CN116180009A - 一种基于双光子3d打印的红外宽带吸波超材料及制备方法 - Google Patents

一种基于双光子3d打印的红外宽带吸波超材料及制备方法 Download PDF

Info

Publication number
CN116180009A
CN116180009A CN202310320843.9A CN202310320843A CN116180009A CN 116180009 A CN116180009 A CN 116180009A CN 202310320843 A CN202310320843 A CN 202310320843A CN 116180009 A CN116180009 A CN 116180009A
Authority
CN
China
Prior art keywords
tcos
printing
photon
preparation
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310320843.9A
Other languages
English (en)
Other versions
CN116180009B (zh
Inventor
甘功雯
尹娅琴
张庆
邹高杰
苟国庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202310320843.9A priority Critical patent/CN116180009B/zh
Publication of CN116180009A publication Critical patent/CN116180009A/zh
Application granted granted Critical
Publication of CN116180009B publication Critical patent/CN116180009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/379Handling of additively manufactured objects, e.g. using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/008Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with a particular shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Robotics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)

Abstract

一种基于双光子3D打印的红外宽带吸波超材料及其制备方法,制备方法步骤如下:S1、通过双光子聚合3D打印技术制备具有类金字塔型凹槽的聚合物模板;S2、通过磁控溅射技术在步骤S1获得的具有类金字塔型凹槽的聚合物模板上覆盖TCOs材料,使得TCOs材料填满聚合物模板的凹槽形成TCOs材料谐振器,并继续磁控溅射形成TCOs材料基板;S3、通过酸洗技术去除聚合物模板,即完成红外宽带吸波超材料的制备。本发明解决了现有技术所制造的宽带多层超材料吸波结构加工困难及结构复杂问题,使用3D打印技术制备模板,一次成型TCOs吸波超材料,结合材料的选择和形状的优化设计,无需多层镀膜即可实现红外波段的宽带吸波,加工成本,制备效率、结构稳定性均优于现有技术。

Description

一种基于双光子3D打印的红外宽带吸波超材料及制备方法
技术领域
本发明涉及吸波复合材料领域,属于基于3D打印工艺的超材料宽带吸波阵列的设计及其制备方法。
背景技术
随着电子科学技术的快速发展,电磁吸波超材料的应用范围越来越广,在战斗机、导弹、舰艇、消费电子、通讯、建筑、医院、民用机场等领域具有重要应用价值。人们对吸波材料的吸波性能的要求日益提高,寻求设计具有高吸收率、轻薄、稳定性强的吸波超材料的制备方法成为研究的热点和重点。而传统型的吸波器由于多层结构的设计存在厚度重量大、稳定性较差、耗材等问题,且多层镀膜在实际加工过程中会遇到表面粗糙,多层结构镀膜工艺复杂,加工困难,局部结构有变化或者不完整等问题,受到制造挑战和设计复杂性的影响。,
微纳结构超材料具有吸波效果好,性能稳定等优势,为吸波材料设计领域提供了一种全新的思路。但目前微纳超材料器件主要依赖聚焦离子束刻饰、电子束刻饰、光刻技术、纳米压印等设备进行制备。诸如此类技术都隶属于减材制造范畴,首先需要在基底上通过多层镀膜获得基材,然后再通过精密刻饰得到超材料结构,从而导致微纳结构超材料制造周期长,成本高,超材料层与层之间的粘合及机械性能低等问题。
发明内容
本发明的目的是提供基于双光子聚合3D打印,并具备纳米尺度分辨率的红外宽带吸波超材料结构及其制备方法,旨在解决现有技术所制造的宽带多层超材料吸波结构加工困难及结构复杂问题,同时双光子聚合技术能够实现其它3D打印技术不能达到的纳米级别加工精度技术瓶颈。
本发明实现其发明目的所采取的技术方案是:一种基于双光子3D打印的红外宽带吸波超材料及其制备方法,制备方法的制备步骤如下:
S1、通过双光子聚合3D打印技术制备具有类金字塔型凹槽的聚合物模板;
S2、通过磁控溅射技术在步骤S1获得的具有类金字塔型凹槽的聚合物模板上覆盖TCOs材料,使得TCOs材料填满聚合物模板的凹槽形成TCOs材料谐振器,并继续磁控溅射形成TCOs材料基板;
S3、通过酸洗技术去除聚合物模板,即完成红外宽带吸波超材料的制备。
进一步,本发明所述类金字塔型包括正四棱锥、正四棱台、圆锥或圆台。
进一步,本发明所述聚合物模板材料包括PDMS或PMMA。
进一步,本发明所述TCOs材料包括掺铝的氧化锌、掺镓的氧化锌或氧化铟锑。
进一步,本发明所述TCOs材料谐振器的高度为1.6-2μm。
更进一步,本发明所述类金字塔型为底面边长为的1μm正四棱锥或底面直径为1μm的圆锥。或者所述类金字塔型为底面边长为的1μm、顶面边长为0-0.1μm的正四棱台或底面直径为1μm、顶面直径为0-0.1μm的圆台。
再进一步,本发明所述TCOs材料基板的厚度为0.2-0.5μm。
与现有技术相比,本发明的有益效果是:
一、透明导电氧化物TCOs同时兼具金属导电特性和透明特性,既可以代替现有技术中MIM结构的金属层,又可以代替现有技术MIM结构的介质层。本发明选择单一TCOs材料金字塔结构实现宽带吸波,不用多层镀膜,同时也不用考虑每层厚度的影响,避免了传统一层金属/一层透明材料叠加的多层宽带吸波体多层镀膜的加工困难,而且简化了多层吸波结构层间的参数设计,结构简单,降低了制造难度,稳定性更好。
二、TCOs材料微纳结构加工困难,为了构筑大规模TCOs材料微结构且精确控制微结构的精度,本发明首先借助双光子聚合3D打印技术获得大面积的金字塔凹槽聚合物模板,在此模板上通过磁控溅射技术覆盖TCOs材料于3D打印模板上,酸洗之后即可获得具有金字塔微结构的TCOs吸波超材料,制备工艺简单,生产成本低。
三、本发明制备的具有金字塔微结构的TCOs吸波超材料在近红外波段表现出明显的宽度吸波响应,三维有限差分时域(FDTD)全波模拟仿真验证该结构材料在近红外波段表现出明显的宽度吸波响应,并且吸波率在宽频带内高达90%以上,且在1.2-5μm波段范围内有完美100%吸波。
四、由于金字塔结构沿传播反向是4次旋转轴对称结构,因此吸波性能对偏振不敏感,本发明制备的具有金字塔微结构的TCOs吸波超材料的吸波性能对偏振和角度均不敏感,吸波性能稳定。
总之,现有技术要想在同样的红外波段加工实现宽带的红外吸波超材料必须使用多层镀膜技术和昂贵的高精度微纳加工技术。而本发明提出使用3D打印技术制备模板,一次成型TCOs吸波超材料,结合材料的选择和形状的优化设计,可以使结构的吸波能力最大化,无需多层镀膜即可实现红外波段的宽带吸波。本发明的加工成本,制备效率、结构稳定性均优于现有技术。
附图说明
图1为本发明实施例一基于双光子3D打印的红外宽带吸波超材料的三维结构图。
图2为本发明实施例一基于双光子3D打印的红外宽带吸波超材料单胞尺寸示意图。
图3为本发明实施例一基于双光子3D打印的红外宽带吸波超材料的红外1-5um波段的宽带吸波曲线。
图4为本发明实施例一基于双光子3D打印的红外宽带吸波超材料的制备方法技术路线图。
图5为本发明实施例一基于双光子3D打印的红外宽带吸波超材料的电子显微镜下的实物图。
具体实施方式
实施例一
一种基于双光子3D打印的红外宽带吸波超材料及其制备方法,制备方法的制备步骤如下:
S1、通过双光子聚合3D打印技术制备具有类金字塔型凹槽的聚合物模板;
S2、通过磁控溅射技术在步骤S1获得的具有类金字塔型凹槽的聚合物模板上覆盖TCOs材料,使得TCOs材料填满聚合物模板的凹槽形成TCOs材料谐振器,并继续磁控溅射形成TCOs材料基板;
S3、通过酸洗技术去除聚合物模板,即完成红外宽带吸波超材料的制备。
本例中所述类金字塔型为底面边长为的1μm正四棱锥,所述TCOs材料谐振器的高度为1.6μm,所述TCOs材料基板的厚度为0.2μm。图1为本实施例基于双光子3D打印的红外宽带吸波超材料的三维结构图。图2为本实施例基于双光子3D打印的红外宽带吸波超材料单胞尺寸示意图。
本例中所述聚合物模板材料为PDMS,所述TCOs材料为氧化铟锡。
采用三维有限差分时域(FDTD)全波模拟对本实施例红外宽带吸波超材料进行吸波模拟,平面波从-z方向入射。x和y方向均采用周期性边界条件,z方向采用完全匹配层边界条件,所有方向的网格尺寸都设置为5nm。图3为本实施例基于双光子3D打印的红外宽带吸波超材料的红外1-5um波段的宽带吸波曲线,图中可以看出,本实施例红外宽带吸波超材料在近红外波段1-5um表现出明显的宽度吸波响应,并且吸波率在宽频带内90%以上,曲线平滑没有抖动,实现了超宽带吸波性能。这是由于在水平方向,类金字塔的任意位置可以当做某一固定波长的红外ITO吸收层,任意两相邻的ITO层电流形成环流,环形电流形成磁偶极子。在整个TCOs吸波超材料中,每个波长的信号都有与之对应的电偶极子、磁偶极子共振,最后每层的共振效应叠加在一起形成宽带吸波。
图4为本实施例基于双光子3D打印的红外宽带吸波超材料的制备方法技术路线图,图中底部为3D打印金字塔凹槽聚合物模板,顶部为磁控溅射后的TCOs金字塔吸波超材料结构阵列。
图5为本实施例基于双光子3D打印的红外宽带吸波超材料的实物图。
实施例二
一种基于双光子3D打印的红外宽带吸波超材料及其制备方法,制备方法的制备步骤如下:
S1、通过双光子聚合3D打印技术制备具有类金字塔型凹槽的聚合物模板;
S2、通过磁控溅射技术在步骤S1获得的具有类金字塔型凹槽的聚合物模板上覆盖TCOs材料,使得TCOs材料填满聚合物模板的凹槽形成TCOs材料谐振器,并继续磁控溅射形成TCOs材料基板;
S3、通过酸洗技术去除聚合物模板,即完成红外宽带吸波超材料的制备。
本例中所述类金字塔型为底面边长为的1μm正四棱锥,所述TCOs材料谐振器的高度为2μm,所述TCOs材料基板的厚度为0.5μm。
本例中所述聚合物模板材料为PMMA,所述TCOs材料为掺镓的氧化锌。
实施例三
一种基于双光子3D打印的红外宽带吸波超材料及其制备方法,制备方法的制备步骤如下:
S1、通过双光子聚合3D打印技术制备具有类金字塔型凹槽的聚合物模板;
S2、通过磁控溅射技术在步骤S1获得的具有类金字塔型凹槽的聚合物模板上覆盖TCOs材料,使得TCOs材料填满聚合物模板的凹槽形成TCOs材料谐振器,并继续磁控溅射形成TCOs材料基板;
S3、通过酸洗技术去除聚合物模板,即完成红外宽带吸波超材料的制备。
本例中所述类金字塔型为底面直径为1μm的圆锥,所述TCOs材料谐振器的高度为2μm,所述TCOs材料基板的厚度为0.5μm。
本例中所述聚合物模板材料为PDMS,所述TCOs材料为掺铝的氧化锌。
实施例四
一种基于双光子3D打印的红外宽带吸波超材料及其制备方法,制备方法的制备步骤如下:
S1、通过双光子聚合3D打印技术制备具有类金字塔型凹槽的聚合物模板;
S2、通过磁控溅射技术在步骤S1获得的具有类金字塔型凹槽的聚合物模板上覆盖TCOs材料,使得TCOs材料填满聚合物模板的凹槽形成TCOs材料谐振器,并继续磁控溅射形成TCOs材料基板;
S3、通过酸洗技术去除聚合物模板,即完成红外宽带吸波超材料的制备。
本例中所述类金字塔型为底面边长为的1μm、顶面边长为0-0.1μm的正四棱台。
本例中所述聚合物模板材料为PMMA,所述TCOs材料为氧化铟锡。
实施例五
一种基于双光子3D打印的红外宽带吸波超材料及其制备方法,制备方法的制备步骤如下:
S1、通过双光子聚合3D打印技术制备具有类金字塔型凹槽的聚合物模板;
S2、通过磁控溅射技术在步骤S1获得的具有类金字塔型凹槽的聚合物模板上覆盖TCOs材料,使得TCOs材料填满聚合物模板的凹槽形成TCOs材料谐振器,并继续磁控溅射形成TCOs材料基板;
S3、通过酸洗技术去除聚合物模板,即完成红外宽带吸波超材料的制备。
本例中所述类金字塔型为底面直径为1μm、顶面直径为0-0.1μm的圆台。
本例中所述聚合物模板材料为PMMA,所述TCOs材料为氧化铟锡。

Claims (9)

1.一种基于双光子3D打印的红外宽带吸波超材料的制备方法,其制备步骤如下:
S1、通过双光子聚合3D打印技术制备具有类金字塔型凹槽的聚合物模板;
S2、通过磁控溅射技术在步骤S1获得的具有类金字塔型凹槽的聚合物模板上覆盖TCOs材料,使得TCOs材料填满聚合物模板的凹槽形成TCOs材料谐震器,并继续磁控溅射形成TCOs材料基板;
S3、通过酸洗技术去除聚合物板,即完成红外宽带吸波超材料的制备。
2.根据权利要求1所述的一种基于双光子3D打印的红外宽带吸波超材料的制备方法,其特征在于:所述类金字塔型包括正四棱锥、正四棱台、圆锥或圆台。
3.根据权利要求1所述的一种基于双光子3D打印的红外宽带吸波超材料的制备方法,其特征在于:所述聚合物模板材料包括PDMS或PMMA。
4.根据权利要求1所述的一种基于双光子3D打印的红外宽带吸波超材料的制备方法,其特征在于:所述TCOs材料包括掺铝的氧化锌、掺镓的氧化锌或氧化铟锑。
5.根据权利要求1所述的一种基于双光子3D打印的红外宽带吸波超材料的制备方法,其特征在于:所述TCOs材料谐振器的高度为1.6-2μm。
6.根据权利要求5所述的一种基于双光子3D打印的红外宽带吸波超材料的制备方法,其特征在于:所述类金字塔型为底面边长为的1μm正四棱锥或底面直径为1μm的圆锥。
7.根据权利要求5所述的一种基于双光子3D打印的红外宽带吸波超材料的制备方法,其特征在于:所述类金字塔型为底面边长为的1μm、顶面边长为0-0.1μm的正四棱台或底面直径为1μm、顶面直径为0-0.1μm的圆台。
8.根据权利要求5所述的一种基于双光子3D打印的红外宽带吸波超材料的制备方法,其特征在于:所述TCOs材料基板的厚度为0.2-0.5μm。
9.一种基于双光子3D打印的红外宽带吸波超材料,其特征在于:所述红外宽带吸波超材料通过权利要求1-8任一制备方法制备而成。
CN202310320843.9A 2023-03-29 2023-03-29 一种基于双光子3d打印的红外宽带吸波超材料及制备方法 Active CN116180009B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310320843.9A CN116180009B (zh) 2023-03-29 2023-03-29 一种基于双光子3d打印的红外宽带吸波超材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310320843.9A CN116180009B (zh) 2023-03-29 2023-03-29 一种基于双光子3d打印的红外宽带吸波超材料及制备方法

Publications (2)

Publication Number Publication Date
CN116180009A true CN116180009A (zh) 2023-05-30
CN116180009B CN116180009B (zh) 2024-07-19

Family

ID=86432952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310320843.9A Active CN116180009B (zh) 2023-03-29 2023-03-29 一种基于双光子3d打印的红外宽带吸波超材料及制备方法

Country Status (1)

Country Link
CN (1) CN116180009B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252080A (ja) * 2004-03-05 2005-09-15 Fuji Xerox Co Ltd 電波吸収体およびその製造方法
RU2340054C1 (ru) * 2007-10-17 2008-11-27 Юрий Константинович Александров Поглотитель электромагнитных волн
CN110690579A (zh) * 2019-10-11 2020-01-14 陕西师范大学 一种基于3d打印技术的结构型宽频带吸波材料的制备方法
CN112563760A (zh) * 2020-12-03 2021-03-26 西安交通大学 一种仿蝶翼宽频复合吸波超材料结构及制造方法
CN113163697A (zh) * 2021-03-30 2021-07-23 常州大学 基于3d打印制备宽频电磁波吸收超材料的方法
CN113351827A (zh) * 2021-05-24 2021-09-07 西安交通大学 一种基于间接增材制造的金属基超材料制备方法
CN113488779A (zh) * 2021-06-29 2021-10-08 电子科技大学 一种热塑型填料吸波锥体结构及其制作方法
CN113871896A (zh) * 2021-09-17 2021-12-31 东南大学 一种跨尺度多层级石墨烯复合吸波材料及其制备方法
CN114311654A (zh) * 2022-03-16 2022-04-12 成都飞机工业(集团)有限责任公司 基于3d打印工艺的超材料吸波结构及其制备方法与应用
CN114956827A (zh) * 2022-05-09 2022-08-30 深圳市宁鹏时代科技有限公司 一种陶瓷打印材料的制备方法、3d打印方法和陶瓷制品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252080A (ja) * 2004-03-05 2005-09-15 Fuji Xerox Co Ltd 電波吸収体およびその製造方法
RU2340054C1 (ru) * 2007-10-17 2008-11-27 Юрий Константинович Александров Поглотитель электромагнитных волн
CN110690579A (zh) * 2019-10-11 2020-01-14 陕西师范大学 一种基于3d打印技术的结构型宽频带吸波材料的制备方法
CN112563760A (zh) * 2020-12-03 2021-03-26 西安交通大学 一种仿蝶翼宽频复合吸波超材料结构及制造方法
CN113163697A (zh) * 2021-03-30 2021-07-23 常州大学 基于3d打印制备宽频电磁波吸收超材料的方法
CN113351827A (zh) * 2021-05-24 2021-09-07 西安交通大学 一种基于间接增材制造的金属基超材料制备方法
CN113488779A (zh) * 2021-06-29 2021-10-08 电子科技大学 一种热塑型填料吸波锥体结构及其制作方法
CN113871896A (zh) * 2021-09-17 2021-12-31 东南大学 一种跨尺度多层级石墨烯复合吸波材料及其制备方法
CN114311654A (zh) * 2022-03-16 2022-04-12 成都飞机工业(集团)有限责任公司 基于3d打印工艺的超材料吸波结构及其制备方法与应用
CN114956827A (zh) * 2022-05-09 2022-08-30 深圳市宁鹏时代科技有限公司 一种陶瓷打印材料的制备方法、3d打印方法和陶瓷制品

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
S. ADACHI ET AL.: "Production Method of Millimeter-Wave Absorber with 3D-Printed Mold", REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 91, no. 1, 16 February 2020 (2020-02-16), pages 016103 *
张磊等: "增材制造超材料及其隐身功能调控的研究进展", 航空材料学报, no. 03, 4 June 2018 (2018-06-04), pages 14 - 23 *
朱连诚等: "三维立方周期阵列石膏基材料吸波性能仿真与实验研究", 材料导报, vol. 35, no. 12, 25 June 2021 (2021-06-25), pages 12020 - 12026 *
王顺顺: "基于3D打印的结构型吸波材料制备及性能研究", 中国优秀硕士学位论文全文数据库工程科技Ⅰ辑, 15 April 2023 (2023-04-15), pages 020 - 26 *

Also Published As

Publication number Publication date
CN116180009B (zh) 2024-07-19

Similar Documents

Publication Publication Date Title
US8827502B2 (en) Metamaterial for deflecting electromagnetic wave
Li et al. Continuous metasurface for high-performance anomalous reflection
CN105870604A (zh) 一种基于相位梯度超表面产生微波轨道角动量的阵列天线
WO2019237765A1 (zh) 超材料结构单元、超材料及电子装置
CN107658571B (zh) 应用于宽带雷达反射截面缩减的编码吸波超材料
CN106597578A (zh) 新月风车型超结构表面
CN105742825A (zh) 用于聚焦电磁波的超表面反射阵面
CN104749665A (zh) 基于介质材料的平面透镜单元、平面透镜及制备方法
CN111430926A (zh) 一种可见光透过的极化不敏感的低rcs超宽带超材料吸波体
WO2023216472A1 (zh) 通过引入附加相位调控变焦超透镜焦距范围的方法
CN105629462A (zh) 一种采用超构表面实现中红外频段隐身的方法
CN105161800A (zh) 优化电磁传输特性的双屏频率选择表面
CN204680754U (zh) 一种太赫兹宽带随机表面
CN113655547B (zh) 一种分辨率可调的超透镜阵列及实现方法
Zhang et al. A multi-band closed-cell metamaterial absorber based on a low-permittivity all-dielectric structure
CN116180009B (zh) 一种基于双光子3d打印的红外宽带吸波超材料及制备方法
CN103296483A (zh) 一种基于表面等离子体激元的吸波材料
Wang et al. Multi-octave radar cross section reduction via integrated dispersion engineering of polarization-conversion metasurface and metamaterial absorber
Chou et al. Roll-to-roll fabrication of a low-reflectance transparent conducting oxide film with subwavelength structures
CN102480005B (zh) 偏折电磁波的超材料
Cai et al. Fabricating 3D Metastructures by Simultaneous Modulation of Flexible Resist Stencils and Basal Molds
CN103682655A (zh) 微结构、超材料板以及天线系统
Wang et al. An ultrathin microwave Huygens' metasurface lens
Gao et al. Ultra-broadband microwave absorber based on disordered metamaterials
CN111564700B (zh) 一种基于超材料的双波段太赫兹增透膜结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant