CN116192679A - Automatic measuring system and measuring method for measuring head of numerical control system based on gateway - Google Patents

Automatic measuring system and measuring method for measuring head of numerical control system based on gateway Download PDF

Info

Publication number
CN116192679A
CN116192679A CN202211444496.2A CN202211444496A CN116192679A CN 116192679 A CN116192679 A CN 116192679A CN 202211444496 A CN202211444496 A CN 202211444496A CN 116192679 A CN116192679 A CN 116192679A
Authority
CN
China
Prior art keywords
data
measurement
gateway
measuring
numerical control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211444496.2A
Other languages
Chinese (zh)
Other versions
CN116192679B (en
Inventor
龚隆有
罗胜阳
明棚
邹泓兵
张帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Naishite Technology Co ltd
Original Assignee
Chengdu Naishite Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Naishite Technology Co ltd filed Critical Chengdu Naishite Technology Co ltd
Priority to CN202211444496.2A priority Critical patent/CN116192679B/en
Publication of CN116192679A publication Critical patent/CN116192679A/en
Application granted granted Critical
Publication of CN116192679B publication Critical patent/CN116192679B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Numerical Control (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

The invention discloses a gateway-based automatic measuring system and a measuring method for a measuring head of a numerical control system, wherein the method comprises the following steps: setting parameters, namely setting a measurement operation identification parameter to be 1; the measuring head of the numerical control system starts to measure a first point to be measured, and after measurement is completed, the effective identification parameter of the measurement point completion data is set to be 1; setting the effective identification parameter of the measurement point completion data to be 0 after the time delay T1; sequentially and circularly measuring all to-be-measured points until the whole workpiece is measured, and setting a measurement operation identification parameter to be 0; the gateway collects data once every interval time T2 and uploads the data to the cloud platform; and the cloud platform extracts data with the measurement operation identification parameter and the measurement point completion data effective identification parameter being 1 from the effective data, and displays the measurement result after data analysis. The remarkable effects are as follows: and the analysis and display efficiency of the numerical control system measurement data is effectively improved.

Description

Automatic measuring system and measuring method for measuring head of numerical control system based on gateway
Technical Field
The invention relates to the technical field of nitrogen spring machining equipment, in particular to an automatic measuring method for a measuring head of a numerical control system based on a gateway.
Background
The industrial Internet is data interconnection, and the core of the industrial Internet is data, including data acquisition, data transmission and data interconnection. However, after the existing numerical control system uses the numerical control measuring head to measure the workpiece, measurement data is transmitted into the numerical control system, and the measured data is copied out mainly through the USB flash disk at present to carry out later analysis and display, so that the efficiency is lower. In addition, due to the diversity of manufacturing resources and the diversity of interaction modes of respective protocols, data in actual production is complex and difficult to collect, new and old equipment is used in a mixed mode, and most of the equipment does not have internet conditions, not to mention data collection. Thus, the acquisition of industrial/machine data is quite difficult and expensive. Meanwhile, the types of equipment used in different industries are different, each industry also has respective industry characteristics and standards, various protocols are inserted in the equipment, and a communication mechanism is a five-in-eight door, so that a plurality of difficulties are brought to front-end data acquisition and equipment monitoring.
Disclosure of Invention
Aiming at the defects of the prior art, the invention aims to provide a gateway-based automatic measuring system and a measuring method for a measuring head of a numerical control system, which can efficiently realize acquisition, analysis and real-time display of data of different manufacturing resources of different communication protocols.
In order to achieve the above purpose, the invention adopts the following technical scheme:
the gateway-based automatic measuring method for the measuring head of the numerical control system is characterized by comprising the following steps of:
step 1, setting parameters, namely setting a measurement operation identification parameter to be 1;
step 2, a measuring head of the numerical control system starts to measure a first point to be measured, and after measurement is completed, the effective identification parameter of the measurement point completion data is set to be 1;
step 3, delaying T1, and setting the effective identification parameter of the measurement point completion data to be 0;
step 4, sequentially and circularly measuring all to-be-measured points until the whole workpiece is measured, and setting a measurement operation identification parameter to be 0;
step 5, the gateway collects data once every interval time T2 and uploads the data to the cloud platform;
and 6, the cloud platform extracts data with the measurement operation identification parameters and the measurement point completion data effective identification parameters being 1 from the effective data, and displays the measurement result after data analysis.
Further, the value of the delay T1 is 0.5-2 s.
Further, the interval time T2 has a value of 100 to 500ms.
Further, the data collected by the gateway includes coordinates and errors.
Further, the measurement result in the step 6 is displayed in real time through the web platform.
The application also provides a gateway-based automatic measuring system for measuring heads of a numerical control system, which comprises a numerical control system, a gateway, a cloud platform and a display platform, wherein:
the numerical control system is used for measuring data of the workpiece;
in the data measurement process, setting a measurement operation identification parameter as 1; the measuring head of the numerical control system starts to measure a first point to be measured, and after measurement is completed, the effective identification parameter of the measurement point completion data is set to be 1; delaying T1, and setting the effective identification parameter of the measurement point completion data to be 0; sequentially and circularly measuring all to-be-measured points until the whole workpiece is measured, and setting a measurement operation identification parameter to be 0;
the gateway is used for collecting data once every interval time T2 and uploading the data to the cloud platform;
the cloud platform is used for extracting data with the measurement operation identification parameter and the measurement point completion data effective identification parameter being 1 from the effective data and analyzing the data;
the display platform is used for displaying the measurement results.
Further, the value of the delay T1 is 0.5-2 s.
Further, the interval time T2 has a value of 100 to 500ms.
Further, the data collected by the gateway includes coordinates and errors.
Further, the measurement results are displayed in real time through the web platform.
The invention has the remarkable effects that:
1. the method has the advantages that the mode that the numerical control measuring head is matched with the gateway data acquisition is adopted, data measured by the numerical control system are acquired in real time at certain intervals through the gateway, the data with the measured operation identification parameters and the measured point completion data effective identification parameters being 1 in the effective data are extracted by the cloud platform, the measured results are displayed in real time after data analysis is carried out, and compared with the traditional technology, the data analysis and display efficiency is effectively improved.
2. The gateway has multiple interfaces and multiple protocols, so that the gateway can be used for multiple purposes and has wide applicability; the protocol interfaces are more, so that the method is suitable for occasions with complex requirements for access interfaces; the state indication module comprises a plurality of indication lamps for respectively indicating a plurality of states, so that the use and state observation of a user are facilitated; the data conversion module is used for integrating various data sources, the structure is simple and complete, and the application range of the gateway is improved.
Drawings
FIG. 1 is a flow chart of the method of the present invention;
FIG. 2 is a system topology of the present invention;
fig. 3 is a functional block diagram of a gateway;
FIG. 4 is a schematic circuit diagram of a first power module;
FIG. 5 is a circuit schematic of a second circuit module;
FIG. 6 is a schematic circuit diagram of a reset module;
FIG. 7 is a schematic circuit diagram of a data conversion module;
fig. 8 is a circuit schematic of a memory module.
Detailed Description
The following describes the embodiments and working principles of the present invention in further detail with reference to the drawings.
As shown in fig. 1, a gateway-based automatic measuring method for measuring a measuring head of a numerical control system comprises the following specific steps:
step 1, setting parameters, namely setting a measurement operation identification parameter to be 1;
step 2, a measuring head of the numerical control system starts to measure a first point to be measured, and after measurement is completed, the effective identification parameter of the measurement point completion data is set to be 1;
step 3, delay T1 (value 1s in this example) is set to be 0 as the effective identification parameter of the measurement point completion data;
step 4, sequentially and circularly measuring all to-be-measured points until the whole workpiece is measured, and setting a measurement operation identification parameter to be 0;
step 5, the gateway collects data once every interval time T2 (the value of 300ms in the example) and uploads the data to the cloud platform, wherein the data comprises coordinates and errors;
and 6, the cloud platform extracts data with the measurement operation identification parameters and the measurement point completion data effective identification parameters being 1 from the effective data, and displays the measurement results through the web in real time after data analysis.
Referring to fig. 2, the embodiment further provides a gateway-based automatic measuring system for measuring a measuring head of a numerical control system, which comprises a numerical control system, a gateway, a cloud platform and a display platform, wherein:
the numerical control system is used for measuring the data of the workpiece;
in the data measurement process, setting a measurement operation identification parameter as 1; the measuring head of the numerical control system starts to measure a first point to be measured, and after measurement is completed, the effective identification parameter of the measurement point completion data is set to be 1; delaying T1, and setting the effective identification parameter of the measurement point completion data to be 0; sequentially and circularly measuring all to-be-measured points until the whole workpiece is measured, and setting a measurement operation identification parameter to be 0;
the gateway is used for collecting data once every interval time T2 and uploading the data to the cloud platform;
the cloud platform is used for extracting data with the measurement operation identification parameter and the measurement point completion data effective identification parameter being 1 from the effective data and analyzing the data;
the display platform is used for displaying the measurement results.
In the system, preferably, the value of the delay T1 is 0.5-2 s; the value of the interval time T2 is 100-500 ms; the data collected by the gateway comprises coordinates and errors; the measurement results are displayed in real time through a web platform; the gateway comprises a data relay module, a first power module and a second power module, wherein the data relay module is respectively connected with a network port module, a serial port communication module, a data conversion module, a state indication module and a reset module, the data conversion module is also connected with a wireless communication module, a storage module and a USB serial port conversion module, the USB serial port conversion module is also connected with a debugging serial port module through an isolation module, the first power module is used for providing a 5V working power supply for the USB serial port conversion module, the storage module and the isolation module, and the second power module is used for providing a 3.3V working power supply for the network port module, the serial port communication module, the data conversion module, the state indication module, the reset module and the debugging serial port module.
In the example, the data relay module is a TR7628AD routing module with a WIFI function; the network port module comprises 2 lan network ports and 1 and wan network ports; the serial port communication module adopts an RS232 serial port module and an RS485 serial port module; the data conversion module adopts a GL850G hub module, and the storage module comprises a USB module and an SD card module (shown in figure 8); the communication module adopts a 4G or 5G communication module; the state indicating module comprises a power supply indicating lamp, a use state indicating lamp, a wireless communication state indicating lamp and a network port state indicating lamp.
Referring to fig. 4, the first power module includes a voltage input end of the buck chip U1 connected to the positive electrode of the dc power supply through a zener diode D1, a voltage output end of the buck chip U1 connected to the inductor L1 and then connected to the first working voltage output end, the first working voltage output end outputs a 5V working power supply, the voltage input end of the buck chip U1 is further connected in series with a resistor R6 and then connected to an enable end thereof, the enable end of the buck chip U1 is further connected to a resistor R9 and then grounded, the voltage input end of the buck chip U1 is further connected to one end of a resistor R7 through a parallel bidirectional diode D2, a capacitor C3, a capacitor C4 and a capacitor C5, a common end of the inductor L1 and the first working voltage output end is connected to the feedback end of the buck chip U1 through a parallel capacitor C11 and a resistor R8, the feedback end of the buck chip U1 is further grounded through a resistor R10, and the common end of the inductor L1 and the first working voltage output end is further grounded through parallel capacitors C6, C7, C8 and C10.
Referring to fig. 5, the second power module includes a buck chip U2, a voltage input end of the buck chip U2 is connected to an anode of the dc power supply, a voltage output end of the buck chip U2 is connected to an inductor L2 and then connected to a second working voltage output end, the second working voltage output end outputs a 3.3V working power supply, the voltage input end of the buck chip U2 is further grounded via parallel capacitors C13, C14 and C15, the voltage input end of the buck chip U2 is connected in series with a resistor R11 and then connected to an enabling end thereof, the enabling end of the buck chip U2 is further connected in series with a resistor R14 and then grounded, a common end of the inductor L2 and the second working voltage output end is connected to one end of a resistor R12, the other end of the resistor R12 is connected to a feedback end of the buck chip U2 via a resistor R13 and then grounded via a resistor R15, and a common end of the inductor L2 and the second working voltage output end is further connected to ground via parallel capacitors C16, C17, C18 and C20.
As shown in fig. 6, the reset module includes a reset switch, a first connection terminal and a second connection terminal of the reset switch are connected to the first power module through a resistor R5, the first connection terminal and the second connection terminal of the reset switch are connected to a reset signal input end of the data relay module and one end of a capacitor C1 respectively, the other end of the capacitor C1 is grounded, and a third connection terminal and a fourth connection terminal of the reset switch are grounded.
As shown in fig. 7, the GL850G has four interfaces, two of the four interfaces of the hub module are respectively used for accessing the miniSD card and using as the external USB2.0 for connecting the USB module, the GL850G has four interfaces, and two of the four interfaces of the hub module are respectively used for accessing the miniSD card and using as the external USB2.0 for connecting the USB module.
In a specific implementation, the network port module is used for collecting data of the network type equipment, the serial port communication module is used for collecting data of the serial port type equipment, the data relay module is used for uploading the collected data or storing the data to the storage module in situ through the wireless communication module after the data format of the collected data is converted by the data conversion module, the state indication module is used for indicating various states in the running process of the gateway, and the reset module is used for resetting the gateway; the debugging serial port module is used for debugging the gateway, and the debugging data is input to the data conversion module after passing through the USB-to-serial port module and the isolation module.
The gateway has multiple interfaces and protocols, is suitable for multiple purposes of one machine, has excessive cost performance, and is suitable for occasions with multiple access interfaces/protocols; cloud 4G/5G wireless communication is supported, cloud WIFI communication is supported, and cloud wired Ethernet communication is supported.
According to the embodiment, the numerical control measuring head is matched with gateway data acquisition, data measured by the numerical control system are acquired in real time at certain intervals through the gateway, the data with the measured operation identification parameters and the measured point completion data effective identification parameters of 1 in the effective data are extracted by the cloud platform, the measured results are displayed in real time after data analysis, and compared with the traditional technology, the data analysis and display efficiency is effectively improved.
The technical scheme provided by the invention is described in detail. The principles and embodiments of the present invention have been described herein with reference to specific examples, the description of which is intended only to facilitate an understanding of the method of the present invention and its core ideas. It should be noted that it will be apparent to those skilled in the art that various modifications and adaptations of the invention can be made without departing from the principles of the invention and these modifications and adaptations are intended to be within the scope of the invention as defined in the following claims.

Claims (10)

1. The automatic measuring method for the measuring head of the numerical control system based on the gateway is characterized by comprising the following steps:
step 1, setting parameters, namely setting a measurement operation identification parameter to be 1;
step 2, a measuring head of the numerical control system starts to measure a first point to be measured, and after measurement is completed, the effective identification parameter of the measurement point completion data is set to be 1;
step 3, delaying T1, and setting the effective identification parameter of the measurement point completion data to be 0;
step 4, sequentially and circularly measuring all to-be-measured points until the whole workpiece is measured, and setting a measurement operation identification parameter to be 0;
step 5, the gateway collects data once every interval time T2 and uploads the data to the cloud platform;
and 6, the cloud platform extracts data with the measurement operation identification parameters and the measurement point completion data effective identification parameters being 1 from the effective data, and displays the measurement result after data analysis.
2. The gateway-based automatic measurement method for measuring a measuring head of a numerical control system according to claim 1, wherein the method comprises the following steps: the value of the delay T1 is 0.5-2 s.
3. The gateway-based automatic measurement method for measuring a measuring head of a numerical control system according to claim 1, wherein the method comprises the following steps: the value of the interval time T2 is 100-500 ms.
4. The gateway-based automatic measurement method for measuring a measuring head of a numerical control system according to claim 1, wherein the method comprises the following steps: the data collected by the gateway comprises coordinates and errors.
5. The gateway-based automatic measurement method for measuring a measuring head of a numerical control system according to claim 1, wherein the method comprises the following steps: and 6, displaying the measurement result in real time through a web platform.
6. A gateway-based automatic measuring system for measuring heads of a numerical control system is characterized in that: including numerical control system, gateway, cloud platform and show platform, wherein:
the numerical control system is used for measuring data of the workpiece;
in the data measurement process, setting a measurement operation identification parameter as 1; the measuring head of the numerical control system starts to measure a first point to be measured, and after measurement is completed, the effective identification parameter of the measurement point completion data is set to be 1; delaying T1, and setting the effective identification parameter of the measurement point completion data to be 0; sequentially and circularly measuring all to-be-measured points until the whole workpiece is measured, and setting a measurement operation identification parameter to be 0;
the gateway is used for collecting data once every interval time T2 and uploading the data to the cloud platform;
the cloud platform is used for extracting data with the measurement operation identification parameter and the measurement point completion data effective identification parameter being 1 from the effective data and analyzing the data;
the display platform is used for displaying the measurement results.
7. The gateway-based numerical control system gauge head automatic measurement system according to claim 6, wherein: the value of the delay T1 is 0.5-2 s.
8. The gateway-based numerical control system gauge head automatic measurement system according to claim 6, wherein: the value of the interval time T2 is 100-500 ms.
9. The gateway-based numerical control system gauge head automatic measurement system according to claim 6, wherein: the data collected by the gateway comprises coordinates and errors.
10. The gateway-based numerical control system gauge head automatic measurement system according to claim 6, wherein: and the measurement results are displayed in real time through a web platform.
CN202211444496.2A 2022-11-18 2022-11-18 Automatic measuring method for measuring head of numerical control system based on gateway Active CN116192679B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211444496.2A CN116192679B (en) 2022-11-18 2022-11-18 Automatic measuring method for measuring head of numerical control system based on gateway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211444496.2A CN116192679B (en) 2022-11-18 2022-11-18 Automatic measuring method for measuring head of numerical control system based on gateway

Publications (2)

Publication Number Publication Date
CN116192679A true CN116192679A (en) 2023-05-30
CN116192679B CN116192679B (en) 2024-06-18

Family

ID=86443056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211444496.2A Active CN116192679B (en) 2022-11-18 2022-11-18 Automatic measuring method for measuring head of numerical control system based on gateway

Country Status (1)

Country Link
CN (1) CN116192679B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2660667A2 (en) * 2012-05-04 2013-11-06 Rockwell Automation Technologies, Inc. Cloud gateway for industrial automation information and control systems
US20200344297A1 (en) * 2019-04-25 2020-10-29 Microsoft Technology Licensing, Llc Data Transformation and Synchronization Between Devices
CN112163873A (en) * 2020-10-29 2021-01-01 杭州谐云科技有限公司 Product quality inspection system and method based on edge calculation
CN112859740A (en) * 2021-01-11 2021-05-28 成都耐视特科技有限公司 Data acquisition device of numerical control machine tool
CN113055478A (en) * 2021-03-16 2021-06-29 海尔数字科技(青岛)有限公司 Method, device, equipment and medium for processing equipment data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2660667A2 (en) * 2012-05-04 2013-11-06 Rockwell Automation Technologies, Inc. Cloud gateway for industrial automation information and control systems
US20200344297A1 (en) * 2019-04-25 2020-10-29 Microsoft Technology Licensing, Llc Data Transformation and Synchronization Between Devices
CN112163873A (en) * 2020-10-29 2021-01-01 杭州谐云科技有限公司 Product quality inspection system and method based on edge calculation
CN112859740A (en) * 2021-01-11 2021-05-28 成都耐视特科技有限公司 Data acquisition device of numerical control machine tool
CN113055478A (en) * 2021-03-16 2021-06-29 海尔数字科技(青岛)有限公司 Method, device, equipment and medium for processing equipment data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周南旭 等: ""基于太阳能智慧树的多源传感器数据采集与处理"", 《软件》, vol. 43, no. 11, pages 36 - 39 *

Also Published As

Publication number Publication date
CN116192679B (en) 2024-06-18

Similar Documents

Publication Publication Date Title
CN109256866B (en) Detection terminal for improving topology identification efficiency and line loss precision of transformer area
CN103632521B (en) A kind of power information gathers the local channel detection method of fault detection system
CN105547139B (en) A kind of wireless strain measuring system based on Wi-Fi
CN103700235B (en) A kind of power information gathers fault detection system and remote channel detection method thereof
CN201845037U (en) Electric parameter wireless measurement device
CN111308242A (en) Test platform and test method of distribution automation system
CN104392603B (en) A kind of live power information collecting device intelligent diagnosis system
CN103353717B (en) Networking comprehensive intelligent socket and its implementation
CN108957380A (en) The development of capacitance type potential transformer no-load voltage ratio, polarity test instrument
CN116192679B (en) Automatic measuring method for measuring head of numerical control system based on gateway
CN203949971U (en) A kind of transmission line of electricity debugging wireless measuring system
CN209329781U (en) A kind of distribution O&M monitoring device
CN207946476U (en) A kind of arrester test system based on ZigBee technology
CN105515920A (en) Electric power energy efficiency information centralizing and interacting system
CN218920441U (en) Control circuit of intelligent gateway
CN115378976A (en) Real-time acquisition system for test data of communication instrument
CN107317720A (en) System for checking uplink communication of station terminal
CN209030217U (en) A kind of power line communication production test macro
CN208968508U (en) A kind of portable fracture width long term monitoring, early warning system
CN208186309U (en) A kind of discharge smoke temperature of power station boiler intelligent test device
CN219142044U (en) Thermocouple acquisition module with Ethernet interface and 485 interface
CN219145524U (en) Analog quantity acquisition module with Ethernet interface and 485 interface
CN218482864U (en) Intelligent gateway with multiple protocols and multiple interfaces
CN213276324U (en) Multifunctional wireless data acquisition terminal capable of being connected to loop inspection instrument
CN202166692U (en) Electric energy monitoring and metering system based on site bus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant