CN116168173A - Lane line map generation method, device, electronic device and storage medium - Google Patents
Lane line map generation method, device, electronic device and storage medium Download PDFInfo
- Publication number
- CN116168173A CN116168173A CN202310444818.1A CN202310444818A CN116168173A CN 116168173 A CN116168173 A CN 116168173A CN 202310444818 A CN202310444818 A CN 202310444818A CN 116168173 A CN116168173 A CN 116168173A
- Authority
- CN
- China
- Prior art keywords
- map
- lane line
- grid
- target
- lane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000013507 mapping Methods 0.000 claims description 20
- 238000004590 computer program Methods 0.000 claims description 17
- 238000005315 distribution function Methods 0.000 claims description 13
- 238000003384 imaging method Methods 0.000 claims description 10
- 238000010276 construction Methods 0.000 claims description 4
- 230000000007 visual effect Effects 0.000 abstract description 9
- 230000000873 masking effect Effects 0.000 abstract 1
- 230000008569 process Effects 0.000 description 21
- 240000004050 Pentaglottis sempervirens Species 0.000 description 13
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 13
- 238000004422 calculation algorithm Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000013135 deep learning Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/40—Filling a planar surface by adding surface attributes, e.g. colour or texture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/588—Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
- G06T2207/30252—Vehicle exterior; Vicinity of vehicle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Remote Sensing (AREA)
- Computer Graphics (AREA)
- Multimedia (AREA)
- Traffic Control Systems (AREA)
- Image Processing (AREA)
Abstract
本申请涉及一种车道线地图生成方法、装置、电子装置和存储介质,其中,该车道线地图生成方法包括:获取车载相机采集到的原始图像;基于原始图像,确定对应的掩膜图像,掩膜图像中包括车道线属性信息;基于掩膜图像,构建相应的栅格地图;基于掩膜图像以及车载相机的内外参数,将车道线属性信息填充至栅格地图中,得到填充后的栅格地图;基于填充后的栅格地图,生成局部车道线地图。通过本申请,解决了现有技术中无法通过视觉空间的图像信息生成车道线地图的问题,实现了根据视觉空间的图像信息生成了车道线地图。
The present application relates to a lane line map generation method, device, electronic device, and storage medium, wherein the lane line map generation method includes: acquiring an original image collected by a vehicle-mounted camera; determining a corresponding mask image based on the original image, and masking The film image includes lane line attribute information; based on the mask image, the corresponding grid map is constructed; based on the mask image and the internal and external parameters of the vehicle camera, the lane line attribute information is filled into the grid map to obtain the filled grid Map; generate a local lane line map based on the filled grid map. Through this application, the problem in the prior art that the lane line map cannot be generated from the image information of the visual space is solved, and the lane line map is generated according to the image information of the visual space.
Description
技术领域technical field
本申请涉及辅助驾驶技术领域,特别是涉及一种车道线地图生成方法、装置、电子装置和存储介质。The present application relates to the technical field of driving assistance, in particular to a lane line map generation method, device, electronic device and storage medium.
背景技术Background technique
车道线地图能够为智能辅助驾驶领域提供重要的先验信息,例如,能够为智能驾驶车辆的实时定位以及运动规划提供依据,因此,车道线地图的生成引起了相关领域学者的大量关注。Lane map can provide important prior information for the field of intelligent driving assistance, for example, it can provide the basis for real-time positioning and motion planning of intelligent driving vehicles. Therefore, the generation of lane map has attracted a lot of attention from scholars in related fields.
目前的车道线地图大都是基于激光雷达产生的点云数据并结合人工标注的方式生成的,工作量巨大,而且激光雷达传感器本身价格昂贵,并且,激光雷达强度信息容易受积水、车道线材质和磨损程度的影响,导致地图的完整度低。并且,在基于视觉空间的图像信息生成车道线地图方面,目前还没有提出有效的解决方案。Most of the current lane line maps are generated based on the point cloud data generated by lidar and combined with manual labeling. And the degree of wear and tear, resulting in low integrity of the map. Moreover, no effective solution has been proposed so far for generating lane line maps based on visual-spatial image information.
如何利用视觉空间的图像信息生成车道线地图,是一个需要解决的问题。How to use the image information of visual space to generate lane line map is a problem that needs to be solved.
发明内容Contents of the invention
在本实施例中提供了一种车道线地图生成方法、装置、电子装置和存储介质,以解决相关技术中如何利用视觉空间的图像信息生成车道线地图的问题。In this embodiment, a lane line map generation method, device, electronic device and storage medium are provided to solve the problem of how to use visual space image information to generate a lane line map in the related art.
第一个方面,在本实施例中提供了一种车道线地图生成方法,包括:In the first aspect, a method for generating a lane line map is provided in this embodiment, including:
获取车载相机采集到的原始图像;Obtain the original image collected by the on-board camera;
基于所述原始图像,确定对应的掩膜图像,所述掩膜图像中包括车道线属性信息;Determine a corresponding mask image based on the original image, where the mask image includes lane line attribute information;
基于所述掩膜图像,构建相应的栅格地图;Constructing a corresponding grid map based on the mask image;
基于所述掩膜图像以及所述车载相机的内外参数,将所述车道线属性信息填充至所述栅格地图中,得到填充后的栅格地图;Filling the lane line attribute information into the grid map based on the mask image and the internal and external parameters of the vehicle camera to obtain a filled grid map;
基于所述填充后的栅格地图,生成局部车道线地图。Based on the filled grid map, a local lane line map is generated.
在其中的一些实施例中,所述基于所述掩膜图像,构建相应的栅格地图,包括:In some of these embodiments, the constructing a corresponding grid map based on the mask image includes:
获取所述车载相机的内外参数;Obtain the internal and external parameters of the vehicle camera;
基于所述车载相机的内外参数将所述掩膜图像转换为所述栅格地图。Converting the mask image into the grid map based on extrinsic and extrinsic parameters of the onboard camera.
在其中的一些实施例中,所述基于所述掩膜图像以及所述车载相机的内外参数,将所述车道线属性信息填充至所述栅格地图中,得到填充后的栅格地图,包括:In some of these embodiments, based on the mask image and the internal and external parameters of the vehicle camera, the lane line attribute information is filled into the grid map, and the filled grid map is obtained, including :
基于所述车载相机的内外参数,将所述栅格地图投影至所述车载相机的成像平面,得到无畸变地图;Based on the internal and external parameters of the vehicle camera, project the grid map to the imaging plane of the vehicle camera to obtain a distortion-free map;
获取所述车载相机中无畸变图像与畸变图像之间的映射关系;Obtain the mapping relationship between the undistorted image and the distorted image in the vehicle-mounted camera;
基于所述无畸变地图以及所述映射关系,得到所述栅格地图对应的畸变地图;Obtaining a distortion map corresponding to the grid map based on the distortion-free map and the mapping relationship;
基于所述掩膜图像以及所述畸变地图,将所述车道线属性信息填充至所述栅格地图中,得到填充后的栅格地图。Based on the mask image and the distortion map, the lane line attribute information is filled into the grid map to obtain a filled grid map.
在其中的一些实施例中,所述车道线属性信息包括多个属性类别,在所述基于所述填充后的栅格地图,生成局部车道线地图之后,所述方法还包括:In some of these embodiments, the lane line attribute information includes a plurality of attribute categories, and after the local lane line map is generated based on the filled grid map, the method further includes:
获取所述车载相机在不同位姿下对应的多个局部车道线地图;Obtaining a plurality of local lane line maps corresponding to the vehicle-mounted camera in different poses;
基于多个所述局部车道线条地图,确定初始全局车道线地图;determining an initial global lane line map based on a plurality of said local lane line maps;
确定目标栅格的观测总次数,以及所述目标栅格每次观测对应的属性类别,所述目标栅格为所述初始全局车道线地图中的任一栅格;Determine the total number of observations of the target grid, and the attribute category corresponding to each observation of the target grid, where the target grid is any grid in the initial global lane line map;
基于所述目标栅格在每一属性类别中的属性观测次数、所述观测总次数以及预设阈值,确定所述目标栅格的目标属性类别;determining the target attribute category of the target grid based on the number of attribute observations of the target grid in each attribute category, the total number of observations, and a preset threshold;
基于所述初始全局车道线地图中所有栅格的目标属性类别,生成目标全局车道线地图。Based on the target attribute categories of all grids in the initial global lane line map, a target global lane line map is generated.
在其中的一些实施例中,所述基于所述目标栅格在每一属性类别中的属性观测次数、所述观测总次数以及预设阈值,确定所述目标栅格的目标属性类别,包括:In some of these embodiments, the determining the target attribute category of the target grid based on the number of attribute observations of the target grid in each attribute category, the total number of observations, and a preset threshold includes:
基于所述目标栅格在每一属性类别的属性观测次数以及所述观测总次数,确定所述目标栅格在每一属性类别对应的类别概率;Based on the number of attribute observations of the target grid in each attribute category and the total number of observations, determine the category probability corresponding to the target grid in each attribute category;
基于各类别概率以及所述预设阈值,确定所述目标栅格的目标属性类别。Determine the target attribute category of the target grid based on the probability of each category and the preset threshold.
在其中的一些实施例中,在基于所述初始全局车道线地图中所有栅格的目标属性类别,生成目标全局车道线地图之后,所述方法还包括:In some of these embodiments, after generating the target global lane line map based on the target attribute categories of all grids in the initial global lane line map, the method further includes:
获取所述目标全局车道线地图的分布参数;Obtain the distribution parameters of the target global lane line map;
基于所述分布参数、所述目标全局车道线地图中的车道线在每一属性类别中当前的属性观测次数以及所述目标全局车道线地图中的车道线的当前观测总次数,对所述目标全局车道线地图进行更新。Based on the distribution parameters, the current number of attribute observations of lane lines in each attribute category in the target global lane line map, and the current total number of observations of lane lines in the target global lane line map, the target The global lane line map is updated.
在其中的一些实施例中,所述基于所述分布参数、所述目标全局车道线地图中的车道线在每一属性类别中当前的属性观测次数以及所述目标全局车道线地图中的车道线的当前观测总次数,对所述目标全局车道线地图进行更新,包括:In some of these embodiments, the current attribute observation times of the lane lines in each attribute category based on the distribution parameters, the lane lines in the target global lane line map, and the lane lines in the target global lane line map The current total number of observations of the target global lane line map is updated, including:
所述基于所述分布参数、所述目标全局车道线地图中的车道线在每一属性类别中当前的属性观测次数以及所述目标全局车道线地图中的车道线的当前观测总次数,确定所述目标全局车道线地图当前的概率分布函数;Based on the distribution parameters, the current number of attribute observations of lane lines in each attribute category in the target global lane line map, and the current total number of observation times of lane lines in the target global lane line map, the determined Describe the current probability distribution function of the target global lane line map;
基于所述当前的概率分布函数,对所述目标全局车道线地图进行更新。Based on the current probability distribution function, the target global lane map is updated.
第二个方面,在本实施例中提供了一种车道线地图生成装置,包括:In the second aspect, in this embodiment, a lane line map generation device is provided, including:
获取模块,用于获取车载相机采集到的原始图像;The obtaining module is used to obtain the original image collected by the vehicle-mounted camera;
确定模块,用于基于所述原始图像,确定对应的掩膜图像,所述掩膜图像中包括车道线属性信息;A determining module, configured to determine a corresponding mask image based on the original image, where the mask image includes lane line attribute information;
构建模块,用于基于所述掩膜图像,构建相应的栅格地图;A building module for building a corresponding grid map based on the mask image;
填充模块,用于基于所述掩膜图像以及所述车载相机的内外参数,将所述车道线属性信息填充至所述栅格地图中,得到填充后的栅格地图;A filling module, configured to fill the lane line attribute information into the grid map based on the mask image and internal and external parameters of the vehicle camera, to obtain a filled grid map;
生成模块,用于基于所述填充后的栅格地图,生成局部车道线地图。A generating module, configured to generate a local lane line map based on the filled grid map.
第三个方面,在本实施例中提供了一种电子装置,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述第一个方面以及第一方面任一实施例所述的车道线地图生成方法。In the third aspect, this embodiment provides an electronic device, including a memory, a processor, and a computer program stored in the memory and operable on the processor, and the processor executes the computer program The program implements the first aspect above and the lane line map generation method described in any embodiment of the first aspect.
第四个方面,在本实施例中提供了一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述第一个方面以及第一方面任一实施例所述的车道线地图生成方法。In the fourth aspect, this embodiment provides a storage medium on which a computer program is stored, and when the program is executed by a processor, it realizes the first aspect and the lane marking described in any embodiment of the first aspect Map generation method.
与相关技术相比,在本实施例中提供的车道线地图生成方法,通过车载相机采集的原始图像确定对应的掩膜图像,其中,掩膜图像包括车道线的属性信息,进一步地,根据掩膜图像构建对应的栅格地图,并根据掩膜图像以及车载相机的内外参数,将掩膜图像中的车道线属性信息填充至对应的栅格地图中,得到填充后的栅格地图,从而使填充后的栅格地图中包括车道线的属性信息,进一步地,根据填充后的栅格地图生成局部车道线地图,从而通过车载相机采集的视觉空间的图像信息生成了车道线地图,避免了由于天气、车道线材质以及其他因素对激光雷达的影响,导致生成的车道线地图的完整度低的问题,通过本申请提供的根据视觉空间的图像信息生成的车道线地图,算法逻辑简单清晰,能够为智能驾驶车辆的实时定位以及运动规划提供准确的先验信息。Compared with related technologies, the lane line map generation method provided in this embodiment determines the corresponding mask image through the original image collected by the vehicle-mounted camera, wherein the mask image includes the attribute information of the lane line, and further, according to the mask The mask image is used to construct the corresponding grid map, and according to the mask image and the internal and external parameters of the vehicle camera, the lane line attribute information in the mask image is filled into the corresponding grid map to obtain the filled grid map, so that The filled grid map includes the attribute information of the lane line. Further, a local lane line map is generated according to the filled grid map, so that the lane line map is generated from the image information of the visual space collected by the vehicle camera, which avoids the The influence of weather, lane line material and other factors on the lidar leads to the problem of low integrity of the generated lane line map. The lane line map generated according to the visual space image information provided by this application has simple and clear algorithm logic and can Provide accurate prior information for real-time positioning and motion planning of intelligent driving vehicles.
本申请的一个或多个实施例的细节在以下附图和描述中提出,以使本申请的其他特征、目的和优点更加简明易懂。The details of one or more embodiments of the application are set forth in the accompanying drawings and the description below, so as to make other features, objects, and advantages of the application more comprehensible.
附图说明Description of drawings
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The drawings described here are used to provide a further understanding of the application and constitute a part of the application. The schematic embodiments and descriptions of the application are used to explain the application and do not constitute an improper limitation to the application. In the attached picture:
图1是本申请实施例提供的一种车道线地图生成方法的应用场景示意图;FIG. 1 is a schematic diagram of an application scenario of a lane line map generation method provided by an embodiment of the present application;
图2是本申请实施例提供的一种车道线地图生成方法的流程图;Fig. 2 is a flow chart of a method for generating a lane line map provided in an embodiment of the present application;
图3是本申请实施例提供的一种成像平面与鸟瞰图视角平面的示意图;Fig. 3 is a schematic diagram of an imaging plane and a perspective plane of a bird's-eye view provided by an embodiment of the present application;
图4是本申请实施例的一种车道线地图生成方法的实施例流程图;Fig. 4 is the flow chart of an embodiment of a method for generating a lane line map according to an embodiment of the present application;
图5是本申请实施例提供的一种园区环境下的车道线地图示意图;FIG. 5 is a schematic diagram of a lane line map in a park environment provided by an embodiment of the present application;
图6是本申请实施例提供的一种车道线地图生成装置的结构框图;Fig. 6 is a structural block diagram of a lane line map generation device provided by an embodiment of the present application;
图7是本申请实施例提供的一种计算机设备的内部结构示意图。Fig. 7 is a schematic diagram of an internal structure of a computer device provided by an embodiment of the present application.
具体实施方式Detailed ways
为更清楚地理解本申请的目的、技术方案和优点,下面结合附图和实施例,对本申请进行了描述和说明。In order to understand the purpose, technical solution and advantages of the present application more clearly, the present application is described and illustrated below in conjunction with the accompanying drawings and embodiments.
除另作定义外,本申请所涉及的技术术语或者科学术语应具有本申请所属技术领域具备一般技能的人所理解的一般含义。在本申请中的“一”、“一个”、“一种”、“该”、“这些”等类似的词并不表示数量上的限制,它们可以是单数或者复数。在本申请中所涉及的术语“包括”、“包含”、“具有”及其任何变体,其目的是涵盖不排他的包含;例如,包含一系列步骤或模块(单元)的过程、方法和系统、产品或设备并未限定于列出的步骤或模块(单元),而可包括未列出的步骤或模块(单元),或者可包括这些过程、方法、产品或设备固有的其他步骤或模块(单元)。在本申请中所涉及的“连接”、“相连”、“耦接”等类似的词语并不限定于物理的或机械连接,而可以包括电气连接,无论是直接连接还是间接连接。在本申请中所涉及的“多个”是指两个或两个以上。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。通常情况下,字符“/”表示前后关联的对象是一种“或”的关系。在本申请中所涉及的术语“第一”、“第二”、“第三”等,只是对相似对象进行区分,并不代表针对对象的特定排序。Unless otherwise defined, the technical terms or scientific terms involved in the application shall have the general meanings understood by those skilled in the technical field to which the application belongs. In this application, words like "a", "an", "an", "the", "these" and the like do not denote quantitative limitations, and they may be singular or plural. The terms "comprising", "comprising", "having" and any variants thereof referred to in this application are intended to cover non-exclusive inclusion; for example, processes, methods and The system, product, or apparatus is not limited to the steps or modules (units) listed, but may include steps or modules (units) that are not listed, or may include other steps or modules that are inherent to the process, method, product, or apparatus (unit). The terms "connected", "connected", "coupled" and the like referred to in this application are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. "Plurality" referred to in this application means two or more. "And/or" describes the association relationship of associated objects, indicating that there may be three types of relationships. For example, "A and/or B" may indicate: A exists alone, A and B exist simultaneously, and B exists independently. Usually, the character "/" indicates that the objects associated before and after are in an "or" relationship. The terms "first", "second", "third" and the like involved in this application are only for distinguishing similar objects, and do not represent a specific ordering of objects.
本申请实施例提供的车道线地图生成方法,可以应用于如图1所示的应用场景中,图1是本申请实施例提供的一种车道线地图生成方法的应用场景示意图。其中,终端102通过网络与服务器104进行通信。数据存储系统可以存储服务器104需要处理的数据。数据存储系统可以集成在服务器104上,也可以放在云上或其他网络服务器上。在本申请实施例中,终端102可以是智能车载设备,终端102也可以是各种个人计算机、笔记本电脑、智能手机、平板电脑、物联网设备和便携式可穿戴设备,物联网设备可为智能音箱、智能电视、智能空调等。服务器104可以用独立的服务器或者是多个服务器组成的服务器集群来实现。The lane line map generation method provided by the embodiment of the present application can be applied to the application scenario shown in FIG. 1 , and FIG. 1 is a schematic diagram of an application scenario of a lane line map generation method provided by the embodiment of the present application. Wherein, the terminal 102 communicates with the
车道线地图能够为智能辅助驾驶领域提供重要的先验信息,例如,能够为智能驾驶车辆的实时定位以及运动规划提供依据,因此,车道线地图的生成引起了相关领域学者的大量关注。Lane map can provide important prior information for the field of intelligent driving assistance, for example, it can provide the basis for real-time positioning and motion planning of intelligent driving vehicles. Therefore, the generation of lane map has attracted a lot of attention from scholars in related fields.
目前的车道线地图大都是基于激光雷达产生的点云数据并结合人工标注的方式生成的,工作量巨大,而且激光雷达传感器本身价格昂贵,并且,激光雷达强度信息容易受积水、车道线材质和磨损程度的影响,导致地图的完整度低。并且,在基于视觉空间的图像信息生成车道线地图方面,目前还没有提出有效的解决方案。Most of the current lane line maps are generated based on the point cloud data generated by lidar and combined with manual labeling. And the degree of wear and tear, resulting in low integrity of the map. Moreover, no effective solution has been proposed so far for generating lane line maps based on visual-spatial image information.
如何利用视觉空间的图像信息生成车道线地图,是一个需要解决的问题。How to use the image information of visual space to generate lane line map is a problem that needs to be solved.
在本实施例中提供了一种车道线地图生成方法,图2是本申请实施例提供的一种车道线地图生成方法的流程图,该方法的执行主体可以是电子装置,可选的,电子装置可以是服务器,也可以是终端设备,但本申请不限于此。具体的,如图2所示,该流程包括如下步骤:In this embodiment, a method for generating a lane line map is provided. FIG. 2 is a flowchart of a method for generating a lane line map provided in an embodiment of the present application. The execution subject of the method may be an electronic device, and optionally, an electronic The device may be a server or a terminal device, but the present application is not limited thereto. Specifically, as shown in Figure 2, the process includes the following steps:
步骤S201,获取车载相机采集到的原始图像。Step S201, acquiring the original image collected by the vehicle-mounted camera.
步骤S202,基于原始图像,确定对应的掩膜图像。Step S202, based on the original image, determine the corresponding mask image.
其中,所述掩膜图像中包括车道属性信息。Wherein, the mask image includes lane attribute information.
具体的,车道属性信息可以包括实线、虚线、停止线以及其他四类,更具体的,车道属性信息也可以是实线、虚线、停止线以及其他对应的标签,例如,实线的标签为1,虚线的标签为2,停止线的标签为3,其他的标签为0。Specifically, the lane attribute information may include solid lines, dashed lines, stop lines, and other four categories. More specifically, the lane attribute information may also include solid lines, dashed lines, stop lines, and other corresponding labels. For example, the label of a solid line is 1, the label of the dashed line is 2, the label of the stop line is 3, and the label of the others is 0.
示例性地,通过车载相机获取待生成地图区域的原始图像,待生成地图区域中包括车道线。Exemplarily, the original image of the map area to be generated is acquired by a vehicle-mounted camera, and the map area to be generated includes lane lines.
具体的,车载相机可以是车载单目相机,也可以是车载双目相机,本申请实施例以车载相机是车载单目相机为例进行说明,在此不做限制。Specifically, the vehicle-mounted camera may be a vehicle-mounted monocular camera, or may be a vehicle-mounted binocular camera. In the embodiment of the present application, the vehicle-mounted camera is a vehicle-mounted monocular camera as an example for illustration, and no limitation is set here.
进一步地,根据获取的原始图像,利用深度学习算法,确定原始图像对应的掩膜图像。具体的,可以根据transformer的深度学习算法,得到原始图像中车道线的纹理信息,进一步地,根据车道线的纹理信息得到对应的掩膜图像,其中,该掩膜图像中可以包括车道线的属性信息。Further, according to the acquired original image, a mask image corresponding to the original image is determined using a deep learning algorithm. Specifically, the texture information of the lane lines in the original image can be obtained according to the deep learning algorithm of the transformer, and further, the corresponding mask image can be obtained according to the texture information of the lane lines, wherein the mask image can include the attributes of the lane lines information.
需要说明的是,本申请实施例中,仅以transformer的深度学习算法为例进行说明,在实际应用中,也可以采用R-CNN算法、SPP-Net算法、Fast R-CNN算法以及FPN算法中的一种或多种,也可以采用其他类型的深度学习算法,在此不做限制。It should be noted that in the embodiment of this application, only the deep learning algorithm of transformer is used as an example for illustration. In practical applications, R-CNN algorithm, SPP-Net algorithm, Fast R-CNN algorithm and FPN algorithm can also be used One or more of other types of deep learning algorithms can also be used, which is not limited here.
步骤S203,基于掩膜图像,构建相应的栅格地图。Step S203, constructing a corresponding grid map based on the mask image.
进一步地,根据掩膜图像构建对应的栅格地图,从而得到鸟瞰图视觉下的栅格地图。Further, the corresponding grid map is constructed according to the mask image, so as to obtain the grid map under the bird's-eye view.
步骤S204,基于掩膜图像以及车载相机的内外参数,将车道线属性信息填充至栅格地图中,得到填充后的栅格地图。Step S204, based on the mask image and the internal and external parameters of the vehicle camera, fill the lane line attribute information into the grid map to obtain the filled grid map.
示例性地,基于掩膜图像以及车载相机的内外参数,确定掩膜图像与栅格地图之间的位置转换关系,进一步地,根据该转换关系,将掩膜图像中车道线属性信息填充至栅格地图中的对应位置,从而得到填充后的栅格地图。Exemplarily, based on the mask image and the internal and external parameters of the vehicle camera, the position conversion relationship between the mask image and the grid map is determined, and further, according to the conversion relationship, the lane line attribute information in the mask image is filled into the grid The corresponding position in the grid map, so as to obtain the filled grid map.
步骤S205,基于填充后的栅格地图,生成局部车道线地图。Step S205, generating a local lane line map based on the filled grid map.
示例性地,将填充后的栅格地图确定为局部车道线地图。Exemplarily, the filled grid map is determined as a local lane line map.
在上述实现过程中,通过车载相机采集的原始图像确定对应的掩膜图像,其中,掩膜图像包括车道线的属性信息,进一步地,根据掩膜图像构建对应的栅格地图,并根据掩膜图像以及车载相机的内外参数,将掩膜图像中的车道线属性信息填充至对应的栅格地图中,得到填充后的栅格地图,从而使填充后的栅格地图中包括车道线的属性信息,进一步地,根据填充后的栅格地图生成局部车道线地图,从而通过车载相机采集的视觉空间的图像信息生成了车道线地图,避免了由于天气、车道线材质以及其他因素对激光雷达的影响,导致生成的车道线地图的完整度低的问题,通过本申请提供的根据视觉空间的图像信息生成的车道线地图,算法逻辑简单清晰,能够为智能驾驶车辆的实时定位以及运动规划提供准确的先验信息。In the above implementation process, the corresponding mask image is determined through the original image collected by the vehicle-mounted camera, wherein the mask image includes the attribute information of the lane line, further, the corresponding grid map is constructed according to the mask image, and according to the mask Image and the internal and external parameters of the vehicle camera, fill the lane line attribute information in the mask image into the corresponding grid map, and obtain the filled grid map, so that the filled grid map includes the lane line attribute information , further, a local lane line map is generated according to the filled grid map, so that the lane line map is generated from the image information of the visual space collected by the vehicle camera, which avoids the influence of the weather, lane line material and other factors on the lidar , leading to the problem of low integrity of the generated lane line map. The lane line map generated according to the visual space image information provided by this application has simple and clear algorithm logic, which can provide accurate real-time positioning and motion planning for intelligent driving vehicles. Prior Information.
在其中的一些实施例中,基于掩膜图像,构建相应的栅格地图,可以包括以下步骤:In some of the embodiments, constructing a corresponding grid map based on the mask image may include the following steps:
步骤1:获取车载相机的内外参数。Step 1: Obtain the internal and external parameters of the vehicle camera.
步骤2:基于车载相机的内外参数将掩膜图像转换为栅格地图。Step 2: Convert the mask image to a raster map based on the extrinsic and extrinsic parameters of the on-board camera.
示例性地,获取车载相机的内外参数,进一步地,根据车载相机的内外参数可以确定出掩膜图像与鸟瞰图之间的位置转换关系,进而,可以根据掩膜图像与鸟瞰图之间的位置转换关系,将掩膜图像中车道线的位置信息转换至鸟瞰图中,从而得到鸟瞰图视觉下的栅格地图。Exemplarily, the internal and external parameters of the vehicle-mounted camera are obtained. Further, according to the internal and external parameters of the vehicle-mounted camera, the position conversion relationship between the mask image and the bird's-eye view can be determined, and further, according to the position between the mask image and the bird's-eye view The conversion relationship converts the position information of the lane line in the mask image to the bird's-eye view, so as to obtain the grid map under the bird's-eye view.
在上述实现过程中,根据车载相机的内外参数确定出掩膜图像与鸟瞰图之间的位置转换关系,进而根据掩膜图像与鸟瞰图之间的位置转换关系,以及设定的栅格地图的大小和分辨率,确定出鸟瞰图视觉下的栅格地图,从而实现了栅格地图的构建。In the above implementation process, the position conversion relationship between the mask image and the bird's-eye view is determined according to the internal and external parameters of the vehicle camera, and then according to the position conversion relationship between the mask image and the bird's-eye view, and the set grid map The size and resolution determine the grid map under the bird's-eye view, thus realizing the construction of the grid map.
在其中的一些实施例中,基于掩膜图像以及车载相机的内外参数,将车道线属性信息填充至栅格地图中,得到填充后的栅格地图,可以包括以下步骤:In some of these embodiments, based on the mask image and the internal and external parameters of the vehicle camera, filling the lane line attribute information into the grid map to obtain the filled grid map may include the following steps:
步骤1:基于车载相机的内外参数,将栅格地图投影至车载相机的成像平面,得到无畸变地图。Step 1: Based on the internal and external parameters of the vehicle camera, project the grid map to the imaging plane of the vehicle camera to obtain a distortion-free map.
步骤2:获取车载相机中无畸变图像与畸变图像之间的映射关系。Step 2: Obtain the mapping relationship between the undistorted image and the distorted image in the vehicle camera.
步骤3:基于无畸变地图以及映射关系,得到栅格地图对应的畸变地图。Step 3: Obtain the distortion map corresponding to the grid map based on the undistorted map and the mapping relationship.
步骤4:基于掩膜图像以及畸变地图,将车道线属性信息填充至栅格地图中,得到填充后的栅格地图。Step 4: Based on the mask image and the distortion map, fill the lane line attribute information into the grid map to obtain the filled grid map.
由于光学系统对物体所成的像相对于物体本身而言会产生失真,即为畸变,其直接原因是因为透镜的边缘部分和中心部分的放大倍率不一样。透镜的畸变是不可消除的,但可以通过车载相机中无畸变图像与畸变图像之间的映射关系,根据无畸变图像确定出对应的畸变图像,或者,根据畸变图像确定出对应的无畸变图像。Because the image formed by the optical system on the object will be distorted relative to the object itself, that is, distortion, the direct reason is that the magnification of the edge part of the lens is different from that of the center part. The distortion of the lens cannot be eliminated, but the corresponding distorted image can be determined based on the undistorted image through the mapping relationship between the undistorted image and the distorted image in the vehicle camera, or the corresponding undistorted image can be determined based on the distorted image.
示例性地,根据车载相机的内外参数,将栅格地图中的每个栅格投影至车载相机的成像平面,从而得到投影后的地图,并且,通过投影方式得到的地图是无畸变的,也就是说,投影后的地图也为无畸变地图。Exemplarily, according to the internal and external parameters of the vehicle camera, each grid in the grid map is projected to the imaging plane of the vehicle camera, so as to obtain the projected map, and the map obtained by the projection method is undistorted, and also That is to say, the projected map is also a distortion-free map.
图3是本申请实施例提供的一种成像平面与鸟瞰图视角平面的示意图,如图3所示,车载相机所在的坐标系为OXYZ,其成像平面为uν所在平面,鸟瞰图视角平面为图3中的粗线所在平面,即为栅格地图所在平面。Fig. 3 is a schematic diagram of an imaging plane and a perspective plane of a bird's-eye view provided by an embodiment of the present application. As shown in Fig. 3 , the coordinate system of the vehicle-mounted camera is OXYZ, the imaging plane is the plane where uν is located, and the perspective plane of the bird's-eye view is Fig. The plane where the thick line in 3 is located is the plane where the grid map is located.
由于掩膜图像是通过有畸变的原始图像得到的,因此,掩膜图像是有畸变的,为了准确地确定掩膜图像与栅格地图之间的位置对应关系,因此需要确定投影后的地图对应的畸变图像。Since the mask image is obtained from the original image with distortion, the mask image is distorted. In order to accurately determine the position correspondence between the mask image and the raster map, it is necessary to determine the map correspondence after projection. distorted image.
具体的,可以获取车载相机中无畸变图像与畸变图像之间的映射关系,并根据无畸变地图以及该映射关系,确定出投影后的地图对应的畸变图像,即为栅格地图对应的畸变地图。Specifically, the mapping relationship between the undistorted image and the distorted image in the vehicle camera can be obtained, and according to the undistorted map and the mapping relationship, the distorted image corresponding to the projected map can be determined, which is the distorted map corresponding to the grid map .
进一步地,由于掩膜图像以及畸变地图都是有畸变的,并且,掩膜图像中的车道线位置与畸变地图中的车道线位置是一一对应的,因此,可以将掩膜图像中的车道线的属性信息对应至畸变图像中,而畸变图像是根据栅格地图进行位置转换得到的,因此,可以确定出栅格地图中与掩膜图像位置对应的车道线的属性信息,并将掩膜图像中每一位置的车道线属性信息填充至栅格地图中,从而得到填充后的栅格地图。Further, since both the mask image and the distortion map are distorted, and the position of the lane line in the mask image is in one-to-one correspondence with the position of the lane line in the distortion map, the lane line in the mask image can be The attribute information of the line corresponds to the distorted image, and the distorted image is obtained by position conversion according to the grid map. Therefore, the attribute information of the lane line corresponding to the position of the mask image in the grid map can be determined, and the mask image The lane line attribute information of each position in the image is filled into the grid map, so as to obtain the filled grid map.
在上述实现过程中,根据车载相机的内外参数,将栅格地图投影至车载相机的成像平面,得到无畸变地图,从而得到与掩膜图像在同一平面的无畸变地图,进一步地,考虑到车载相机的畸变对位置的影响,并且,掩膜图像是畸变图像,则根据车载相机中无畸变图像与畸变图像之间的映射关系,确定出无畸变图像对应的畸变图像,从而得到与掩膜图像在同一平面的畸变地图,从而可以根据掩膜图像与畸变地图位置对应关系,确定畸变地图中对应位置的车道线属性信息,而畸变地图与栅格地图位置对应,进一步地,确定出栅格地图中对应位置的车道线属性信息,并将每一位置的车道线属性信息填充至栅格地图中,从而得到填充后的栅格地图。In the above implementation process, according to the internal and external parameters of the vehicle camera, the grid map is projected to the imaging plane of the vehicle camera to obtain a distortion-free map, so as to obtain a distortion-free map on the same plane as the mask image. Further, considering the vehicle-mounted The influence of the distortion of the camera on the position, and the mask image is a distorted image, then according to the mapping relationship between the undistorted image and the distorted image in the vehicle camera, the distorted image corresponding to the undistorted image is determined, so as to obtain the mask image The distorted map on the same plane, so that the lane line attribute information of the corresponding position in the distorted map can be determined according to the corresponding relationship between the mask image and the distorted map position, and the distorted map corresponds to the position of the grid map, and further, the grid map can be determined The attribute information of the lane line at the corresponding position, and fill the attribute information of the lane line at each position into the grid map, so as to obtain the filled grid map.
在其中的一些实施例中,获取车载相机中无畸变图像与畸变图像之间的映射关系,可以包括以下步骤:In some of these embodiments, obtaining the mapping relationship between the undistorted image and the distorted image in the vehicle-mounted camera may include the following steps:
步骤1:获取车载相机的畸变参数。Step 1: Obtain the distortion parameters of the vehicle camera.
步骤2:根据畸变参数以及原始图像,确定无畸变图像与畸变图像之间的映射关系。Step 2: Determine the mapping relationship between the undistorted image and the distorted image according to the distortion parameters and the original image.
示例性地,可以利用棋盘格对车载相机进行标定,得到车载相机畸变参数,具体的,车载相机畸变参数可以为:(k1,k2,p1,p2,k3),其中,(k1,k2,k3)是径向畸变参数,(p1,p2)是切向畸变参数。Exemplarily, the vehicle-mounted camera can be calibrated using a checkerboard to obtain the distortion parameters of the vehicle-mounted camera. Specifically, the distortion parameters of the vehicle-mounted camera can be: (k 1 , k 2 , p 1 , p 2 , k 3 ), where, ( k 1 , k 2 , k 3 ) are radial distortion parameters, and (p 1 , p 2 ) are tangential distortion parameters.
进一步地,根据畸变参数确定出原始图像中每一位置对应的无畸变位置,从而确定出无畸变图像与畸变图像之间的映射关系。Further, the undistorted position corresponding to each position in the original image is determined according to the distortion parameters, so as to determine the mapping relationship between the undistorted image and the distorted image.
在上述实现过程中,根据车载相机的畸变参数以及原始图像,确定无畸变图像与畸变图像之间的映射关系,从而便于根据该映射关系进行无畸变图像与畸变图像之间的位置转换。In the above implementation process, according to the distortion parameters of the vehicle camera and the original image, the mapping relationship between the undistorted image and the distorted image is determined, so as to facilitate the position conversion between the undistorted image and the distorted image according to the mapping relationship.
在其中的一些实施例中,车道线属性信息包括多个属性类别,在基于填充后的栅格地图,生成局部车道线地图之后,该方法还可以包括以下步骤:In some of these embodiments, the lane line attribute information includes a plurality of attribute categories, and after the local lane line map is generated based on the filled grid map, the method may further include the following steps:
步骤1:获取车载相机在不同位姿下对应的多个局部车道线地图。Step 1: Obtain multiple local lane line maps corresponding to vehicle cameras in different poses.
步骤2:基于多个局部车道线条地图,确定初始全局车道线地图。Step 2: Based on multiple local lane line maps, determine an initial global lane line map.
步骤3:确定目标栅格的观测总次数,以及目标栅格每次观测对应的属性类别,目标栅格为初始全局车道线地图中的任一栅格。Step 3: Determine the total number of observations of the target grid and the attribute category corresponding to each observation of the target grid. The target grid is any grid in the initial global lane line map.
步骤4:基于目标栅格在每一属性类别中的属性观测次数、观测总次数以及预设阈值,确定目标栅格的目标属性类别。Step 4: Determine the target attribute category of the target grid based on the number of attribute observations of the target grid in each attribute category, the total number of observations, and a preset threshold.
步骤5:基于初始全局车道线地图中所有栅格的目标属性类别,生成目标全局车道线地图。Step 5: Generate the target global lane map based on the target attribute categories of all grids in the initial global lane map.
示例性地,由于局部车道线是通过车载相机获取的,车载相机在获取图像时,会根据设定的频率获取,例如,车载相机的频率一般为20hz至30hz,即一秒可以获取20至30次图像,对应的会得到20至30个局部车道线地图,具体的,可以将一个局部车道线地图作为一次观测,即每次观测完成了局部车道线图像中每个栅格的一次观测。Exemplarily, since the local lane lines are obtained by the vehicle-mounted camera, when the vehicle-mounted camera acquires the image, it will obtain it according to the set frequency. For example, the frequency of the vehicle-mounted camera is generally 20hz to 30hz, that is, 20 to 30 For the secondary image, 20 to 30 local lane line maps will be obtained correspondingly. Specifically, one local lane line map can be regarded as one observation, that is, each observation completes one observation of each grid in the local lane line image.
进一步地,由于车载相机的获取图像的尺寸有限,为了获取到全局的车道线地图,则车载相机可以以不同的姿态获取图像,进而得到不同姿态对应的局部车道线地图。Furthermore, due to the limited size of images acquired by the vehicle-mounted camera, in order to obtain the global lane line map, the vehicle-mounted camera can acquire images in different attitudes, and then obtain local lane line maps corresponding to different attitudes.
进一步地,将多个局部车道线地图中每个栅格的位置进行组合,得到初始全局车道线地图,具体的,可以根据车辆的运行环境,确定初始全局车道线地图的大小,作为一个实施例,本申请中的全局车道线地图的长度为L,宽度为W,栅格分辨率为δa。Further, the positions of each grid in the multiple local lane line maps are combined to obtain an initial global lane line map. Specifically, the size of the initial global lane line map can be determined according to the operating environment of the vehicle. As an example , the length of the global lane map in this application is L, the width is W, and the grid resolution is δa.
由于多个局部车道线地图中可能会存在重复观测的位置,因此,在初始全局车道线地图中,一个栅格可能在几个局部车道线地图中都存在,也可能只在一个局部车道线地图中存在,也就是说,初始全局车道线地图中,每个栅格的观测总次数可能相同,也可能不同,车道线属性信息可以包括多个属性类别,具体的,车道线属性信息可以包括实线、虚线、停止线以及其他四种属性类别,初始全局车道线地图中,每个栅格的每次观测会得到对应的一个属性类别。Since there may be repeated observation positions in multiple local lane line maps, in the initial global lane line map, a grid may exist in several local lane line maps, or may only exist in one local lane line map Exist in , that is to say, in the initial global lane map, the total number of observations of each grid may be the same or different, and the lane attribute information may include multiple attribute categories. Specifically, the lane attribute information may include real Lines, dashed lines, stop lines, and other four attribute categories. In the initial global lane line map, each observation of each grid will get a corresponding attribute category.
进一步地,确定出目标栅格的观测总次数,观测总次数即为目标栅格在多个局部车道线地图中被观测到的总次数,以及目标栅格每次观测对应的车道线属性类别,其中,目标栅格为初始全局车道线地图中的任一栅格。Further, the total number of observations of the target grid is determined, the total number of observations is the total number of times the target grid is observed in multiple local lane line maps, and the lane line attribute category corresponding to each observation of the target grid, Among them, the target grid is any grid in the initial global lane line map.
进一步地,确定出目标栅格在多个属性类别中,每一属性类别出现的次数,即属性观测次数,进一步地,根据目标栅格的属性观测次数、观测总次数以及预设阈值确定出目标栅格的目标属性类别。Further, determine the number of occurrences of each attribute category of the target grid in multiple attribute categories, that is, the number of attribute observations, and further determine the target grid according to the number of attribute observations, the total number of observations, and the preset threshold The target attribute category for the raster.
进一步地,确定出初始全局车道线地图中,所有栅格的目标属性类别,并将确定出所有目标属性类别的初始全局车道线地图确定为目标全局车道线地图。Further, the target attribute categories of all grids in the initial global lane line map are determined, and the initial global lane line map in which all target attribute categories are determined is determined as the target global lane line map.
在上述实现过程中,根据车载相机不同姿态下的局部车道线地图构成初始全局车道线地图,从而使初始全局车道线地图包括所有车道线的位置信息,进一步地,根据初始全局车道线地图中每一栅格被观测的总次数,每次观测的属性类别以及预设阈值,确定出每一栅格的目标属性类别,进而确定出初始全局车道线地图中每一栅格的目标属性类别,并将确定出所有栅格的目标属性类别的初始全局栅格地图确定为目标全局栅格地图,从而实现了全局栅格地图的生成。In the above implementation process, the initial global lane line map is constructed according to the local lane line maps in different attitudes of the vehicle camera, so that the initial global lane line map includes the position information of all lane lines. Further, according to each The total number of times a grid is observed, the attribute category of each observation and the preset threshold value determine the target attribute category of each grid, and then determine the target attribute category of each grid in the initial global lane line map, and The initial global grid map whose target attribute categories of all grids are determined is determined as the target global grid map, thereby realizing the generation of the global grid map.
在其中的一些实施例中,基于目标栅格在每一属性类别中的属性观测次数、观测总次数以及预设阈值,确定目标栅格的目标属性类别,可以包括以下步骤:In some of the embodiments, determining the target attribute category of the target grid based on the number of attribute observations of the target grid in each attribute category, the total number of observations, and a preset threshold may include the following steps:
步骤1:基于目标栅格在每一属性类别的属性观测次数以及观测总次数,确定目标栅格在每一属性类别对应的类别概率。Step 1: Based on the number of attribute observations of the target grid in each attribute category and the total number of observations, determine the category probability corresponding to the target grid in each attribute category.
步骤2:基于各类别概率以及预设阈值,确定目标栅格的目标属性类别。Step 2: Determine the target attribute category of the target raster based on the probability of each category and the preset threshold.
示例性地,根据目标栅格在每一属性类别中的属性观测次数,以及观测总次数,可以确定出目标栅格在每一属性类别对应的类别概率,进一步地,可以根据各属性类别的属性概率,确定出目标栅格的目标属性栅格ci。For example, according to the number of attribute observations of the target grid in each attribute category and the total number of observations, the category probability corresponding to the target grid in each attribute category can be determined, and further, according to the attributes of each attribute category Probability, determine the target attribute grid c i of the target grid.
具体的,若目标栅格为初始全局车道线地图中的第i个栅格ci,其在实线、虚线、停止线以及其他的属性观测次数分别记为n1,n2,n3和n4,观测总次数为ni,分别统计栅格ci在每一属性类别的类别概率,即栅格ci为实线的类别概率为P1=n1/ni,栅格ci为虚线的类别概率为P2=n2/ni,栅格ci为停止线的类别概率为P3=n3/ni,栅格ci为其他的类别概率为P4=n4/ni,确定最大的类别概率,若栅格ci的各类别概率的大小为P1<P3<P4<P2,则栅格ci最大的类别概率为P2。Specifically, if the target grid is the i-th grid c i in the initial global lane line map, its number of observations on solid lines, dashed lines, stop lines and other attributes are recorded as n 1 , n 2 , n 3 and n 4 , the total number of observations is n i , and the category probability of grid c i in each attribute category is counted separately, that is, the category probability of grid c i is a solid line is P 1 =n 1 /n i , and grid c i The category probability of the dotted line is P 2 =n 2 /n i , the category probability of the grid c i is the stop line is P 3 =n 3 /n i , and the grid c i is the other category probability of P 4 =n 4 /n i , to determine the maximum category probability, if the size of each category probability of grid ci is P 1 <P 3 <P 4 <P 2 , then the maximum category probability of grid ci is P 2 .
进一步地,根据最大的类别概率以及预设阈值,确定目标栅格的目标属性类别,根据最大的类别概率与预设阈值之间的大小,确定目标栅格的目标属性类别。Further, the target attribute category of the target grid is determined according to the maximum category probability and the preset threshold, and the target attribute category of the target grid is determined according to the size between the maximum category probability and the preset threshold.
具体的,假定预设阈值为Pr,若Pr≤P2,则栅格ci的目标属性类别为虚线,若Pr>P2,则栅格ci为非车道线属性。Specifically, it is assumed that the preset threshold is P r , if P r ≤ P 2 , then the target attribute category of grid ci is a dotted line, and if P r >P 2 , then grid ci is a non-lane line attribute.
在上述实现过程中,根据目标栅格在每一属性类别的属性观测次数以及观测总次数,确定目标栅格在每一属性类别对应的类别概率,进一步根据各类别概率以及预设阈值,确定目标栅格的目标属性类别,从而准确地确定出目标栅格的目标属性类别。In the above implementation process, according to the number of attribute observations of the target grid in each attribute category and the total number of observations, determine the category probability corresponding to the target grid in each attribute category, and further determine the target according to the probability of each category and the preset threshold The target attribute category of the raster, so as to accurately determine the target attribute category of the target raster.
在其中的一些实施例中,在基于初始全局车道线地图中所有栅格的目标属性类别,生成目标全局车道线地图之后,该方法还可以包括以下步骤:In some of these embodiments, after the target global lane line map is generated based on the target attribute categories of all grids in the initial global lane line map, the method may further include the following steps:
步骤1:获取目标全局车道线地图的分布参数。Step 1: Obtain the distribution parameters of the target global lane map.
步骤2:基于分布参数、目标全局车道线地图中的车道线在每一属性类别中当前的属性观测次数以及目标全局车道线地图中的车道线的当前观测总次数,对目标全局车道线地图进行更新。Step 2: Based on the distribution parameters, the current number of attribute observations of the lane lines in each attribute category in the target global lane line map, and the current total number of observations of the lane lines in the target global lane line map, the target global lane line map is renew.
示例性地,在生成目标全局车道线地图之后,可以将目标全局地图部署到实际车辆中进行应用,并在应用过程中,还可以对目标全局地图进行更新,具体的,该方法还可以包括:获取目标全局车道线地图的分布参数,具体的,该分布参数可以是预先设定的分布参数,进一步地,根据分布参数、目标车道线地图在应用过程中,每一栅格在每一属性类别中当前的属性观测次数以及当前观测总次数,对目标全局车道线地图进行更新。Exemplarily, after the target global lane line map is generated, the target global map can be deployed to an actual vehicle for application, and during the application process, the target global map can also be updated. Specifically, the method can also include: Obtain the distribution parameters of the target global lane map. Specifically, the distribution parameters can be preset distribution parameters. Further, according to the distribution parameters and the application process of the target lane map, each grid in each attribute category The current number of attribute observations and the total number of current observations are used to update the target global lane line map.
在上述实现过程中,根据目标全局地图的分布参数、目标全局车道线地图中的每一栅格在当前累积的属性观测次数以及观测总次数,对目标全局车道线地图进行更新,从而能够在目标全局车道线地图的实际应用中进行实时更新,提高了全局车道线地图的准确度。In the above implementation process, the target global lane map is updated according to the distribution parameters of the target global map, the current accumulated attribute observation times and the total number of observations of each grid in the target global lane map, so that the target global lane map can be In the practical application of the global lane marking map, the real-time update improves the accuracy of the global lane marking map.
在其中的一些实施例中,基于分布参数、目标全局车道线地图中的车道线在每一属性类别中当前的属性观测次数以及目标全局车道线地图中的车道线的当前观测总次数,对目标全局车道线地图进行更新,可以包括以下步骤:In some of these embodiments, based on the distribution parameters, the current number of attribute observations of lane lines in each attribute category in the target global lane line map, and the current total number of observation times of lane lines in the target global lane line map, the target The update of the global lane line map may include the following steps:
步骤1:基于分布参数、目标全局车道线地图中的车道线在每一属性类别中当前的属性观测次数以及目标全局车道线地图中的车道线的当前观测总次数,确定目标全局车道线地图当前的概率分布函数。Step 1: Based on the distribution parameters, the current number of attribute observations of lane lines in each attribute category in the target global lane line map, and the current total number of observations of lane lines in the target global lane line map, determine the current value of the target global lane line map. The probability distribution function of .
步骤2:基于当前的概率分布函数,对目标全局车道线地图进行更新。Step 2: Based on the current probability distribution function, update the target global lane map.
示例性地,Beta分布作为伯努利分布和二项式分布的共轭先验分布的密度函数,在统计学中有重要应用。因此,在本申请实施例中,可以根据分布参数α和β,得到Beta分布函数,Beta(α,β),并在实际应用过程中,记录目标全局车道线地图中任一栅格在每一属性类别中当前的属性观测次数α0以及当前观测总次数β0,从而构建出目标全局车道线地图当前的概率分布函数Beta(α+α0,β+β0)。Exemplarily, the Beta distribution has important applications in statistics as the density function of the conjugate prior distribution of the Bernoulli distribution and the Binomial distribution. Therefore, in the embodiment of this application, the Beta distribution function, Beta(α, β), can be obtained according to the distribution parameters α and β, and in the actual application process, any grid in the target global lane line map is recorded at each The current number of attribute observations α 0 and the total number of current observations β 0 in the attribute category, thus constructing the current probability distribution function Beta(α+α 0 , β+β 0 ) of the target global lane line map.
进一步地,可根据当前的概率分布函数Beta(α+α0,β+β0)对目标全局车道线地图进行更新。Further, the target global lane line map may be updated according to the current probability distribution function Beta(α+α 0 , β+β 0 ).
在上述实现过程中,根据分布参数、目标全局车道线地图中任一栅格在每一属性类别中当前的属性观测次数α0以及当前观测总次数β0,从而可以确定出目标全局车道线地图当前的概率分布函数,从而实现了车道线属性信息的量化,并根据当前的概率分布函数对目标全局车道线地图进行更新,从而实现了目标全局车道线地图的实时维护与更新。In the above implementation process, the target global lane map can be determined according to the distribution parameters, the current attribute observation times α 0 in each attribute category of any grid in the target global lane map, and the current total number of observations β 0 The current probability distribution function realizes the quantification of lane line attribute information, and updates the target global lane line map according to the current probability distribution function, thereby realizing the real-time maintenance and update of the target global lane line map.
在本实施例中还提供了一种车道线地图生成方法的实施例。图4是本申请实施例的一种车道线地图生成方法的实施例流程图,如图4所示,该流程包括如下步骤:In this embodiment, an embodiment of a method for generating a lane line map is also provided. Fig. 4 is a flowchart of an embodiment of a method for generating a lane line map according to an embodiment of the present application. As shown in Fig. 4, the process includes the following steps:
步骤S401,基于车载相机获取的原始图像,得到车道线掩膜图像。In step S401, a lane line mask image is obtained based on the original image acquired by the vehicle-mounted camera.
示例性地,基于车载单目相机获得原始图像,通过深度学习方法,根据原始图像的纹理信息得到包括车道线属性信息的掩膜图像,完成稠密像素级分割。For example, the original image is obtained based on the vehicle-mounted monocular camera, and the mask image including the lane line attribute information is obtained according to the texture information of the original image through the deep learning method, and the dense pixel-level segmentation is completed.
近年来,transformer深度学习算法在视觉任务中发挥着越来越重要的作用,在本申请实施例中,利用基于视觉的transformer的深度学习算法,得到原始图像的分割结果。图像分割得到的掩膜图像中的车道线属性信息包括车道线实线、虚线、停止线以及其他类四类。In recent years, the transformer deep learning algorithm has played an increasingly important role in vision tasks. In the embodiment of the present application, the vision-based transformer deep learning algorithm is used to obtain the segmentation result of the original image. The lane line attribute information in the mask image obtained by image segmentation includes four types of lane line solid line, dashed line, stop line and other categories.
步骤S402,基于掩膜图像,确定栅格地图。Step S402, based on the mask image, determine a grid map.
通过预设的栅格地图尺寸大小和分辨率,构建局部栅格地图。Build a local grid map with preset grid map size and resolution.
具体的,在本申请实施例中,需要将原始图像的掩膜图像转换为鸟瞰图视角下的栅格地图,在当前车体坐标系下,通过预设的栅格地图尺寸大小和分辨率,以生成对应的局部栅格地图。Specifically, in the embodiment of this application, it is necessary to convert the mask image of the original image into a grid map under the perspective of a bird's-eye view. In the current vehicle body coordinate system, through the preset grid map size and resolution, to generate the corresponding local grid map.
步骤S403,基于掩膜图像以及车载相机的内外参数,填充栅格地图中的车道线属性信息,得到局部车道线地图。Step S403, based on the mask image and the internal and external parameters of the vehicle camera, fill in the lane line attribute information in the grid map to obtain a local lane line map.
具体的,根据车载相机的内外参数将构建的局部栅格地图中每个栅格中心投影至成像平面,从而得到与掩膜图像在同一平面的无畸变地图。Specifically, according to the internal and external parameters of the vehicle camera, the center of each grid in the constructed local grid map is projected to the imaging plane, so as to obtain a distortion-free map on the same plane as the mask image.
进一步地,获取无畸变图像与原始图像之间映射关系,具体的,可以利用棋盘格对车载相机进行标定,得到车载相机畸变参数,具体的,车载相机畸变参数可以为:(k1,k2,p1,p2,k3),其中,(k1,k2,k3)是径向畸变参数,(p1,p2)是切向畸变参数,进而根据畸变参数确定出原始图像中每一位置对应的无畸变位置,从而确定出无畸变图像与原始图像之间的映射关系。Further, the mapping relationship between the undistorted image and the original image is obtained. Specifically, the vehicle-mounted camera can be calibrated with a checkerboard grid to obtain the distortion parameters of the vehicle-mounted camera. Specifically, the distortion parameters of the vehicle-mounted camera can be: (k 1 , k 2 , p 1 , p 2 , k 3 ), where (k 1 , k 2 , k 3 ) is the radial distortion parameter, (p 1 , p 2 ) is the tangential distortion parameter, and then the original image is determined according to the distortion parameter Each position corresponds to the undistorted position, so as to determine the mapping relationship between the undistorted image and the original image.
进一步地,通过无畸变图像与原始图像之间的映射关系,将与掩膜图像在同一平面的无畸变地图进行位置变换,得到与掩膜图像在同一平面的畸变图像,从而使畸变图像与掩膜图像中的位置是一一对应的,而畸变图像是根据栅格地图进行位置转换得到的。Further, through the mapping relationship between the undistorted image and the original image, the undistorted map on the same plane as the mask image is transformed to obtain the distorted image on the same plane as the mask image, so that the distorted image and the mask The positions in the membrane image are in one-to-one correspondence, while the distorted image is obtained by performing position conversion according to the grid map.
进而可以将掩膜图像中车道线的属性信息填充至栅格地图中,从而得到包括车道线信息的局部车道线地图。Furthermore, the attribute information of lane lines in the mask image can be filled into the grid map, so as to obtain a local lane line map including lane line information.
步骤S404,基于车载相机不同姿态下的多个局部车道线地图构建全局车道线地图,并确定全局车道线地图中每一栅格的车道线属性信息。Step S404, constructing a global lane line map based on multiple local lane line maps under different attitudes of the vehicle-mounted camera, and determining the lane line attribute information of each grid in the global lane line map.
具体的,根据车辆的工作环境尺寸,将全局车道线地图的长度设定为L,宽度设定为W,栅格分辨率为δa,并根据车载相机不同姿态下的多个局部车道线地图构建全局车道线地图。Specifically, according to the size of the working environment of the vehicle, the length of the global lane line map is set to L, the width is set to W, and the grid resolution is δa, and it is constructed based on multiple local lane line maps under different attitudes of the vehicle camera Global lane line map.
进一步地,统计全局车道线地图中每个栅格在每一属性类别上的属性观测次数以及观测总次数,并将每一属性类别上的属性观测次数与观测总次数之比,确定为每一属性类别的类别概率,进一步地,保留类别概率最大的值。Further, the number of attribute observations and the total number of observations of each grid on each attribute category in the global lane line map are counted, and the ratio of the number of attribute observations on each attribute category to the total number of observations is determined as each The category probability of the attribute category, furthermore, the value with the largest category probability is reserved.
进一步地,确定概率最大的值与预设概率阈值的大小,若概率最大的值大于或等于预设概率阈值,则概率最大值对应的属性类别即为该栅格的目标属性类别,从而确定出全局车道线地图中每一栅格的车道线属性信息。Further, the value with the highest probability and the preset probability threshold are determined. If the value with the highest probability is greater than or equal to the preset probability threshold, the attribute category corresponding to the maximum probability is the target attribute category of the grid, thereby determining Lane line attribute information of each grid in the global lane line map.
将最终得到的全局车道线地图应用在车辆中。Apply the final global lane map to the vehicle.
步骤S405,基于分布参数、全局车道线地图中每一栅格在每一属性类别的观测次数以及观测总次数,对全局车道线地图进行更新。Step S405, based on the distribution parameters, the number of observations of each grid in each attribute category in the global lane marking map, and the total number of observations, the global lane marking map is updated.
在全局车道线地图的应用过程中,记录全局车道线地图中每一栅格当前实时获取的属性观测次数与观测总次数,并结合预设的分布参数对全局车道线地图进行更新。During the application process of the global lane marking map, the number of attribute observations and the total number of observations currently acquired in real time for each grid in the global lane marking map are recorded, and the global lane marking map is updated in combination with preset distribution parameters.
具体的,给定参数α和β,得到分布Beta(α,β),在更新过程中,当前车道线的栅格属性观测次数和观测总次数分别记为α0,β0,因此可以得到新的分布Beta(α+α0,β+β0)。在此基础上,可通过计算新的Beta分布的均值,并以此更新和维护对应栅格的属性。Specifically, given the parameters α and β, the distribution Beta(α, β) is obtained. During the update process, the number of grid attribute observations and the total number of observations of the current lane line are respectively recorded as α 0 , β 0 , so the new The distribution of Beta(α+α 0 , β+β 0 ). On this basis, the mean value of the new Beta distribution can be calculated to update and maintain the attributes of the corresponding grid.
在上述实现过程中,基于深度学习方法从原始图像中得到车道线掩膜图像;然后构建局部栅格地图以得到鸟瞰图视角下的车道线信息;之后结合当前相机的实时位姿信息,以构造车道线统计栅格地图,并根据预设概率阈值确定每个栅格的属性并生成全局车道线地图;最后在实际应用过程中,通过引入Beta分布,进行全局车道线地图的更新与维护。图5是本申请实施例提供的一种园区环境下的车道线地图示意图。In the above implementation process, the lane line mask image is obtained from the original image based on the deep learning method; then a local grid map is constructed to obtain the lane line information from the perspective of the bird's-eye view; and then combined with the real-time pose information of the current camera to construct Lane line statistical grid map, and determine the attributes of each grid according to the preset probability threshold to generate a global lane line map; finally, in the actual application process, the global lane line map is updated and maintained by introducing Beta distribution. FIG. 5 is a schematic diagram of a lane line map in a park environment provided by an embodiment of the present application.
需要说明的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。It should be noted that although the steps in the flow charts involved in the above-mentioned embodiments are displayed sequentially according to the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in the flow charts involved in the above-mentioned embodiments may include multiple steps or stages, and these steps or stages are not necessarily executed at the same time, but may be performed at different times For execution, the execution order of these steps or stages is not necessarily performed sequentially, but may be executed in turn or alternately with other steps or at least a part of steps or stages in other steps.
在本实施例中还提供了一种车道线地图生成装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。以下所使用的术语“模块”、“单元”、“子单元”等可以实现预定功能的软件和/或硬件的组合。尽管在以下实施例中所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。This embodiment also provides a lane line map generation device, which is used to implement the above embodiments and preferred implementation modes, and what has been described will not be repeated. The terms "module", "unit", "subunit" and the like used hereinafter may be a combination of software and/or hardware that realizes a predetermined function. Although the means described in the following embodiments are preferably implemented in software, implementation in hardware, or a combination of software and hardware is also possible and contemplated.
图6是本申请实施例提供的一种车道线地图生成装置的结构框图,如图6所示,该装置包括:Fig. 6 is a structural block diagram of a lane line map generation device provided by an embodiment of the present application. As shown in Fig. 6, the device includes:
获取模块601,用于获取车载相机采集到的原始图像。The obtaining
确定模块602,用于基于原始图像,确定对应的掩膜图像,掩膜图像中包括车道线属性信息。The determining
构建模块603,用于基于掩膜图像,构建相应的栅格地图。A
填充模块604,用于基于掩膜图像以及车载相机的内外参数,将车道线属性信息填充至栅格地图中,得到填充后的栅格地图。The filling
生成模块605,用于基于填充后的栅格地图,生成局部车道线地图。A
在其中的一些实施例中,构建模块603具体用于:In some of these embodiments, the
获取车载相机的内外参数;Obtain the internal and external parameters of the vehicle camera;
基于车载相机的内外参数将掩膜图像转换为栅格地图。Convert the mask image to a raster map based on the extrinsic and extrinsic parameters of the on-board camera.
在其中的一些实施例中,填充模块604具体用于:In some of these embodiments, the filling
基于车载相机的内外参数,将栅格地图投影至车载相机的成像平面,得到无畸变地图;Based on the internal and external parameters of the vehicle camera, the grid map is projected to the imaging plane of the vehicle camera to obtain a distortion-free map;
获取车载相机中无畸变图像与畸变图像之间的映射关系;Obtain the mapping relationship between the undistorted image and the distorted image in the vehicle camera;
基于无畸变地图以及映射关系,得到栅格地图对应的畸变地图;Based on the undistorted map and the mapping relationship, the distortion map corresponding to the grid map is obtained;
基于掩膜图像以及畸变地图,将车道线属性信息填充至栅格地图中,得到填充后的栅格地图。Based on the mask image and the distortion map, the lane line attribute information is filled into the grid map to obtain the filled grid map.
在其中的一些实施例中,车道线属性信息包括多个属性类别,生成模块605还用于:In some of these embodiments, the lane line attribute information includes multiple attribute categories, and the
获取车载相机在不同位姿下对应的多个局部车道线地图;Obtain multiple local lane line maps corresponding to vehicle cameras in different poses;
基于多个局部车道线条地图,确定初始全局车道线地图;Determining an initial global lane line map based on multiple local lane line maps;
确定目标栅格的观测总次数,以及目标栅格每次观测对应的属性类别,目标栅格为初始全局车道线地图中的任一栅格;Determine the total number of observations of the target grid and the attribute category corresponding to each observation of the target grid. The target grid is any grid in the initial global lane line map;
基于目标栅格在每一属性类别中的属性观测次数、观测总次数以及预设阈值,确定目标栅格的目标属性类别;Determine the target attribute category of the target grid based on the number of attribute observations of the target grid in each attribute category, the total number of observations, and a preset threshold;
基于初始全局车道线地图中所有栅格的目标属性类别,生成目标全局车道线地图。Based on the target attribute categories of all rasters in the initial global lane line map, a target global lane line map is generated.
在其中的一些实施例中,生成模块605具体用于:In some of these embodiments, the
基于目标栅格在每一属性类别的属性观测次数以及观测总次数,确定目标栅格在每一属性类别对应的类别概率;Based on the number of attribute observations of the target grid in each attribute category and the total number of observations, determine the category probability corresponding to the target grid in each attribute category;
基于各类别概率以及预设阈值,确定目标栅格的目标属性类别。Determine the target attribute category of the target grid based on the probabilities of each category and the preset threshold.
在其中的一些实施例中,生成模块605还用于:In some of these embodiments, the
获取目标全局车道线地图的分布参数;Obtain the distribution parameters of the target global lane line map;
基于分布参数、目标全局车道线地图中的车道线在每一属性类别中当前的属性观测次数以及目标全局车道线地图中的车道线的当前观测总次数,对目标全局车道线地图进行更新。Based on the distribution parameters, the current number of attribute observations of the lanes in each attribute category in the target global lane map, and the current total number of observations of the lanes in the target global lane map, the target global lane map is updated.
在其中的一些实施例中,生成模块605具体用于:基于分布参数、目标全局车道线地图中的车道线在每一属性类别中当前的属性观测次数以及目标全局车道线地图中的车道线的当前观测总次数,确定目标全局车道线地图当前的概率分布函数;In some of these embodiments, the
基于当前的概率分布函数,对目标全局车道线地图进行更新。Based on the current probability distribution function, the target global lane line map is updated.
需要说明的是,上述各个模块可以是功能模块也可以是程序模块,既可以通过软件来实现,也可以通过硬件来实现。对于通过硬件来实现的模块而言,上述各个模块可以位于同一处理器中;或者上述各个模块还可以按照任意组合的形式分别位于不同的处理器中。It should be noted that each of the above-mentioned modules may be a function module or a program module, and may be realized by software or by hardware. For the modules implemented by hardware, the above modules may be located in the same processor; or the above modules may be located in different processors in any combination.
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图7所示。图7是本申请实施例提供的一种计算机设备的内部结构示意图。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质和内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储车载相机获取到的数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种车道线地图生成方法。In one embodiment, a computer device is provided. The computer device may be a server, and its internal structure may be as shown in FIG. 7 . Fig. 7 is a schematic diagram of an internal structure of a computer device provided by an embodiment of the present application. The computer device includes a processor, memory and a network interface connected by a system bus. Wherein, the processor of the computer device is used to provide calculation and control capabilities. The memory of the computer device includes a non-volatile storage medium and an internal memory. The non-volatile storage medium stores an operating system, computer programs and databases. The internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium. The database of the computer device is used to store the data acquired by the vehicle-mounted camera. The network interface of the computer device is used to communicate with an external terminal via a network connection. When the computer program is executed by the processor, a lane line map generation method is realized.
本领域技术人员可以理解,图7中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art can understand that the structure shown in Figure 7 is only a block diagram of a part of the structure related to the solution of this application, and does not constitute a limitation to the computer equipment on which the solution of this application is applied. The specific computer equipment can be More or fewer components than shown in the figures may be included, or some components may be combined, or have a different arrangement of components.
在一个实施例中,还提供了一种电子装置,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。In one embodiment, an electronic device is also provided, including a memory and a processor, where a computer program is stored in the memory, and the processor implements the steps in the above method embodiments when executing the computer program.
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。In one embodiment, a computer-readable storage medium is provided, on which a computer program is stored, and when the computer program is executed by a processor, the steps in the foregoing method embodiments are implemented.
需要说明的是,本申请所涉及的用户信息(包括但不限于用户设备信息、用户个人信息等)和数据(包括但不限于用于分析的数据、存储的数据、展示的数据等),均为经用户授权或者经过各方充分授权的信息和数据。It should be noted that the user information (including but not limited to user equipment information, user personal information, etc.) and data (including but not limited to data used for analysis, stored data, displayed data, etc.) involved in this application are all Information and data authorized by the user or fully authorized by all parties.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-OnlyMemory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(RandomAccess Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic RandomAccessMemory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above-mentioned embodiments can be completed by instructing related hardware through computer programs, and the computer programs can be stored in a non-volatile computer-readable memory In the medium, when the computer program is executed, it may include the processes of the embodiments of the above-mentioned methods. Wherein, any reference to storage, database or other media used in the various embodiments provided in the present application may include at least one of non-volatile and volatile storage. Non-volatile memory can include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive variable memory (ReRAM), magnetic variable memory (Magnetoresistive Random Access Memory, MRAM), Ferroelectric Random Access Memory (FRAM), Phase Change Memory (Phase Change Memory, PCM), graphene memory, etc. The volatile memory may include a random access memory (Random Access Memory, RAM) or an external cache memory and the like. As an illustration but not a limitation, the RAM can be in various forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM). The databases involved in the various embodiments provided in this application may include at least one of a relational database and a non-relational database. The non-relational database may include a blockchain-based distributed database, etc., but is not limited thereto. The processors involved in the various embodiments provided by this application can be general-purpose processors, central processing units, graphics processors, digital signal processors, programmable logic devices, data processing logic devices based on quantum computing, etc., and are not limited to this.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, they should be It is considered to be within the range described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present application, and the description thereof is relatively specific and detailed, but should not be construed as limiting the protection scope of the patent. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the protection scope of the present application should be determined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310444818.1A CN116168173B (en) | 2023-04-24 | 2023-04-24 | Lane line map generation method, device, electronic device and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310444818.1A CN116168173B (en) | 2023-04-24 | 2023-04-24 | Lane line map generation method, device, electronic device and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116168173A true CN116168173A (en) | 2023-05-26 |
CN116168173B CN116168173B (en) | 2023-07-18 |
Family
ID=86420366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310444818.1A Active CN116168173B (en) | 2023-04-24 | 2023-04-24 | Lane line map generation method, device, electronic device and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116168173B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108052910A (en) * | 2017-12-19 | 2018-05-18 | 深圳市保千里电子有限公司 | A kind of automatic adjusting method, device and the storage medium of vehicle panoramic imaging system |
CN109461126A (en) * | 2018-10-16 | 2019-03-12 | 重庆金山医疗器械有限公司 | A kind of image distortion correction method and system |
CN111683203A (en) * | 2020-06-12 | 2020-09-18 | 达闼机器人有限公司 | Grid map generation method, device and computer-readable storage medium |
CN111680673A (en) * | 2020-08-14 | 2020-09-18 | 北京欣奕华科技有限公司 | Method, device and equipment for detecting dynamic object in grid map |
CN112862839A (en) * | 2021-02-24 | 2021-05-28 | 清华大学 | Method and system for enhancing robustness of semantic segmentation of map elements |
US20210347378A1 (en) * | 2020-05-11 | 2021-11-11 | Amirhosein Nabatchian | Method and system for generating an importance occupancy grid map |
CN114625822A (en) * | 2022-03-02 | 2022-06-14 | 阿波罗智联(北京)科技有限公司 | High-precision map updating method and device and electronic equipment |
CN114663852A (en) * | 2022-02-21 | 2022-06-24 | 北京箩筐时空数据技术有限公司 | Method and device for constructing lane line graph, electronic equipment and readable storage medium |
US20220276655A1 (en) * | 2019-08-21 | 2022-09-01 | Sony Group Corporation | Information processing device, information processing method, and program |
CN115187944A (en) * | 2022-06-29 | 2022-10-14 | 合众新能源汽车有限公司 | Lane line detection method and device |
CN115937449A (en) * | 2022-12-05 | 2023-04-07 | 北京百度网讯科技有限公司 | High-precision map generation method and device, electronic equipment and storage medium |
CN115937825A (en) * | 2023-01-06 | 2023-04-07 | 之江实验室 | Robust lane line generation method and device under BEV (beam-based attitude vector) of on-line pitch angle estimation |
-
2023
- 2023-04-24 CN CN202310444818.1A patent/CN116168173B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108052910A (en) * | 2017-12-19 | 2018-05-18 | 深圳市保千里电子有限公司 | A kind of automatic adjusting method, device and the storage medium of vehicle panoramic imaging system |
CN109461126A (en) * | 2018-10-16 | 2019-03-12 | 重庆金山医疗器械有限公司 | A kind of image distortion correction method and system |
US20220276655A1 (en) * | 2019-08-21 | 2022-09-01 | Sony Group Corporation | Information processing device, information processing method, and program |
US20210347378A1 (en) * | 2020-05-11 | 2021-11-11 | Amirhosein Nabatchian | Method and system for generating an importance occupancy grid map |
CN111683203A (en) * | 2020-06-12 | 2020-09-18 | 达闼机器人有限公司 | Grid map generation method, device and computer-readable storage medium |
CN111680673A (en) * | 2020-08-14 | 2020-09-18 | 北京欣奕华科技有限公司 | Method, device and equipment for detecting dynamic object in grid map |
CN112862839A (en) * | 2021-02-24 | 2021-05-28 | 清华大学 | Method and system for enhancing robustness of semantic segmentation of map elements |
CN114663852A (en) * | 2022-02-21 | 2022-06-24 | 北京箩筐时空数据技术有限公司 | Method and device for constructing lane line graph, electronic equipment and readable storage medium |
CN114625822A (en) * | 2022-03-02 | 2022-06-14 | 阿波罗智联(北京)科技有限公司 | High-precision map updating method and device and electronic equipment |
CN115187944A (en) * | 2022-06-29 | 2022-10-14 | 合众新能源汽车有限公司 | Lane line detection method and device |
CN115937449A (en) * | 2022-12-05 | 2023-04-07 | 北京百度网讯科技有限公司 | High-precision map generation method and device, electronic equipment and storage medium |
CN115937825A (en) * | 2023-01-06 | 2023-04-07 | 之江实验室 | Robust lane line generation method and device under BEV (beam-based attitude vector) of on-line pitch angle estimation |
Non-Patent Citations (2)
Title |
---|
WEI-BIN YU 等: "An Efficient Algorithm for Depression Filling and Flat-Surface Processing in Raster DEMs", 《IEEE GEOSCIENCE AND REMOTE SENSING LETTERS》, pages 2198 - 2202 * |
耿延龙: "基于激光雷达的热成像巡检机器人设计与实现", 《硕士电子期刊》, pages 1 - 77 * |
Also Published As
Publication number | Publication date |
---|---|
CN116168173B (en) | 2023-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110969663A (en) | Static calibration method for external parameters of camera | |
WO2020087564A1 (en) | Three-dimensional object reconstruction method, computer device and storage medium | |
CN113192646B (en) | Target detection model construction method and device for monitoring distance between different targets | |
CN112991534B (en) | Indoor semantic map construction method and system based on multi-granularity object model | |
WO2021051344A1 (en) | Method and apparatus for determining lane lines in high-precision map | |
CN114116933B (en) | A semantic-topological joint mapping method based on monocular images | |
WO2022237821A1 (en) | Method and device for generating traffic sign line map, and storage medium | |
WO2021129349A1 (en) | Laser point cloud map merging method, apparatus, and computer readable storage medium | |
CN115115713A (en) | Unified space-time fusion all-around aerial view perception method | |
CN116168173B (en) | Lane line map generation method, device, electronic device and storage medium | |
CN116071404A (en) | Image registration method, device, computer equipment and storage medium | |
CN113496138A (en) | Dense point cloud data generation method and device, computer equipment and storage medium | |
CN110688500B (en) | Database construction method, positioning method and related equipment thereof | |
CN109874303B (en) | Digital image quality evaluation method and device | |
CN116524114A (en) | Automatic labeling method for automatic driving data, electronic equipment and storage medium | |
CN116823966A (en) | Internal reference calibration method and device for camera, computer equipment and storage medium | |
CN112652056B (en) | 3D information display method and device | |
CN111949812B (en) | Brain image classification method and storage medium | |
CN114241025A (en) | Method and device for processing point cloud data of high-voltage tower in power grid | |
CN118520065B (en) | GIS map-based data processing method and device, electronic equipment and storage medium | |
CN118195922B (en) | Video image geographic stitching method and device, computer equipment and storage medium | |
US11776148B1 (en) | Multi-view height estimation from satellite images | |
Liu | Impact of High‐Tech Image Formats Based on Full‐Frame Sensors on Visual Experience and Film‐Television Production | |
CN107274455A (en) | Mix the three-dimensional rebuilding method of panoramic image in vision system | |
CN118247448A (en) | Road lamp and live-action fusion reconstruction method and device, electronic equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |