CN116173345A - 闭环自调节ai注射泵 - Google Patents

闭环自调节ai注射泵 Download PDF

Info

Publication number
CN116173345A
CN116173345A CN202310179459.1A CN202310179459A CN116173345A CN 116173345 A CN116173345 A CN 116173345A CN 202310179459 A CN202310179459 A CN 202310179459A CN 116173345 A CN116173345 A CN 116173345A
Authority
CN
China
Prior art keywords
anesthesia depth
anesthesia
anesthetic
patient
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310179459.1A
Other languages
English (en)
Other versions
CN116173345B (zh
Inventor
陈安基
景涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Xingdi Medical Technology Co ltd
Changsha Maternal And Child Health Hospital Changsha Maternal And Child Health And Family Planning Service Center
Original Assignee
Hunan Xingdi Medical Technology Co ltd
Changsha Maternal And Child Health Hospital Changsha Maternal And Child Health And Family Planning Service Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Xingdi Medical Technology Co ltd, Changsha Maternal And Child Health Hospital Changsha Maternal And Child Health And Family Planning Service Center filed Critical Hunan Xingdi Medical Technology Co ltd
Priority to CN202310179459.1A priority Critical patent/CN116173345B/zh
Publication of CN116173345A publication Critical patent/CN116173345A/zh
Application granted granted Critical
Publication of CN116173345B publication Critical patent/CN116173345B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4821Determining level or depth of anaesthesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • A61B5/4839Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本公开涉及一种闭环自调节AI注射泵,包括:获取患者在当前时刻的生理参数和麻醉药参数;将所述当前时刻的生理参数和麻醉药参数输入麻醉深度预测模型,以得到麻醉深度监测指数和未来预设时长内的血药浓度预测值;其中所述麻醉深度预测模型是基于术中时序数据以及回归标签对指定深度神经网络模型训练得到的,所述术中时序数据至少包含患者在多个历史时刻的生理参数和麻醉药参数,所述回归标签包含术中离线测得在所述多个历史时刻的患者血液中的血药浓度;AI注射泵基于该麻醉深度监测指数和/或未来预设时长内的血药浓度预测值控制调整注射泵泵送的麻醉药的注射剂量。

Description

闭环自调节AI注射泵
技术领域
本公开实施例涉及医疗设备技术领域,尤其涉及一种麻醉深度预测方法、介质以及闭环自调节AI(Artificial Intelligence)注射泵。
背景技术
目前手术中监测麻醉深度既要避免麻醉过浅又要防止麻醉过深,过浅可能发生术中知晓,过深又易影响患者转归,两者都会对患者的生理心理造成损害,且手术不同阶段的应激程度不同,需要不断调整麻醉深度以适应手术刺激,工作量大。因此,如何判断患者的麻醉深度以便麻醉医师适时调节麻醉药用量,一直是麻醉科医师关注的问题。
目前临床上主要通过脑电波EEG信号的采集,生成麻醉深度监测BIS数据来反映麻醉深度。然而,这种方式精准性有待提高。EEG信号在采集过程中,对环境因素干扰特别敏感。例如有线数据通信会由于麻醉医师助理不小心碰触而脱落或者接触不良,或者在麻醉中由于其他大型的手术设备会对麻醉设备等产生电磁干扰等因素而影响麻醉深度预测的精准性。
随着人工智能机器学习模型的发展,深度学习已应用于麻醉各个阶段的研究中。目前相关技术中基于深度学习模型如长短期记忆算法(long-short term memory,LSTM)训练的模型来预测靶控输注麻醉药如丙泊酚和瑞芬太尼的BIS的变化,该模型将预测结果的一致性相关系数从传统模型的26.5%提升至56.1%,极大地提高了BIS预测的精确度。该研究可为麻醉科医师提供一个预警系统,以在BIS出现过高或过低趋势时提醒麻醉科医师及时调整麻醉药如丙泊酚及瑞芬太尼的输注速率,以确保麻醉深度在一个合适的范围内,有助于患者术后快速苏醒和减少麻醉后并发症的发生。在此之后,又有研究将LSTM与模糊自动编码器相结合,利用麻醉期脑电图即EEG训练的模型预测麻醉深度。与其他传统预测模型相比,此模型预测精确度目前最高。
然而,该模型的标签是基于EEG图的分类,如图1所示不同麻醉深度下的EEG转换原始谱图。因此该模型的训练过程就是对这些人工归类的EEG图的标签进行逼近的过程。也就是说,基于EEG图的人工分类的标签的精度是这些模型预测麻醉深度的精确度的天花板,由于EEG图或者BIS图谱存在噪音的原因,该模型预测的精确度实际是基于这些噪音之上的精确度,也即是说真实的预测精确度依然有待提高。
发明内容
为了解决上述技术问题或者至少部分地解决上述技术问题,本公开实施例提供了一种麻醉深度预测方法、介质和闭环自调节AI注射泵。
第一方面,本公开实施例提供了一种麻醉深度预测方法,包括:
获取患者在当前时刻的生理参数和麻醉药参数;
将所述当前时刻的生理参数和麻醉药参数输入麻醉深度预测模型,以得到麻醉深度监测指数和未来预设时长内的血药浓度预测值;其中,所述麻醉深度预测模型是基于术中时序数据以及回归标签对指定深度神经网络模型训练得到的,所述术中时序数据至少包含患者在多个历史时刻的生理参数和麻醉药参数,所述回归标签包含术中离线测得在所述多个历史时刻的患者血液中的血药浓度。
在一个实施例中,所述指定深度神经网络模型包括第一Transformer网络,所述指定深度神经网络模型的训练过程包括:基于所述术中时序数据以及回归标签对所述第一Transformer网络进行训练。
在一个实施例中,该方法还包括:
获取患者的基础信息,所述基础信息至少包括年龄、病史信息和器官功能信息;
基于所述基础信息、所述术中时序数据以及回归标签对所述第一Transformer网络进行训练,其中所述第一Transformer网络基于所述基础信息、所述术中时序数据重构出仿麻醉深度监测指数作为麻醉深度监测指数并输出血药浓度预测值。
在一个实施例中,所述指定深度神经网络模型还包括第二Transformer网络,该方法还包括:
获取患者的样本麻醉深度监测图谱;
所述指定深度神经网络模型的训练过程还包括:将所述样本麻醉深度监测图谱输入所述第二Transformer网络以得到图谱特征向量;
基于所述图谱特征向量、所述术中时序数据以及回归标签对所述第一Transformer网络同时进行训练,由所述第一Transformer网络输出麻醉深度监测指数和血药浓度预测值。
在一个实施例中,所述将所述样本麻醉深度监测图谱输入所述第二Transformer网络以得到图谱特征向量,包括:
所述第二Transformer网络基于轴计算算法对所述样本麻醉深度监测图谱进行特征提取以得到图谱特征向量;
其中,所述轴计算算法包括:针对所述样本麻醉深度监测图谱中的每一个像素点,仅计算该像素点与该像素点所在行的其余像素点之间的特征值以及与该像素点所在列的其余像素点之间的特征值。
在一个实施例中,所述指定深度神经网络模型的训练过程还包括:在基于所述样本麻醉深度监测图谱对所述第二Transformer网络进行训练时,冻结所述第一Transformer网络的参数。
在一个实施例中,所述第二Transformer网络具有相对位置编码学习功能,和/或,所述第二Transformer网络配置有门控功能。
在一个实施例中,所述生理参数至少包括心率、血压、血氧饱和度中的一个或多个;所述麻醉药参数包括麻醉药种类和注射剂量。
第二方面,本公开实施例提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述任一实施例所述麻醉深度预测方法。
第三方面,本公开实施例提供一种闭环自调节AI注射泵,包括:
处理器;以及
存储器,用于存储计算机程序;
其中,所述处理器配置为经由执行所述计算机程序来执行以下步骤:
获取患者在当前时刻的麻醉深度监测指数和未来预设时长内的血药浓度预测值;其中,所述麻醉深度监测指数和未来预设时长内的血药浓度预测值由上述第一方面的任一实施例权所述的方法得到;
基于所述麻醉深度监测指数和/或未来预设时长内的血药浓度预测值,控制调整所述注射泵泵送的麻醉药的注射剂量。
本公开实施例提供的技术方案与现有技术相比具有如下优点:
本公开实施例提供的麻醉深度预测方法、介质及闭环自调节AI注射泵,获取患者在当前时刻的生理参数和麻醉药参数;将所述当前时刻的生理参数和麻醉药参数输入麻醉深度预测模型,以得到麻醉深度监测指数和未来预设时长内的血药浓度预测值;其中,所述麻醉深度预测模型是基于术中时序数据以及回归标签对指定深度神经网络模型训练得到的,所述术中时序数据至少包含患者在多个历史时刻的生理参数和麻醉药参数,所述回归标签包含术中离线测得在所述多个历史时刻的患者血液中的血药浓度。本公开方案基于患者在当前时刻的生理参数和麻醉药参数使用预先训练的麻醉深度预测模型来输出麻醉深度监测指数和未来预设时长内的血药浓度预测值,以此来表征麻醉深度,其中使用离线测验的时序血药浓度作为回归标签训练模型,替代EEG或BIS图谱的人工分类标签,标签精度更高,大大提高标签客观性,进而加固模型的客观性,从而改善模型的鲁棒性能,使得训练得到的模型预测麻醉深度的精确度大为提高,同时使得基于闭环自调节AI注射泵自动泵送的麻醉药的注射剂量更加准确,也即调节麻醉药用量的准确性提高,最大程度地确保麻醉深度在一个合适的范围内,避免麻醉过浅同时防止麻醉过深,以避免发生术中知晓同时不易影响患者转归,有助于患者术后快速苏醒和减少麻醉后并发症的发生。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中不同麻醉深度下的EEG转换原始谱图;
图2为本公开实施例麻醉深度预测方法流程图;
图3为本公开实施例指定深度神经网络模型架构示意图;
图4为本公开实施例Transformer网络中图像特征提取计算方式示意图;
图5为现有Transformer网络中图像特征提取计算方式示意图;
图6为本公开实施例的电子设备示意图。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
应当理解,在下文中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
图2为本公开实施例的一种麻醉深度预测方法流程图,该方法可以由电子设备如医疗电子设备执行,具体可包括以下步骤:
步骤S101:获取患者在当前时刻的生理参数和麻醉药参数。
示例性的,在一个实施例中,所述生理参数至少可以包括但不限于心率、血压、血氧饱和度中的一个或多个。所述麻醉药参数可以包括麻醉药种类和注射剂量。这些参数的具体获取方式可以参考现有技术理解,此处不再赘述。
步骤S102:将所述当前时刻的生理参数和麻醉药参数输入麻醉深度预测模型,以得到麻醉深度监测指数BIS和未来预设时长内的血药浓度预测值;其中,所述麻醉深度预测模型是基于术中时序数据以及回归标签对指定深度神经网络模型训练得到的,所述术中时序数据至少包含患者在多个历史时刻的生理参数和麻醉药参数,所述回归标签包含术中离线测得在所述多个历史时刻的患者血液中的血药浓度。
示例性的,未来预设时长可以是但不限于5秒以内。本实施例中预先基于术中时序数据以及回归标签对指定深度神经网络模型训练得到麻醉深度预测模型。其中,回归标签包含术中离线测得在所述多个历史时刻的患者血液中的血药浓度。需要说明的是,在术中,血药浓度在线检测成本较高,一般不监控血药浓度,但是在术中可以定时收集时序血样(如依序的多个时刻的血样)待离线化验得到血药浓度即麻醉药的血药浓度,这些数据可以用于指定深度神经网络模型的训练,以得到麻醉深度预测模型。
本公开方案基于患者在当前时刻的生理参数和麻醉药参数使用预先训练的麻醉深度预测模型来输出麻醉深度监测指数和未来预设时长内的血药浓度预测值,以此来表征麻醉深度,其中使用离线测验的时序血药浓度(通常测量值更客观准确,精度上限更高)作为回归标签训练模型,替代EEG或BIS图谱的人工分类标签,标签精度更高,大大提高标签客观性,进而加固模型的客观性,从而改善模型的鲁棒性能,使得训练得到的模型预测麻醉深度的精确度大为提高,同时使得基于闭环自调节AI注射泵自动泵送的麻醉药的注射剂量更加准确,也即调节麻醉药用量的准确性提高,最大程度地确保麻醉深度在一个合适的范围内,避免麻醉过浅同时防止麻醉过深,以避免发生术中知晓同时不易影响患者转归,有助于患者术后快速苏醒和减少麻醉后并发症的发生。
在一个实施例中,如图3中所示,所述指定深度神经网络模型可包括第一Transformer网络即图3中基础网络层,其具体可包括左侧N个transformer模块和右侧的transformer模块以及Dense层,相应的,所述指定深度神经网络模型的训练过程可包括:基于术中时序数据如心率、血压、血氧饱和度、麻醉药种类和注射剂量以及回归标签对第一Transformer网络进行训练。
示例性的,将所述多个历史时刻的生理参数如心率、血压、血氧饱和度和麻醉药参数如麻醉药种类和注射剂量输入图3中左侧的N层transformer编码器汇聚成第一特征向量,将第一特征向量输入图3中右侧的transformer模块进行处理,以输出血药浓度预测值。
具体的,可以将以上时序数据向量化,并可以通过滑动窗口取时序数据的值,每次取k个时刻的数据(k为超参数,可以调节)。将k个时刻的数据这些输入通过N层(n为超参数,可以调节)tranformer模块编码后汇聚成特征向量进入到右侧下一个tranformer模块进行输出,最终由Dense层输出,输出信息可以但不限于由两个部分组成:当前k个时刻的BIS指数和未来五秒内的血药浓度预测值,该血药浓度预测值与回归标签中的血药浓度的差异满足预设条件如损失函数值小于指定值时可以结束训练。Transformer网络会将时序数据转成特征向量表征,然后把这个特征向量表征转化成3个特征向量,一个定义为查询向量q、一个定义为键向量k、一个定义为值向量v,分别代表的物理意义是:与其他数据产生联系时的作用,其他向量与自己联系时产生的作用,以及向量本身的值。一个时序数据中的q特征向量将与其他的时序数据的k、v特征向量汇聚信息,每个时序数据都这样处理,也就是说同时提取到了所有数据以及他们之间相关性的信息。把这些处理过后的数据再输入到网络中提取高层,就可以同时对他们进行计算,也就是实现了并算。从一个向量表征变成三个向量表征,在计算机术语中叫做编码,在非正式术语中叫变形,这就是transformer网络的特点。其目的就是把数据及数据之间的关联信息并行的提取出来。
另外,transformer网络是具有注意力机制的处理时序数据的神经网络,人类的视觉注意力机制中会先对全局信息有一个把控,然后再分配注意力资源。transformer网络也在浅层(第一层)就考虑到全局信息。之前提到,每一个数据的分量特征q会与其他数据的键值特征k点积以求他们之间的相互关系,所以,求得得注意力系数中,除了自身信息以外也都携带了其他数据的相互影响的信息。如果我们在整个时序数据中凭空设置一个全新的数据,它根其他数据一样处于这段时序中,但是它不代表样本中的任何特征,它只是参与计算。那么在计算过程中,它的分向量q也会去与其他所有的分量k汇聚信息,也就是说,这个分向量会归拢所有特征的信息,那么他就携带了全局信息。关于transformer网络的具体计算内容可以参考现有技术理解,此处不再赘述。本实施例中仅是利用transformer网络来进行训练,采用transformer网络作为训练模型其可以提取训练数据中更为全面的信息,从而使得最终训练得到的模型在预测时的精确度大大提高。
在上述任一实施例的基础上,于一个实施例中,该方法还包括以下步骤:获取患者的基础信息,所述基础信息至少包括年龄、病史信息和器官功能信息;基于所述基础信息、所述术中时序数据以及回归标签对所述第一Transformer网络进行训练,其中所述第一Transformer网络基于所述基础信息、所述术中时序数据重构出仿麻醉深度监测指数作为麻醉深度监测指数并输出血药浓度预测值。
本实施例中的该模型可以应对两种场景:一种是有BIS图谱如EEG图输入作为训练样本数据的,一种是没有BIS图谱输入的。对于后者,即便没有图谱输入,也可以通过有限的特征如病患基础信息如年龄、病史、器官功能等信息,以及术中心率、血压、血样饱和度,麻药配方及用量等等来重构出仿BIS图谱或者预测出BIS指数。如此使得该模型可以适应不同的训练样本数据的场景,应用范围广泛。
在一个实施例中,如图3所示,所述指定深度神经网络模型还可包括第二Transformer网络如图3中的transformer-flatten部分,该方法还可以包括步骤:获取患者的样本麻醉深度监测图谱如EEG图。相应的,所述指定深度神经网络模型的训练过程还可包括:将所述样本麻醉深度监测图谱输入所述第二Transformer网络以得到图谱特征向量;基于所述图谱特征向量、所述术中时序数据以及回归标签对所述第一Transformer网络同时进行训练,由所述第一Transformer网络输出麻醉深度监测指数和血药浓度预测值。
具体的,本实施例中的该模型为了应对上述两种场景,指定深度神经网络模型中还设置了第二Transformer网络,也即在网络搭建时,将结构分成基础网络层即第一Transformer网络和进阶网络层即第二Transformer网络,训练基础网络层时,不使用BIS数据如EEG图作为训练数据。而在训练数据包含BIS数据时,可以将基础网络层的参数全部冻结,只调整进阶网络层即第二Transformer网络的参数。这样就可以得到一个可以同时应对数据充分条件的局面,使得模型可以适应不同的训练样本数据的场景,应用范围广泛。
示例性的,获取样本麻醉深度监测图谱如EEG图之后,将其输入所述第二Transformer网络以得到图谱特征向量,将所述图谱特征向量输入第一Transformer网络如图3中左侧的N层transformer编码器汇聚成第二特征向量,将所述第二特征向量输入图3中右侧的transformer模块进行处理,以输出麻醉深度监测指数。
在一个实施例中,所述指定深度神经网络模型的训练过程还包括:在基于所述样本麻醉深度监测图谱对所述第二Transformer网络进行训练时,冻结所述第一Transformer网络的参数。也即在训练数据包含BIS数据时,可以将基础网络层即第一Transformer网络的参数全部冻结,只调整进阶网络层即第二Transformer网络的参数。
在上述实施例的基础上,于一个实施例中,所述将所述样本麻醉深度监测图谱输入所述第二Transformer网络以得到图谱特征向量的步骤包括:所述第二Transformer网络基于轴计算算法对所述样本麻醉深度监测图谱进行特征提取以得到图谱特征向量;其中,所述轴计算算法包括:针对所述样本麻醉深度监测图谱中的每一个像素点,仅计算该像素点与该像素点所在行的其余像素点之间的特征值以及与该像素点所在列的其余像素点之间的特征值。
具体的,参考图4所示,目前限制transform技术的难点在于计算量,相关技术中很多模型都喜欢是用卷积神经网络CNN,就算使用transform时也先用一次CNN就是为了减少计算量,比如256*256的原图直接用tranformer计算则计算量O是256*256,如果cnn先处理得到56*56的图片就只有56*56的计算量了。为了解决这个问题,本实施例的方案创新一种算法,命名为transfomer-flatten也即轴计算算法,其针对每一个像素点的transformer计算改成:先对像素点自己的行transformer计算,再对自己的列transformer计算。此时一张256*256的图片,其计算量就不再是256*256,而是256+256。当然,这个transformer网络也是可以堆叠的。其堆叠的意义在于间接的融合全局信息。
每一个像素点的关系权重应该是自己所在列和行最重要(越靠近局部特征中心,这种规律越明显),我们把像素点对自己所在列和行的计算叫做轴计算。比如四个角对于中间点的关系可能不那么重要,但是通过多层轴计算,比如当第一次轴计算时,像素点402只把像素点401、403本身的信息融合进来了,但是这一层的计算,像素点401、403也在计算自身的两个轴上(即所在行和列中)其他像素点的相关性,所以当这些信息更新给像素点401、403后,到了下一层,像素点402就可以把更新后携带了像素点401、403所在轴的其他的像素点的信息通过更新后的像素点401、403携带进来。
传统的transform处理图像像素矩阵,是将每一个像素点与其他像素点分别计算,传统Transformer技术的计算要点是:如果对一张图片来transformer处理,那么他应该是2d的计算复杂程度,如图5所示,因为每一个点不仅仅和自己这一行的像素点来计算关系,还要计算别的行的像素点,比如,一张n*n像素点的图片的计算量就是n*n。而本实施例中的该算法将极大的减少计算量,该方法将像素点先对自己所在行的其他像素点进行计算,再对自己所在列的其他像素点进行计算。此时一张n*n的图片,其计算量就不再是n*n,而是2n。如此可以大大提高模型的训练效率。
在一个实施例中,所述第二Transformer网络具有相对位置编码学习功能,和/或,所述第二Transformer网络配置有门控功能。
示例性的,在BIS图谱如EEG图特征提取时,使用的第二Transformer网络中还可以设计可学习相对位置编码(trainable-location code)即具有相对位置编码学习功能,也即动态编码。每个像素点的位置虽然固定,但是它们的相对位置关系是不一样的,因此各像素点的相对位置关系可以进行学习,因为对于每一个相对位置关系,像素点之间的关系意义不一样如权重不一样,所以在第二transformer网络中,可以增加三个位置向量,这三个向量是可以学习的。如此可以使得第二Transformer网络提取更为全面且准确的特征信息,使得最终训练的模型预测的精确度提高。
在另外的实施例中,在第二Transform网络中,还可以设计门控(gate-control)系数,来控制信息传递的多寡,这个系数可以通过深度学习反向传播来学得。通过在该Transform网络中设置门,由门来决策哪些信息该传递,而哪些信息该被遗忘,这样的设计与卷积神经网络中的残差模块非常相似。如此可以使得第二Transform网络具有与残差卷积神经网络类似的功能,以改善在随着Transform网络的层数的增加,预测效果反而越来越差的问题,也即提高了训练的模型预测麻醉深度的精确度。
本公开实施例的方案通过提供一种特定结构的深度神经网络,并训练完成后,使得该网络模型具备预测并输出任意时刻点未来预设时长内如五秒内的手术者体内多种血药浓度,并可以同时输出当前时刻去噪后BIS指数的能力。由于模型输出的是血药浓度和去噪BIS指数,可大大提高预测的客观准确性,增加了模型的预测精度。
本公开实施例的方案至少具有以下有益效果,
1.采用离线测验的时序血药浓度作为标签加固了模型的客观基础,大大提高了模型对麻醉深度预测精度的鲁棒性。
2.同时输出未来五秒内血药浓度预测值和去噪后的BIS指数,为临床决策提供更丰富和更准确的科学依据。
3.transform-flatten技术即轴计算技术使得计算效率大大提高。配合基础层、进阶层双模块网络,使得模型的训练可以更稳定的收敛,模型训练效率提高。
需要说明的是,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。另外,也易于理解的是,这些步骤可以是例如在多个模块/进程/线程中同步或异步执行。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述任一项实施例所述麻醉深度预测方法。
示例性的,该可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
所述计算机可读存储介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读存储介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。可读存储介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
本公开实施例还提供一种电子设备,包括处理器以及存储器,存储器用于存储计算机程序。其中,所述处理器配置为经由执行所述计算机程序来执行上述任一项实施例中麻醉深度预测方法。
下面参照图6来描述根据本发明的这种实施方式的电子设备600。图6显示的电子设备600仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图6所示,电子设备600以通用计算设备的形式表现。电子设备600的组件可以包括但不限于:至少一个处理单元610、至少一个存储单元620、连接不同系统组件(包括存储单元620和处理单元610)的总线630、显示单元640等。
其中,所述存储单元存储有程序代码,所述程序代码可以被所述处理单元610执行,使得所述处理单元610执行本说明书上述方法实施例部分中描述的根据本发明各种示例性实施方式的步骤。例如,所述处理单元610可以执行如图2中所示方法的步骤。
所述存储单元620可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)6201和/或高速缓存存储单元6202,还可以进一步包括只读存储单元(ROM)6203。
所述存储单元620还可以包括具有一组(至少一个)程序模块6205的程序/实用工具6204,这样的程序模块6205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线630可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备600也可以与一个或多个外部设备700(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备600交互的设备通信,和/或与使得该电子设备600能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口650进行。并且,电子设备600还可以通过网络适配器660与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。网络适配器660可以通过总线630与电子设备600的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备600使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、或者网络设备等)执行根据本公开实施方式的上述各实施例的麻醉深度预测方法步骤。
本公开实施例还提供一种闭环自调节AI注射泵,包括:处理器;以及存储器,用于存储计算机程序;其中,所述处理器配置为经由执行所述计算机程序来执行以下步骤:1)获取患者在当前时刻的麻醉深度监测指数和未来预设时长内的血药浓度预测值;其中,所述麻醉深度监测指数和未来预设时长内的血药浓度预测值由上述任一实施例的麻醉深度预测方法得到(具体参考前述实施例中的详细描述);2)基于所述麻醉深度监测指数和/或未来预设时长内的血药浓度预测值,控制调整所述注射泵泵送的麻醉药的注射剂量。
