywords
- sponge
- silicon
- airgel
- felt
- siloxane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 88
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 88
- 239000010703 silicon Substances 0.000 title claims abstract description 88
- 238000002360 preparation method Methods 0.000 title claims abstract description 33
- 239000004964 aerogel Substances 0.000 title claims 14
- 239000002131 composite material Substances 0.000 claims abstract description 40
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000003054 catalyst Substances 0.000 claims abstract description 11
- 239000002904 solvent Substances 0.000 claims abstract description 11
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000007598 dipping method Methods 0.000 claims abstract description 9
- 238000011282 treatment Methods 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 7
- 230000032683 aging Effects 0.000 claims abstract description 6
- 239000003513 alkali Substances 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 56
- 239000000377 silicon dioxide Substances 0.000 claims description 25
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 21
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 16
- 238000003756 stirring Methods 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 9
- 239000002585 base Substances 0.000 claims description 8
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 6
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 5
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 claims description 5
- 239000004965 Silica aerogel Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 claims description 4
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 claims description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 2
- 108010009736 Protein Hydrolysates Proteins 0.000 claims 1
- 239000000413 hydrolysate Substances 0.000 claims 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 abstract description 18
- 238000009413 insulation Methods 0.000 abstract description 11
- 230000003068 static effect Effects 0.000 abstract description 3
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 abstract description 2
- 239000012774 insulation material Substances 0.000 abstract description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 abstract 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 abstract 1
- 235000019270 ammonium chloride Nutrition 0.000 abstract 1
- 239000004814 polyurethane Substances 0.000 description 81
- 239000000835 fiber Substances 0.000 description 16
- 239000000843 powder Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 239000011148 porous material Substances 0.000 description 9
- 230000002209 hydrophobic effect Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 125000001165 hydrophobic group Chemical group 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000006068 polycondensation reaction Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000013305 flexible fiber Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000000352 supercritical drying Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- -1 siloxanes Chemical class 0.000 description 1
- 239000011240 wet gel Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B30/00—Compositions for artificial stone, not containing binders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/28—Fire resistance, i.e. materials resistant to accidental fires or high temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/40—Porous or lightweight materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
本申请涉及保温材料技术领域,特别涉及一种PU海绵基硅气凝胶毡及其制备方法。本申请提供的PU海绵基硅气凝胶毡的制备方法包括以下步骤:将硅氧烷、正硅酸酯、水和无水乙醇混合均匀,之后依次加入醋酸和十六烷基三甲基溴化铵进行加热反应,得到硅源水解液;向硅源水解液中加入碱催化剂,充分搅拌均匀,得到二氧化硅溶胶液;将PU海绵浸入二氧化硅溶胶液中进行浸胶处理,之后在常温条件下静止老化,得到PU海绵/硅气凝胶复合材料;将PU海绵/硅气凝胶复合材料加入无水乙醇中进行溶剂置换;对完成溶剂置换的PU海绵/硅气凝胶复合材料进行干燥,即得到PU海绵基硅气凝胶毡。本申请制得的PU海绵基硅气凝胶毡兼具良好的柔性、回弹性和极好的隔热保温性能。
The present application relates to the technical field of thermal insulation materials, in particular to a PU sponge-based silicon airgel felt and a preparation method thereof. The preparation method of the PU sponge-based silicon airgel felt provided by the application comprises the following steps: uniformly mixing siloxane, orthosilicate, water and absolute ethanol, then adding acetic acid and cetyltrimethyl bromide successively Ammonium chloride is heated and reacted to obtain a silicon source hydrolyzate; an alkali catalyst is added to the silicon source hydrolyzate, and fully stirred evenly to obtain a silica sol; the PU sponge is immersed in the silica sol for dipping treatment, and then Static aging at room temperature to obtain PU sponge/silicon airgel composites; add PU sponge/silicon airgel composites to absolute ethanol for solvent replacement; complete solvent replacement of PU sponge/silicon airgel composites After drying, the PU sponge-based silicon airgel felt is obtained. The PU sponge-based silicon airgel blanket prepared by the present application has good flexibility, resilience and excellent thermal insulation performance.
Description
技术领域technical field
本申请涉及保温材料技术领域,特别涉及一种PU海绵基硅气凝胶毡及其制备方法。The present application relates to the technical field of thermal insulation materials, in particular to a PU sponge-based silicon airgel felt and a preparation method thereof.
背景技术Background technique
硅气凝胶是一种由纳米量级的二氧化硅固体颗粒相互聚合形成三维立体网络骨架、具有相互连通的纳米多孔结构的固体材料。硅气凝胶的平均孔径大小约20nm,小于空气分子的平均运动自由程,极大限制了热传导和热对流,等效导热系数非常低,是目前世界上导热系数最低的固体材料。硅气凝胶通常为粉体、颗粒或块状,强度低、脆性大,韧性差,且粉体极易逸出、漂浮于空气中,造成严重的污染问题,从而限制了其在施工上的可操作性和应用。为了解决这些问题,目前生产上多采用纤维毡如陶瓷纤维毡、玻璃纤维毡、预氧丝纤维毡等作为基材制备纤维增强硅气凝胶毡。这类纤维毡由直径为微米级的短纤经铺网、针刺等工艺制得,纤维刚性大、柔性差,成毡尺寸稳定,但是短纤易脱落,且厚度方向和平面方向结构差异大,导致最终产品在力学和热学性能上的各向异性。此外,短纤集合体构成的多孔结构孔隙尺度大,对气凝胶粉体和颗粒的束缚性差,掉粉问题突出,进而影响毡体的隔热性能和应用。 为了改善纤维增强硅气凝胶毡在实际应用中抗拉性及回弹性差的问题,专利CN111908889A公开了一种复合纤维增强气凝胶毡及其制备方法,具体将柔性纤维网胎和硅酸铝纤维网胎在XY平面交替层叠铺设,再经Z向针刺柔性纤维连接得到复合纤维毡体,利用该复合纤维毡体作为基材制备得到纤维增强硅气凝胶毡,提升了隔热性能稳定性,增强了力学柔韧性。然而,该复合纤维毡体制备过程复杂、耗时长,不利于产业化大批量生产,且毡体为多孔纤维短纤集合体结构,对气凝胶的束缚效果不理想;专利CN111039295B公开了一种一步法制备二氧化硅气凝胶以及自疏水型二氧化硅气凝胶保温毡垫的方法,该制备过程中硅源水解和缩聚反应同时进行,体系反应不完全,制得的气凝胶孔径分布不匀、骨架强度低、柔性差。专利CN108383129A公开了一种柔性疏水氧化硅气凝胶的制备方法,具体公开了以甲基三烷氧基硅烷和正硅酸酯为硅源制备柔性疏水氧化硅气凝胶,该制备过程中采用具有强烈刺激性气味的挥发性氨水作为碱催化剂,极易造成严重的环境污染和安全问题;且制备得到的硅气凝胶不含增强基材,经干燥后其三维多孔结构会出现部分坍塌,呈现出粉末、颗粒和不规则块状的混合体系,无法直接应用。专利CN111848114A公开了一种超级隔热气凝胶复合材料及其制备工艺,具体公开了采用二氧化硅气凝胶与增强泡棉复合制备气凝胶复合材料,该制备过程中将湿凝胶复合材料浸入疏水试剂中进行疏水改性,由于PU海绵不耐有机溶剂浸泡,PU海绵骨架被溶解、丧失力学性能直至结构完全解体。 基于以上分析,提供一种工艺过程简单、能够获得具有良好柔性和力学性能的硅气凝胶毡的制备方法十分重要。Silica airgel is a solid material with interconnected nanoporous structure formed by the aggregation of nanometer-sized silica solid particles to form a three-dimensional network skeleton. The average pore size of silica aerogel is about 20nm, which is smaller than the average free path of motion of air molecules, which greatly limits heat conduction and heat convection. The equivalent thermal conductivity is very low, and it is currently the solid material with the lowest thermal conductivity in the world. Silica airgel is usually in the form of powder, granule or block, with low strength, high brittleness and poor toughness, and the powder is easy to escape and float in the air, causing serious pollution problems, thus limiting its application in construction. operability and application. In order to solve these problems, fiber mats such as ceramic fiber mats, glass fiber mats, and pre-oxidized silk fiber mats are often used as base materials to prepare fiber-reinforced silica airgel mats. This kind of fiber felt is made of short fibers with a diameter of micron through laying, needle punching and other processes. The fiber has high rigidity, poor flexibility, and stable dimension of the felt, but the short fibers are easy to fall off, and the structure difference in the thickness direction and the plane direction is large. , leading to anisotropy in the mechanical and thermal properties of the final product. In addition, the porous structure composed of short fiber aggregates has a large pore size, which has poor binding properties to airgel powder and particles, and the problem of powder falling is prominent, which in turn affects the thermal insulation performance and application of the felt. In order to improve the problem of poor tensile strength and resilience of fiber-reinforced silicon airgel felt in practical applications, patent CN111908889A discloses a composite fiber-reinforced airgel felt and its preparation method, specifically combining flexible fiber mesh tire and silicic acid The aluminum fiber mesh tires are alternately laid on the XY plane, and then connected by needle-punched flexible fibers in the Z direction to obtain a composite fiber mat. Using the composite fiber mat as a base material, a fiber-reinforced silicon airgel felt is prepared, which improves the thermal insulation performance. Stability, enhanced mechanical flexibility. However, the preparation process of the composite fiber mat is complex and time-consuming, which is not conducive to industrial mass production, and the mat is a porous fiber short fiber aggregate structure, which has an unsatisfactory binding effect on airgel; patent CN111039295B discloses a One-step method for preparing silica airgel and self-hydrophobic silica airgel insulation felt pad. During the preparation process, the silicon source hydrolysis and polycondensation reactions are carried out simultaneously, the system reaction is not complete, and the pore size of the prepared airgel is Uneven distribution, low skeleton strength and poor flexibility. Patent CN108383129A discloses a preparation method of flexible hydrophobic silica aerogels, specifically discloses the preparation of flexible hydrophobic silica aerogels using methyltrialkoxysilane and orthosilicate as silicon sources. Volatile ammonia water with a strong pungent smell is used as an alkali catalyst, which can easily cause serious environmental pollution and safety problems; and the prepared silica airgel does not contain a reinforcing substrate, and its three-dimensional porous structure will partially collapse after drying, showing A mixed system of powder, granules and irregular lumps is produced, which cannot be applied directly. Patent CN111848114A discloses a super heat-insulating airgel composite material and its preparation process. It specifically discloses the preparation of airgel composite materials by combining silica airgel and reinforced foam. During the preparation process, the wet gel composite The material is immersed in a hydrophobic reagent for hydrophobic modification. Since the PU sponge is not resistant to immersion in organic solvents, the PU sponge skeleton is dissolved and loses its mechanical properties until the structure is completely disintegrated. Based on the above analysis, it is very important to provide a method for preparing a silica airgel mat with simple process and good flexibility and mechanical properties.
发明内容Contents of the invention
本申请实施例提供一种PU海绵基硅气凝胶毡的制备方法,以解决现有技术中纤维基硅气凝胶毡柔性差、掉粉严重、制备过程复杂的问题。 第一方面,本申请提供了一种PU海绵基硅气凝胶毡的制备方法,包括以下步骤: 步骤S101,将硅氧烷、正硅酸酯、水和无水乙醇混合均匀,之后依次加入醋酸和十六烷基三甲基溴化铵(CTAB)进行加热反应,得到硅源水解液;步骤S102,向硅源水解液中加入碱催化剂,充分搅拌均匀,得到二氧化硅溶胶液;步骤S103,将PU海绵浸入二氧化硅溶胶液中进行浸胶处理,之后在常温条件下静止老化6~2h,得到PU海绵/硅气凝胶复合材料; 步骤S104,将PU海绵/硅气凝胶复合材料加入无水乙醇中进行溶剂置换,除去PU海绵/硅气凝胶复合材料中的水分; 步骤S105,对PU海绵/硅气凝胶复合材料进行干燥,即得到PU海绵基硅气凝胶毡。 一些实施例中,硅氧烷:正硅酸酯:无水乙醇:水的摩尔比为(0.4~1):(0~0.04):(3~12):(4~8)。 一些实施例中,醋酸:硅氧烷的摩尔比为(0.002~0.01):1。 一些实施例中,所述PU海绵的密度为20~60kg/m3,厚度为5~20mm。 一些实施例中,十六烷基三甲基溴化铵:硅氧烷的摩尔比为(0.002~0.005):1。十六烷基三甲基溴化铵能够促进缩聚反应,有利于低聚物进一步聚合形成长链的向三维空间扩展的二氧化硅骨架结构,使缩合反应更充分。 一些实施例中,步骤S101中,加热反应的条件为50~60℃,反应的时间为10~16h。 一些实施例中,硅氧烷与碱催化剂的摩尔比为1:(0.005~0.015)。 一些实施例中,步骤S102中,搅拌的转速为500~1500rpm,搅拌时间为5~15min。 一些实施例中,步骤S103中,浸胶时间为1~6h。 一些实施例中,步骤S104中,溶剂置换次数为1~3次,每次置换的时间为4~12The embodiment of the present application provides a preparation method of PU sponge-based silicon airgel mat to solve the problems of poor flexibility, serious powder dropping and complicated preparation process of fiber-based silicon airgel felt in the prior art. In the first aspect, the present application provides a preparation method of PU sponge-based silicon airgel felt, comprising the following steps: Step S101, mixing siloxane, orthosilicate, water and absolute ethanol uniformly, and then sequentially adding Acetic acid and cetyltrimethylammonium bromide (CTAB) are heated and reacted to obtain a silicon source hydrolyzate; step S102, adding an alkali catalyst to the silicon source hydrolyzate, and fully stirring to obtain a silica sol solution; step S103, immersing the PU sponge in the silica sol solution for dipping treatment, and then statically aging it at room temperature for 6-2 hours to obtain a PU sponge/silica airgel composite material; Step S104, PU sponge/silica airgel The composite material is added to absolute ethanol for solvent replacement to remove the moisture in the PU sponge/silicon airgel composite material; Step S105, drying the PU sponge/silicon airgel composite material to obtain the PU sponge-based silicon airgel felt. In some embodiments, the molar ratio of siloxane: orthosilicate: absolute ethanol: water is (0.4-1): (0-0.04): (3-12): (4-8). In some embodiments, the molar ratio of acetic acid:siloxane is (0.002˜0.01):1. In some embodiments, the density of the PU sponge is 20-60 kg/m3, and the thickness is 5-20 mm. In some embodiments, the molar ratio of cetyltrimethylammonium bromide:siloxane is (0.002˜0.005):1. Hexadecyltrimethylammonium bromide can promote the polycondensation reaction, which is conducive to the further polymerization of oligomers to form a long-chain silica skeleton structure that expands to three-dimensional space, making the condensation reaction more complete. In some embodiments, in step S101, the heating reaction condition is 50-60° C., and the reaction time is 10-16 hours. In some embodiments, the molar ratio of siloxane to base catalyst is 1:(0.005˜0.015). In some embodiments, in step S102, the stirring speed is 500-1500 rpm, and the stirring time is 5-15 minutes. In some embodiments, in step S103, the dipping time is 1-6 hours. In some embodiments, in step S104, the number of solvent replacements is 1 to 3 times, and the time for each replacement is 4 to 12
h。 一些实施例中,步骤S105中,干燥方式为常压干燥或超临界干燥。 一些实施例中,所述硅氧烷为二甲基二乙氧基硅烷、甲基三乙氧基硅烷、乙基三甲氧基硅烷中的任一种或两种的混合。二甲基二乙氧基硅烷、甲基三乙氧基硅烷、乙基三甲氧基硅烷本身具有疏水性基团,使用这几种硅氧烷则无需对浸胶处理后的复合材料进行疏水改性,避免对PU海绵造成破坏。 一些实施例中,所述正硅酸酯为正硅酸甲酯、正硅酸乙酯中的任一种或两种的混合。 一些实施例中,所述碱催化剂为NaOH或KOH的水溶液。使用NaOH或KOH作为催化剂安全性高,不会对环境造成污染,且操作方便、成本低。 第二方面,本申请还提供了利用上述制备方法制得的PU海绵基硅气凝胶毡,该PU海绵基硅气凝胶毡质地柔软,厚度方向的压缩回弹率可达60~95%,掉粉少,水接触角110~140°,导热系数为0.023~0.012W/m·K。 本申请制得的PU海绵基硅气凝胶毡可应用于非高温场景下(低于120℃)的保温隔热,如建筑、工业管道等,以及冰箱、自动贩卖机的隔热、冷链运输、医疗保冷等领域,同时可作为夹层应用于服装、户外用品等,起到隔热或保暖的效果。 本申请提供的制备方法采用具有细密均匀开孔结构的PU海绵作为基材,PU海绵具有由聚氨酯弹性体高聚物构成的多边形、多面体相互交织、堆砌而成的三维网络骨架和大量被空气填充的、相互贯通的开口式微细气孔,气孔细密均匀,孔取向小,开孔率高,具有良好的柔软性、回弹性和隔热保温性。 本申请在制备二氧化硅溶胶液的过程中,利用具有疏水基团的硅氧烷作为原料,无需后续对浸胶处理后的复合材料进行疏水改性,避免了疏水改性试剂对PU海绵分子结构的破坏,充分保留了PU海绵的特性;使用NaOH或KOH作为碱催化剂,避免使用挥发性气体,安全环保,且操作方便、成本低;PU海绵经二氧化硅溶胶液浸胶处理后,二氧化硅溶胶液填充于PU海绵微孔内并通过缩聚反应形成具有纳米尺度三维多孔结构的二氧化硅固体微颗粒,该二氧化硅固体微颗粒相互堆砌,进一步形成亚微米及微米尺度的三维立体多孔结构,从而实现多尺度三维多孔结构的相互嵌入。湿态的PU海绵/硅气凝胶复合材料经乙醇置换和干燥处理后,所制备的PU海绵基硅气凝胶毡兼具良好的柔性、回弹性和极好的隔热保温性能。 本申请提供的技术方案带来的有益效果包括: 1、本申请提供的制备方法采用具有良好的柔性、回弹性和均匀致密气孔的PU海绵作为基材,以具有一个或多个柔性基团的硅氧烷为硅源前驱体,经溶胶、浸胶、凝胶、老化、置换、干燥处理后,不仅保留了海绵结构的完整性和良好的力学性能,也保证了硅气凝胶骨架的柔韧性,所制备的海绵基硅气凝胶毡具有良好的柔性效果; 2、本申请提供的制备方法将具有三维多孔结构的PU海绵与具有多层级三维多孔结构的硅气凝胶复合,所制备的海绵基硅气凝胶毡具有多尺度的微孔结构,且具有各种大小、形状的微孔之间相互搭接、连通,形成的孔径通路复杂多变,进一步限制了空气分子的运动传热,从而表现出极低的导热系数和优秀的隔热保温性能; 3、本申请提供的制备方法能有效阻止硅气凝胶固体粉末和颗粒的脱移、逸出,对其形成更好的束缚,有效改善掉粉问题; 4、利用本申请提供的制备方法所制得的硅气凝胶表面具有大量的疏水基团,无需疏水处理,即赋予PU海绵基硅气凝胶毡疏水效果,保证了材料在实际使用时隔热性能的稳定性,避免了因湿度和水导致硅气凝胶毡隔热性能下降的问题;同时,简化了工艺流程,降低了时间和经济成本; 5、利用本申请提供的制备方法制得的PU海绵基硅气凝胶毡遇明火时具有自熄效果,起到阻燃作用,避免了常规PU海绵在使用过程中潜在的因起火、易燃导致的安全问题。h. In some embodiments, in step S105, the drying method is normal pressure drying or supercritical drying. In some embodiments, the siloxane is any one or a mixture of two of dimethyldiethoxysilane, methyltriethoxysilane, and ethyltrimethoxysilane. Dimethyldiethoxysilane, methyltriethoxysilane, and ethyltrimethoxysilane have hydrophobic groups, and there is no need to modify the hydrophobicity of the composite material after dipping treatment when using these siloxanes. Sex, to avoid damage to the PU sponge. In some embodiments, the orthosilicate is any one or a mixture of methyl orthosilicate and ethyl orthosilicate. In some embodiments, the base catalyst is an aqueous solution of NaOH or KOH. Using NaOH or KOH as a catalyst has high safety, will not pollute the environment, and is easy to operate and low in cost. In the second aspect, the present application also provides the PU sponge-based silicon airgel felt prepared by the above-mentioned preparation method, the PU sponge-based silicon airgel felt is soft in texture, and the compression rebound rate in the thickness direction can reach 60-95% , less powder shedding, water contact angle of 110-140°, thermal conductivity of 0.023-0.012W/m·K. The PU sponge-based silica airgel felt prepared by this application can be applied to thermal insulation in non-high temperature scenarios (less than 120°C), such as buildings, industrial pipelines, etc., as well as thermal insulation and cold chain of refrigerators and vending machines. Transportation, medical cold preservation and other fields, at the same time, it can be used as an interlayer in clothing, outdoor products, etc., to achieve the effect of heat insulation or warmth. The preparation method provided by this application uses PU sponge with a fine and uniform open-pore structure as the base material. The PU sponge has a three-dimensional network skeleton composed of polygonal and polyhedral interweaving and stacking of polyurethane elastomer polymers and a large number of air-filled , Interpenetrating open micro pores, fine and uniform pores, small pore orientation, high porosity, good flexibility, resilience and heat insulation. In the process of preparing silica sol, the present application uses siloxane with hydrophobic groups as raw materials, without subsequent hydrophobic modification of the composite material after dipping treatment, and avoids the impact of hydrophobic modification reagents on PU sponge molecules. The destruction of the structure fully retains the characteristics of the PU sponge; using NaOH or KOH as the alkali catalyst to avoid the use of volatile gases is safe and environmentally friendly, and it is easy to operate and low in cost; after the PU sponge is dipped in silica sol, the two Silica sol is filled in the micropores of PU sponge and formed by polycondensation reaction to form silica solid microparticles with nanoscale three-dimensional porous structure. Porous structure, so as to realize the mutual embedding of multi-scale three-dimensional porous structure. After the wet PU sponge/silicon airgel composite material is replaced by ethanol and dried, the prepared PU sponge-based silicon airgel felt has good flexibility, resilience and excellent thermal insulation performance. The beneficial effects brought by the technical solution provided by this application include: 1. The preparation method provided by this application uses a PU sponge with good flexibility, resilience and uniform and dense pores as a substrate, and the PU sponge with one or more flexible groups Siloxane is the silicon source precursor. After sol, dipping, gelling, aging, replacement, and drying treatments, it not only retains the integrity of the sponge structure and good mechanical properties, but also ensures the flexibility of the silicon airgel skeleton. 2. The preparation method provided by this application combines the PU sponge with a three-dimensional porous structure with the silicon airgel with a multi-level three-dimensional porous structure, and the prepared The sponge-based silica airgel felt has a multi-scale microporous structure, and the micropores of various sizes and shapes overlap and communicate with each other, forming complex and changeable pore paths, which further restricts the movement and transmission of air molecules. 3. The preparation method provided by this application can effectively prevent the removal and escape of silicon airgel solid powder and particles, and form a better 4. The surface of the silicon airgel prepared by the preparation method provided by this application has a large number of hydrophobic groups, and no hydrophobic treatment is required, that is, the PU sponge-based silicon airgel felt is given a hydrophobic effect, It ensures the stability of the heat insulation performance of the material in actual use, and avoids the problem of the heat insulation performance of the silicon airgel felt being reduced due to humidity and water; at the same time, it simplifies the process and reduces time and economic costs; 5. Utilization The PU sponge-based silicon airgel mat prepared by the preparation method provided by the application has a self-extinguishing effect when exposed to an open flame, and has a flame-retardant effect, avoiding potential safety hazards caused by fire and flammability of conventional PU sponges during use. question.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。 图1为本申请实施例提供的PU海绵基硅气凝胶毡的制备方法的流程示意图; 图2为本申请实施例1制得的PU海绵基硅气凝胶毡的实物图; 图3为本申请实施例1制得的PU海绵基硅气凝胶毡的弯折图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present application. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort. Fig. 1 is a schematic flow chart of the preparation method of the PU sponge-based silicon airgel felt provided in the embodiment of the present application; Fig. 2 is a physical diagram of the PU sponge-based silicon airgel felt prepared in Example 1 of the present application; Fig. 3 is The bending diagram of the PU sponge-based silicon airgel felt prepared in Example 1 of the present application.
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。本申请实施例提供了一种PU海绵基硅气凝胶毡的制备方法,其能解决现有技术中纤维基硅气凝胶毡柔性差、掉粉严重、制备过程复杂的问题。 图1是本申请提供的PU海绵基硅气凝胶毡的制备方法的流程示意图,参考图1,本申请提供的制备方法包括以下步骤: 步骤S101,取硅氧烷、正硅酸酯、水和无水乙醇混合均匀,之后依次加入醋酸和十六烷基三甲基溴化铵(CTAB),并在50~60℃水浴条件下搅拌10~16h,得到硅源水解液;步骤S102,向硅源水解液中加入碱催化剂,以500~1500rpm的转速搅拌5~15min,得到二氧化硅溶胶液;步骤S103,将PU海绵浸入在二氧化硅溶胶液中进行浸胶处理,浸胶时间1~6h,并在常温条件下静止老化6~24h,得到PU海绵/硅气凝胶复合材料; 步骤S104,将PU海绵/硅气凝胶复合材料置于无水乙醇中进行1~3次溶剂置换,每次置换的时间为4~12h,充分除去PU海绵/气凝胶复合材料中的水分; 步骤S105,将PU海绵/硅气凝胶复合材料进行常压或超临界干燥,即得到PU海绵基硅气凝胶毡。 下面结合实施例对本申请提供的PU海绵基硅气凝胶毡及其制备方法进行详细说明。 实施例1: 实施例1提供了一种PU海绵基硅气凝胶毡的制备方法,包括以下步骤: (1)取10mol甲基三乙氧基硅烷、0.4mol正硅酸甲酯、80mol水和50mol无水乙醇混合均匀,之后依次加入0.05mol醋酸和0.02mol十六烷基三甲基溴化铵(CTAB),并在50℃水浴条件下搅拌15h,得到硅源水解液; (2)向硅源水解液中加入0.10mol氢氧化钠,以800rpm的转速充分搅拌10min,得到二氧化硅溶胶液; (3)将密度为50kg/m3、厚度为10mm的多孔PU海绵毡体在二氧化硅溶胶液中浸胶6h,并在24In order to make the purposes, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments It is a part of the embodiments of this application, but not all of them. Based on the embodiments in the present application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present application. The embodiment of the present application provides a preparation method of PU sponge-based silicon airgel felt, which can solve the problems of poor flexibility, serious powder dropping and complicated preparation process in the prior art of fiber-based silicon airgel felt. Fig. 1 is the schematic flow chart of the preparation method of the PU sponge-based silicon airgel mat provided by the application, with reference to Fig. 1, the preparation method provided by the application comprises the following steps: Step S101, take siloxane, orthosilicate, water Mix with absolute ethanol evenly, then add acetic acid and cetyltrimethylammonium bromide (CTAB) in sequence, and stir in a water bath at 50-60°C for 10-16 hours to obtain a silicon source hydrolyzate; step S102, add Add an alkali catalyst to the silicon source hydrolyzate, and stir at a speed of 500-1500rpm for 5-15 minutes to obtain a silica sol solution; step S103, immerse the PU sponge in the silica sol solution for dipping treatment, and the dipping time is 1 ~6h, and static aging at room temperature for 6~24h to obtain the PU sponge/silicon airgel composite material; Step S104, placing the PU sponge/silicon airgel composite material in absolute ethanol for 1 to 3 times of solvent Replacement, the time for each replacement is 4-12h, fully remove the moisture in the PU sponge/airgel composite material; Step S105, carry out normal pressure or supercritical drying of the PU sponge/airgel composite material to obtain PU Sponge-based silicon airgel felt. The PU sponge-based silicon airgel felt provided by the present application and its preparation method are described in detail below in conjunction with the examples. Example 1: Example 1 provides a preparation method of PU sponge-based silicon airgel felt, which includes the following steps: (1) Take 10mol methyltriethoxysilane, 0.4mol methyl orthosilicate, 80mol water Mix well with 50mol absolute ethanol, then add 0.05mol acetic acid and 0.02mol cetyltrimethylammonium bromide (CTAB) in sequence, and stir for 15h in a water bath at 50°C to obtain a silicon source hydrolyzate; (2) Add 0.10 mol of sodium hydroxide to the silicon source hydrolyzate, and fully stir at 800rpm for 10 minutes to obtain a silica sol solution; Dip in the silica sol solution for 6h, and in 24
℃条件下静止老化12h,得到PU海绵/硅气凝胶复合材料; (4)将PU海绵/硅气凝胶复合材料置于无水乙醇中进行2次溶剂置换,每次置换的时间为8h,充分除去PU海绵/硅气凝胶复合材料中的水分; (5)将PU海绵/硅气凝胶复合材料进行超临界干燥,即得到PU海绵基硅气凝胶毡。 实施例1制得的PU海绵基硅气凝胶毡的实物图见图2。该PU海绵基硅气凝胶毡质地柔软,厚度方向的压缩回弹率达80%,掉粉少,水接触角120°,导热系数为0.017W/m·K。 将实施例1制得的PU海绵基硅气凝胶毡进行弯折,见图3,从图3可以看出,该PU海绵基硅气凝胶毡表现出良好的柔性。 对PU海绵和实施例1制得的PU海绵基硅气凝胶毡进行自熄试验,具体过程为:利用打火机分别点燃PU海绵和PU海绵基硅气凝胶毡,PU海绵起火快、火焰大、火势蔓延迅速、直至整块PU海绵完全燃烧;而PU海绵基硅气凝胶毡点燃速度慢,火焰小,明火持续3~5秒便熄灭,火势无法蔓延,说明本申请制得的PU海绵基硅气凝胶毡具有良好的阻燃自熄效果。 实施例2: 实施例2提供了一种PU海绵基硅气凝胶毡的制备方法,包括以下步骤: (1)取6mol甲基三乙氧基硅烷、0.1mol正硅酸乙酯、100mol水和40mol无水乙醇混合均匀,之后依次加入0.03mol醋酸和0.03mol十六烷基三甲基溴化铵(CTAB),并在50℃水浴条件下搅拌12h,得到硅源水解液; (2)向硅源水解液中加入0.15mol氢氧化钠,以1000rpm的转速充分搅拌15min,得到二氧化硅溶胶液; (3)将密度为40kg/m3、厚度为10mm的多孔PU海绵毡体在二氧化硅溶胶液中浸胶2h,并在24℃条件下静止老化24h,得到PU海绵/硅气凝胶复合材料; (4)将PU海绵/硅气凝胶复合材料置于无水乙醇中进行3次溶剂置换,每次置换的时间为12h,充分除去PU海绵/硅气凝胶复合材料中的水分; (5)将PU海绵/硅气凝胶复合材料进行超临界干燥,即得到PU海绵基硅气凝胶毡。 实施例2制得的PU海绵基硅气凝胶毡质地柔软,厚度方向的压缩回弹率达85%,掉粉少,水接触角112°,导热系数为0.019W/m·K。 实施例3: 实施例3提供了一种PU海绵基硅气凝胶毡的制备方法,包括以下步骤: (1)取15mol二甲基二乙氧基硅烷、0.6mol正硅酸甲酯、120mol水和100mol无水乙醇混合均匀,之后依次加入0.12mol醋酸和0.045mol十六烷基三甲基溴化铵(CTAB),并在55℃水浴条件下搅拌12h,得到硅源水解液; (2)向硅源水解液中加入0.15mol氢氧化钠,以1000rpm的转速充分搅拌10min,得到二氧化硅溶胶液; (3)将密度为35kg/m3、厚度为10mm的多孔PU海绵毡体在二氧化硅溶胶液中浸胶6h,并在24℃条件下静止老化12h,得到PU海绵/硅气凝胶复合材料; (4)将PU海绵/硅气凝胶复合材料置于无水乙醇中进行2次溶剂置换,每次置换的时间为10h,充分除去PU海绵/硅气凝胶复合材料中的水分; (5)将PU海绵/硅气凝胶复合材料进行超临界干燥,即得到PU海绵基硅气凝胶毡。 实施例3制得的PU海绵基硅气凝胶毡质地柔软,厚度方向的压缩回弹率为70%,掉粉少,水接触角132°,导热系数为0.015W/m·K。 实施例4: 实施例4提供了一种PU海绵基硅气凝胶毡的制备方法,包括以下步骤: (1)取24mol乙基三甲氧基硅烷、0.6mol正硅酸甲酯、270mol水和150mol无水乙醇混合均匀,之后依次加入0.144mol醋酸和0.072mol十六烷基三甲基溴化铵(CTAB),并在50℃水浴条件下搅拌12h,得到硅源水解液; (2)向硅源水解液中加入0.24mol氢氧化钠,以800rpm的转速充分搅拌10min,得到二氧化硅溶胶液; (3)将密度为50kg/m3、厚度为8mm的多孔PU海绵毡体在二氧化硅溶胶液中浸胶6h,并在24℃条件下静止老化12h,得到PU海绵/硅气凝胶复合材料; (4)将PU海绵/硅气凝胶复合材料置于无水乙醇中进行2次溶剂置换,每次置换的时间为8h,充分除去PU海绵/硅气凝胶复合材料中的水分; (5)将PU海绵/硅气凝胶复合材料进行超临界干燥,即得到PU海绵基硅气凝胶毡。 实施例4制得的PU海绵基硅气凝胶毡质地柔软,厚度方向的压缩回弹率达83%,掉粉少,水接触角135°,导热系数为0.014W/m·K。 在本说明书的描述中,参考术语“一个实施例/方式”、“一些实施例/方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例/方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例/方式或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例/方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例/方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例/方式或示例以及不同实施例/方式或示例的特征进行结合和组合。 需要说明的是,在本申请中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。在本申请中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的规定。 以上所述仅是本申请的,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。Static aging at ℃ for 12 hours to obtain the PU sponge/silicon airgel composite material; (4) Place the PU sponge/silicon airgel composite material in absolute ethanol for 2 solvent replacements, each replacement time is 8 hours , Fully remove the moisture in the PU sponge/silica airgel composite material; (5) Supercritically dry the PU sponge/silica airgel composite material to obtain the PU sponge-based silicon airgel felt. The physical picture of the PU sponge-based silicon airgel felt made in Example 1 is shown in Figure 2. The PU sponge-based silicon airgel felt has a soft texture, a compression rebound rate of 80% in the thickness direction, less powder loss, a water contact angle of 120°, and a thermal conductivity of 0.017W/m·K. The PU sponge-based silicon airgel felt prepared in Example 1 was bent, as shown in FIG. 3 , and it can be seen from FIG. 3 that the PU sponge-based silicon airgel felt showed good flexibility. The PU sponge and the PU sponge-based silicon airgel felt prepared in Example 1 are subjected to self-extinguishing tests. The specific process is as follows: use a lighter to ignite the PU sponge and the PU sponge-based silicon airgel felt respectively. The PU sponge catches fire quickly and has a large flame. , The fire spreads rapidly until the whole piece of PU sponge is completely burned; while the PU sponge-based silicon airgel felt has a slow ignition speed, a small flame, and the open flame lasts for 3 to 5 seconds and then goes out, and the fire cannot spread, which shows that the PU sponge made by this application Silica-based airgel felt has good flame retardant and self-extinguishing effect. Example 2: Example 2 provides a preparation method of PU sponge-based silicon airgel felt, including the following steps: (1) Take 6 mol of methyltriethoxysilane, 0.1 mol of ethyl orthosilicate, 100 mol of water Mix well with 40mol absolute ethanol, then add 0.03mol acetic acid and 0.03mol cetyltrimethylammonium bromide (CTAB) in sequence, and stir for 12h in a water bath at 50°C to obtain a silicon source hydrolyzate; (2) Add 0.15mol sodium hydroxide to the silicon source hydrolyzate, and stir at a speed of 1000rpm for 15 minutes to obtain a silica sol; Soak in the silica sol solution for 2 hours, and statically age at 24°C for 24 hours to obtain the PU sponge/silica airgel composite material; (4) Put the PU sponge/silica airgel composite material in absolute ethanol for 3 The second solvent replacement, each replacement time is 12h, fully remove the moisture in the PU sponge/silicon airgel composite material; (5) Supercritically dry the PU sponge/silicon airgel composite material to obtain the PU sponge base Silicone airgel felt. The PU sponge-based silicon airgel felt produced in Example 2 is soft in texture, has a compression rebound rate of 85% in the thickness direction, less powder loss, a water contact angle of 112°, and a thermal conductivity of 0.019W/m·K. Example 3: Example 3 provides a preparation method of PU sponge-based silicon airgel felt, including the following steps: (1) Take 15mol dimethyldiethoxysilane, 0.6mol methyl orthosilicate, 120mol Mix water and 100mol absolute ethanol evenly, then add 0.12mol acetic acid and 0.045mol cetyltrimethylammonium bromide (CTAB) in sequence, and stir for 12h in a water bath at 55°C to obtain a silicon source hydrolyzate; (2 ) Add 0.15mol sodium hydroxide to the silicon source hydrolyzate, and stir fully at a speed of 1000rpm for 10min to obtain a silica sol; Soak in silica sol solution for 6 hours, and statically age at 24°C for 12 hours to obtain PU sponge/silica airgel composite material; (4) Put PU sponge/silica airgel composite material in absolute ethanol for 2 times of solvent replacement, each replacement time is 10h, fully remove the moisture in the PU sponge/silicon airgel composite material; (5) Supercritically dry the PU sponge/silicon airgel composite material to obtain the PU sponge Silica-based airgel felt. The PU sponge-based silicon airgel felt obtained in Example 3 is soft in texture, has a compression rebound rate of 70% in the thickness direction, less powder shedding, a water contact angle of 132°, and a thermal conductivity of 0.015W/m·K. Example 4: Example 4 provides a preparation method of PU sponge-based silicon airgel felt, including the following steps: (1) Take 24mol ethyltrimethoxysilane, 0.6mol methyl orthosilicate, 270mol water and Mix 150mol of absolute ethanol evenly, then add 0.144mol of acetic acid and 0.072mol of cetyltrimethylammonium bromide (CTAB) in sequence, and stir for 12h in a water bath at 50°C to obtain a silicon source hydrolyzate; (2) add Add 0.24mol sodium hydroxide to the silicon source hydrolyzate, and stir at 800rpm for 10 minutes to obtain a silica sol; (3) Put a porous PU sponge felt with a density of 50kg/m3 and a thickness of 8mm on the silica Soak in the sol solution for 6 hours, and statically age at 24°C for 12 hours to obtain the PU sponge/silicon airgel composite material; (4) Put the PU sponge/silicon airgel composite material in absolute ethanol for 2 times Solvent replacement, each replacement time is 8h, fully remove the moisture in the PU sponge/silicon airgel composite material; (5) Supercritically dry the PU sponge/silicon airgel composite material to obtain PU sponge-based silicon Airgel felt. The PU sponge-based silicon airgel felt obtained in Example 4 is soft in texture, has a compression rebound rate of 83% in the thickness direction, less powder loss, a water contact angle of 135°, and a thermal conductivity of 0.014W/m·K. In the description of this specification, descriptions referring to the terms "one embodiment/mode", "some embodiments/modes", "examples", "specific examples" or "some examples" mean that the embodiments/modes or The specific features, structures, materials or features described in the examples are included in at least one embodiment/mode or example of the present application. In this specification, the schematic representations of the above terms do not necessarily refer to the same embodiment/mode or example. Moreover, the described specific features, structures, materials or characteristics may be combined in any one or more embodiments/modes or examples in an appropriate manner. In addition, those skilled in the art may combine and combine different embodiments/modes or examples and features of different embodiments/modes or examples described in this specification without conflicting with each other. It should be noted that in this application, relative terms such as "first" and "second" are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply There is no such actual relationship or order between these entities or operations. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or apparatus. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element. In the present application, "plurality" means at least two, such as two, three, etc., unless otherwise specified. The above description is only for the present application, so that those skilled in the art can understand or implement the present application. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the application. Therefore, the present application will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features claimed herein.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310056919.1A CN116199522A (en) | 2023-01-17 | 2023-01-17 | PU sponge-based silicon aerogel felt and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310056919.1A CN116199522A (en) | 2023-01-17 | 2023-01-17 | PU sponge-based silicon aerogel felt and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116199522A true CN116199522A (en) | 2023-06-02 |
Family
ID=86518440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310056919.1A Pending CN116199522A (en) | 2023-01-17 | 2023-01-17 | PU sponge-based silicon aerogel felt and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116199522A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117510181A (en) * | 2023-11-07 | 2024-02-06 | 武汉中科先进材料科技有限公司 | Super-hydrophobic and enhanced silicon dioxide aerogel felt and preparation method thereof |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104475059A (en) * | 2014-11-28 | 2015-04-01 | 中国科学技术大学先进技术研究院 | Preparation method of sponge-silicon aerogel composite material |
CN104556969A (en) * | 2014-12-30 | 2015-04-29 | 纳诺科技有限公司 | A preparation method of hydrophobic silica airgel thermal insulation composite material |
WO2018049965A1 (en) * | 2016-09-14 | 2018-03-22 | 周水林 | Method for quickly preparing aerogel by using microemulsion as precursor |
CN108585762A (en) * | 2018-05-30 | 2018-09-28 | 巩义市泛锐熠辉复合材料有限公司 | The preparation method of heat-insulation and heat-preservation aerosil felt |
CN108996985A (en) * | 2018-08-07 | 2018-12-14 | 巩义市泛锐熠辉复合材料有限公司 | A kind of preparation method of aerogel blanket heat-insulating heat-preserving material |
CN109400105A (en) * | 2018-09-26 | 2019-03-01 | 巩义市泛锐熠辉复合材料有限公司 | A kind of preparation method of anti-picking aerogel blanket |
CN110127705A (en) * | 2019-05-14 | 2019-08-16 | 杭州师范大学 | A kind of preparation method of graphene oxide modified flame retardant silica airgel |
EP3653579A1 (en) * | 2018-11-16 | 2020-05-20 | Fundación Tecnalia Research & Innovation | Silica aerogel reinforced with cellulosic sponge and process for its preparation |
CN111848114A (en) * | 2020-07-31 | 2020-10-30 | 航天海鹰(镇江)特种材料有限公司 | Super heat-insulating aerogel composite material and preparation process thereof |
CN113583289A (en) * | 2021-08-16 | 2021-11-02 | 天津泓锦程生物科技有限公司 | Plant polysaccharide heat-preservation and heat-insulation aerogel material and preparation method thereof |
CN114394600A (en) * | 2022-01-27 | 2022-04-26 | 华南理工大学 | A kind of hydrophobic and lipophilic flexible silica aerogel and its preparation method and application |
CN115231898A (en) * | 2022-09-21 | 2022-10-25 | 北京石墨烯技术研究院有限公司 | Aerogel composite material and preparation method and application thereof |
-
2023
- 2023-01-17 CN CN202310056919.1A patent/CN116199522A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104475059A (en) * | 2014-11-28 | 2015-04-01 | 中国科学技术大学先进技术研究院 | Preparation method of sponge-silicon aerogel composite material |
CN104556969A (en) * | 2014-12-30 | 2015-04-29 | 纳诺科技有限公司 | A preparation method of hydrophobic silica airgel thermal insulation composite material |
WO2018049965A1 (en) * | 2016-09-14 | 2018-03-22 | 周水林 | Method for quickly preparing aerogel by using microemulsion as precursor |
CN108585762A (en) * | 2018-05-30 | 2018-09-28 | 巩义市泛锐熠辉复合材料有限公司 | The preparation method of heat-insulation and heat-preservation aerosil felt |
CN108996985A (en) * | 2018-08-07 | 2018-12-14 | 巩义市泛锐熠辉复合材料有限公司 | A kind of preparation method of aerogel blanket heat-insulating heat-preserving material |
CN109400105A (en) * | 2018-09-26 | 2019-03-01 | 巩义市泛锐熠辉复合材料有限公司 | A kind of preparation method of anti-picking aerogel blanket |
EP3653579A1 (en) * | 2018-11-16 | 2020-05-20 | Fundación Tecnalia Research & Innovation | Silica aerogel reinforced with cellulosic sponge and process for its preparation |
CN110127705A (en) * | 2019-05-14 | 2019-08-16 | 杭州师范大学 | A kind of preparation method of graphene oxide modified flame retardant silica airgel |
CN111848114A (en) * | 2020-07-31 | 2020-10-30 | 航天海鹰(镇江)特种材料有限公司 | Super heat-insulating aerogel composite material and preparation process thereof |
CN113583289A (en) * | 2021-08-16 | 2021-11-02 | 天津泓锦程生物科技有限公司 | Plant polysaccharide heat-preservation and heat-insulation aerogel material and preparation method thereof |
CN114394600A (en) * | 2022-01-27 | 2022-04-26 | 华南理工大学 | A kind of hydrophobic and lipophilic flexible silica aerogel and its preparation method and application |
CN115231898A (en) * | 2022-09-21 | 2022-10-25 | 北京石墨烯技术研究院有限公司 | Aerogel composite material and preparation method and application thereof |
Non-Patent Citations (2)
Title |
---|
王雪枫;黄雪莉;王毅;: "乙醇胺为碱性催化剂对硅气凝胶性能的影响", 无机盐工业, no. 09 * |
蔡龙;浦群;曲康;单国荣;: "酸碱催化剂浓度对柔性硅气凝胶性能和结构的影响", 化工学报, no. 02 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117510181A (en) * | 2023-11-07 | 2024-02-06 | 武汉中科先进材料科技有限公司 | Super-hydrophobic and enhanced silicon dioxide aerogel felt and preparation method thereof |
CN117510181B (en) * | 2023-11-07 | 2024-04-16 | 武汉中科先进材料科技有限公司 | Super-hydrophobic and enhanced silicon dioxide aerogel felt and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10669392B2 (en) | Method of preparing aerogels/nonwoven composites fireproof and heat-insulating materials | |
CN110127705A (en) | A kind of preparation method of graphene oxide modified flame retardant silica airgel | |
WO2018211906A1 (en) | Heat-insulating material and heat-insulating structure employing same | |
CN115259828B (en) | A method for preparing carbon fiber and carbon nanotube composite silicon aerogel by freeze-drying | |
KR102475767B1 (en) | Method of preparing for aerogel blanket | |
CN108290745A (en) | Airgel felt with low dust and high heat insulation and preparation method thereof | |
PT107101A (en) | FLEXIBLE HYDROFOVIC AEROGEL PANELS REINFORCED WITH FIBER FELT | |
CN104556969A (en) | A preparation method of hydrophobic silica airgel thermal insulation composite material | |
CN101973752A (en) | Glass fiber reinforced silicon dioxide aerogel composite material and preparation method thereof | |
CN115010140B (en) | A kind of preparation method of superhydrophobic silica aerogel | |
CN108179628A (en) | The preparation method and aeroge fiber composite felt of aeroge fiber composite felt and application | |
CN112934128A (en) | Core-shell structure organic-inorganic hybrid nanofiber aerogel elastomer and preparation and application thereof | |
CN104119060B (en) | Fiber is cross-linked the preparation method of aerogel composite | |
CN109851380A (en) | A kind of preparation method of aerosil functional material | |
CN116261555A (en) | Method of making aerogel composite and aerogel composite | |
CN114133209B (en) | Preparation method of hydrophobic fiber composite silicon aerogel material | |
CN116199522A (en) | PU sponge-based silicon aerogel felt and preparation method thereof | |
CN115449119B (en) | Freeze-drying preparation method of chitosan-silicon dioxide hybrid aerogel | |
JP7530419B2 (en) | Aerogel Blanket | |
CN108859282A (en) | New-energy automobile lithium-ion-power cell refuses the plate and preparation method thereof of battery fluid and high temperature resistant heat insulation with dredging | |
CN106565198B (en) | A kind of method that constant pressure and dry prepares flexible aerosil | |
CN215974987U (en) | Aerogel articles | |
CN111233428B (en) | Preparation method of elastic MSQ aerogel/glass fiber composite material | |
CN110452480B (en) | A kind of preparation method of ultra-light adiabatic flexible airgel | |
TW202138333A (en) | Method for producing a high temperature resistant, heat insulating, and fireproof composite glue composed of an aerogel and an inorganic fiber and the application of the related product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230602 |
|
RJ01 | Rejection of invention patent application after publication |