示例性的,闭环自调节AI注射泵可以与上述电子设备如医疗电子设备通信连接,以获取患者在当前时刻的麻醉深度监测指数和未来预设时长内的血药浓度预测值,同时通过管路与储存麻醉药物的容器连接,并通过另一管路连接的注射针插入患者相应需麻醉的部位(图未示)。该AI注射泵工作时从容器中抽取麻醉药物通过注射针注射入患者体内,其中的处理器如微处理器作为控制器来自动控制调整该注射泵泵送的麻醉药的注射剂量,例如麻醉深度监测指数大于预设值时,减少注射剂量,麻醉深度监测指数小于另一预设值时,增加注射剂量等。或者,未来预设时长内如5秒内的血药浓度预测值大于预设值,减少注射剂量,而未来预设时长内如5秒内的血药浓度预测值小于另一预设值,增加注射剂量。其它实施例中也可以同时结合麻醉深度监测指数与未来预设时长内如5秒内的血药浓度预测值来调整注射剂量。闭环自调节AI注射泵能够准确调节泵送的麻醉药的注射剂量的关键技术是上述各实施例的麻醉深度预测方法计算得到的麻醉深度监测指数和/或未来预设时长内的血药浓度预测值。
本实施例中的方案使得训练得到的模型预测麻醉深度的精确度大为提高,从而使得基于闭环自调节AI注射泵自动泵送的麻醉药的注射剂量更加准确,也即调节麻醉药用量的准确性提高,最大程度地确保麻醉深度在一个合适的范围内,避免麻醉过浅同时防止麻醉过深,以避免发生术中知晓同时不易影响患者转归,有助于患者术后快速苏醒和减少麻醉后并发症的发生。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种麻醉深度预测方法,其特征在于,包括:
获取患者在当前时刻的生理参数和麻醉药参数;
将所述当前时刻的生理参数和麻醉药参数输入麻醉深度预测模型,以得到麻醉深度监测指数和未来预设时长内的血药浓度预测值;其中,所述麻醉深度预测模型是基于术中时序数据以及回归标签对指定深度神经网络模型训练得到的,所述术中时序数据至少包含患者在多个历史时刻的生理参数和麻醉药参数,所述回归标签包含术中离线测得在所述多个历史时刻的患者血液中的血药浓度。
2.根据权利要求1所述的方法,其特征在于,所述指定深度神经网络模型包括第一Transformer网络,所述指定深度神经网络模型的训练过程包括:基于所述术中时序数据以及回归标签对所述第一Transformer网络进行训练。
3.根据权利要求2所述的方法,其特征在于,该方法还包括:
获取患者的基础信息,所述基础信息至少包括年龄、病史信息和器官功能信息;
基于所述基础信息、所述术中时序数据以及回归标签对所述第一Transformer网络进行训练,其中所述第一Transformer网络基于所述基础信息、所述术中时序数据重构出仿麻醉深度监测指数作为麻醉深度监测指数并输出血药浓度预测值。
4.根据权利要求2所述的方法,其特征在于,所述指定深度神经网络模型还包括第二Transformer网络,该方法还包括:
获取患者的样本麻醉深度监测图谱;
所述指定深度神经网络模型的训练过程还包括:将所述样本麻醉深度监测图谱输入所述第二Transformer网络以得到图谱特征向量;
基于所述图谱特征向量、所述术中时序数据以及回归标签对所述第一Transformer网络同时进行训练,由所述第一Transformer网络输出麻醉深度监测指数和血药浓度预测值。
5.根据权利要求4所述的方法,其特征在于,所述将所述样本麻醉深度监测图谱输入所述第二Transformer网络以得到图谱特征向量,包括:
所述第二Transformer网络基于轴计算算法对所述样本麻醉深度监测图谱进行特征提取以得到图谱特征向量;
其中,所述轴计算算法包括:针对所述样本麻醉深度监测图谱中的每一个像素点,仅计算该像素点与该像素点所在行的其余像素点之间的特征值以及与该像素点所在列的其余像素点之间的特征值。
6.根据权利要求4所述的方法,其特征在于,所述指定深度神经网络模型的训练过程还包括:在基于所述样本麻醉深度监测图谱对所述第二Transformer网络进行训练时,冻结所述第一Transformer网络的参数。
7.根据权利要求4所述的方法,其特征在于,所述第二Transformer网络具有相对位置编码学习功能,和/或,所述第二Transformer网络配置有门控功能。
8.根据权利要求1~7任一项所述的方法,其特征在于,所述生理参数至少包括心率、血压、血氧饱和度中的一个或多个;所述麻醉药参数包括麻醉药种类和注射剂量。
9.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1~8任一项所述麻醉深度预测方法。
10.一种闭环自调节AI注射泵,其特征在于,包括:
处理器;以及
存储器,用于存储计算机程序;
其中,所述处理器配置为经由执行所述计算机程序来执行以下步骤:
获取患者在当前时刻的麻醉深度监测指数和未来预设时长内的血药浓度预测值;其中,所述麻醉深度监测指数和未来预设时长内的血药浓度预测值由上述权利要求1~8任一项所述的方法得到;
基于所述麻醉深度监测指数和/或未来预设时长内的血药浓度预测值,控制调整所述注射泵泵送的麻醉药的注射剂量。
CN202310179459.1A 2023-02-28 2023-02-28 闭环自调节ai注射泵 Active CN116173345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310179459.1A CN116173345B (zh) 2023-02-28 2023-02-28 闭环自调节ai注射泵

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310179459.1A CN116173345B (zh) 2023-02-28 2023-02-28 闭环自调节ai注射泵

Publications (2)

Publication Number Publication Date
CN116173345A true CN116173345A (zh) 2023-05-30
CN116173345B CN116173345B (zh) 2023-12-12

Family

ID=86442046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310179459.1A Active CN116173345B (zh) 2023-02-28 2023-02-28 闭环自调节ai注射泵

Country Status (1)

Country Link
CN (1) CN116173345B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117838063A (zh) * 2024-03-04 2024-04-09 江西杰联医疗设备有限公司 麻醉场景下的生理信息预警处理系统及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5775330A (en) * 1996-07-22 1998-07-07 Battelle Memorial Institute Neurometric assessment of intraoperative anesthetic
US20140155706A1 (en) * 2011-06-17 2014-06-05 Technische Universitaet Muenchen Method and system for quantifying anaesthesia or a state of vigilance
US20150164412A1 (en) * 2013-12-16 2015-06-18 General Electric Company Point of care measurement of patient sensitivity to anesthetics
WO2021110879A1 (en) * 2019-12-06 2021-06-10 École Normale Superieure Paris-Saclay System and method for predicting depth of anesthesia
CN115040140A (zh) * 2022-06-29 2022-09-13 燕山大学 一种基于深度学习的实时麻醉深度监测系统
WO2022190891A1 (ja) * 2021-03-11 2022-09-15 ソニーグループ株式会社 情報処理システム及び情報処理方法
CN115444366A (zh) * 2022-08-30 2022-12-09 广东工业大学 一种麻醉深度预测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5775330A (en) * 1996-07-22 1998-07-07 Battelle Memorial Institute Neurometric assessment of intraoperative anesthetic
US20140155706A1 (en) * 2011-06-17 2014-06-05 Technische Universitaet Muenchen Method and system for quantifying anaesthesia or a state of vigilance
US20150164412A1 (en) * 2013-12-16 2015-06-18 General Electric Company Point of care measurement of patient sensitivity to anesthetics
WO2021110879A1 (en) * 2019-12-06 2021-06-10 École Normale Superieure Paris-Saclay System and method for predicting depth of anesthesia
WO2022190891A1 (ja) * 2021-03-11 2022-09-15 ソニーグループ株式会社 情報処理システム及び情報処理方法
CN115040140A (zh) * 2022-06-29 2022-09-13 燕山大学 一种基于深度学习的实时麻醉深度监测系统
CN115444366A (zh) * 2022-08-30 2022-12-09 广东工业大学 一种麻醉深度预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曹扬, 麻醉药物建模与麻醉深度闭环策略, pages 40 - 82 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117838063A (zh) * 2024-03-04 2024-04-09 江西杰联医疗设备有限公司 麻醉场景下的生理信息预警处理系统及电子设备

Also Published As

Publication number Publication date
CN116173345B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
Coronato et al. Reinforcement learning for intelligent healthcare applications: A survey
Sun et al. Intelligent analysis of medical big data based on deep learning
JP7019127B2 (ja) 強化学習に基づくインスリンの評価
CN113421652A (zh) 对医疗数据进行分析的方法、训练模型的方法及分析仪
CN109805898A (zh) 基于注意力机制时序卷积网络算法的危重症死亡预测方法
CN116173345B (zh) 闭环自调节ai注射泵
Zhu et al. Enhancing self-management in type 1 diabetes with wearables and deep learning
CN110289096A (zh) 一种基于深度学习的icu院内死亡率预测方法
Amin et al. Physiological characterization of electrodermal activity enables scalable near real-time autonomic nervous system activation inference
CN110752002A (zh) 一种药物用量预测装置
CN116884559A (zh) 一种基于语言模型的影像报告生成方法和系统
Dai et al. A closed-loop healthcare processing approach based on deep reinforcement learning
Raheb et al. Subcutaneous insulin administration by deep reinforcement learning for blood glucose level control of type-2 diabetic patients
CN116504413B (zh) 人工智能麻醉管理系统
CN114334179A (zh) 一种数字化医疗管理方法和系统
Boiroux et al. Parameter estimation in type 1 diabetes models for model-based control applications
Wang et al. Blood glucose forecasting using lstm variants under the context of open source artificial pancreas system
CN116129988B (zh) 一种模型构建方法、装置、设备和介质
Gori et al. Predicting treatment outcome by combining different assessment tools: Toward an integrative model of decision support in psychotherapy.
Eapen et al. LesionMap: A method and tool for the semantic annotation of dermatological lesions for documentation and machine learning
Hjerde Evaluating Deep Q-Learning Techniques for Controlling Type 1 Diabetes
US20230058548A1 (en) System and method for predicting blood-glucose concentration
Mendonça et al. Modeling and control of neuromuscular blockade level in general anesthesia: The neuromuscular blockade case
CN114121213A (zh) 麻醉用药信息复核方法、装置、电子设备及存储介质
Zarr et al. Foundations of human spatial problem solving

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant