CN116167661A - Land utilization change simulation credibility assessment method based on space dislocation - Google Patents
Land utilization change simulation credibility assessment method based on space dislocation Download PDFInfo
- Publication number
- CN116167661A CN116167661A CN202310175701.8A CN202310175701A CN116167661A CN 116167661 A CN116167661 A CN 116167661A CN 202310175701 A CN202310175701 A CN 202310175701A CN 116167661 A CN116167661 A CN 116167661A
- Authority
- CN
- China
- Prior art keywords
- simulation
- model
- spatial
- simulation result
- urban
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 126
- 238000000034 method Methods 0.000 title claims abstract description 49
- 230000008859 change Effects 0.000 title claims abstract description 14
- 238000011156 evaluation Methods 0.000 claims abstract description 47
- 238000004458 analytical method Methods 0.000 claims abstract description 19
- 238000010586 diagram Methods 0.000 claims abstract description 15
- 230000007704 transition Effects 0.000 claims abstract description 12
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 9
- 238000005457 optimization Methods 0.000 claims abstract description 8
- 238000012795 verification Methods 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000012549 training Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims 1
- 230000009897 systematic effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 29
- 238000011161 development Methods 0.000 description 7
- 238000012800 visualization Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011158 quantitative evaluation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012732 spatial analysis Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/26—Government or public services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/13—Satellite images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/176—Urban or other man-made structures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Development Economics (AREA)
- Tourism & Hospitality (AREA)
- Economics (AREA)
- Educational Administration (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Software Systems (AREA)
- Multimedia (AREA)
- General Business, Economics & Management (AREA)
- Primary Health Care (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Game Theory and Decision Science (AREA)
- Astronomy & Astrophysics (AREA)
- Remote Sensing (AREA)
- Quality & Reliability (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Operations Research (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及土地利用变化模拟领域,尤其是涉及一种基于空间错位的土地利用变化模拟可信度评估方法。The invention relates to the field of land use change simulation, in particular to a method for assessing the credibility of land use change simulation based on spatial dislocation.
背景技术Background technique
元胞自动机(CA)模型是模拟和预测城市动态增长最常用的空间模拟方法。CA模型的可靠性是其模拟历史模式和预测未来情景的基础。在基于CA的城市增长模拟中,模型性能评估通常会受到数据源和驱动因子准确性、CA参数的选择以及评价方法的有效性的影响。因此,评估模拟精度对于判别CA模型能否满足城市规划和决策来说十分重要。模型模拟结果的评估方法通常包括目视判别、逐像元对比、空间结构评估和景观指数计算等。The cellular automata (CA) model is the most commonly used spatial simulation method for simulating and predicting the dynamic growth of cities. The reliability of the CA model is the basis for its simulation of historical patterns and prediction of future scenarios. In CA-based urban growth simulations, model performance evaluation is usually affected by the accuracy of data sources and driving factors, the choice of CA parameters, and the effectiveness of evaluation methods. Therefore, evaluating the simulation accuracy is very important for judging whether the CA model can satisfy urban planning and decision-making. Evaluation methods for model simulation results usually include visual discrimination, pixel-by-pixel comparison, spatial structure evaluation, and landscape index calculation.
对于每个模拟结果图,采用逐像元对比生成状态-静止(state-static)和状态-变化(state-change)指标时,每个评估指标都对应着一个数值。这些指标的值与建模方法和研究区域密切相关,而且往往不能准确估计模拟的精度。由于模拟结果通常会产生空间异质性,得到的精度结果也会产生类似的空间异质性。对于基于CA的模拟,一个在全局范围内较高的评估指标值可能在局部区域的模拟精度较低,而一个在全局范围内较低的评估指标值可能在局部区域的模拟精度较高。因此,单一数值评估无法反映跨空间的模拟精度,导致无法评估局部区域的模拟性能。因此,目前需要解决的关键问题为:如何对局部区域的模拟结果进行评估。For each simulation result map, when using pixel-by-pixel comparison to generate state-static and state-change indicators, each evaluation indicator corresponds to a numerical value. The values of these indicators are closely related to the modeling method and the study area, and often cannot accurately estimate the accuracy of the simulation. Since the simulation results often produce spatial heterogeneity, the obtained accuracy results will also produce similar spatial heterogeneity. For CA-based simulations, an evaluation metric value that is globally high may lead to low simulation accuracy in local regions, while an evaluation metric value that is globally low may lead to high simulation accuracy in local regions. Therefore, a single numerical evaluation cannot reflect the simulation accuracy across space, resulting in the inability to evaluate the simulation performance in local regions. Therefore, the key problem that needs to be solved at present is: how to evaluate the simulation results of the local area.
发明内容Contents of the invention
本发明的目的就是为了提供一种基于空间错位的土地利用变化模拟可信度评估方法,不仅可以报告每个像元的定量评估指标,还可以捕获精度的空间异质性,有助于检测CA模型和遥感分类器的可信度,从而支持土地资源管理和决策。The purpose of the present invention is to provide a method for evaluating the credibility of land use change simulation based on spatial dislocation, which can not only report the quantitative evaluation index of each pixel, but also capture the spatial heterogeneity of accuracy, which is helpful for the detection of CA Trustworthiness of models and remote sensing classifiers to support land resource management and decision-making.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
一种基于空间错位的土地利用变化模拟可信度评估方法,包括以下步骤:A method for assessing the credibility of land use change simulation based on spatial dislocation, comprising the following steps:
步骤1)收集用于构建CA模型的土地利用分类图和驱动因子图;Step 1) collect the land use classification map and driving factor map for building the CA model;
步骤2)基于智能优化算法获取土地转换概率图,建立CA模型;Step 2) Obtain the land conversion probability map based on an intelligent optimization algorithm, and establish a CA model;
步骤3)利用CA模型模拟城市格局并输出保存模拟结果;Step 3) Utilize the CA model to simulate the urban pattern and output and save the simulation results;
步骤4)采用逐像元比较法对CA模型的模拟结果进行单个数值评估;Step 4) Carry out a single numerical evaluation to the simulation results of the CA model by using the pixel-by-pixel comparison method;
步骤5)采用空间错位-移动窗口分析方法生成模拟结果状态-静止指标的空间分布图;Step 5) adopt the spatial dislocation-moving window analysis method to generate the simulation result state-spatial distribution diagram of static index;
步骤6)采用空间错位-移动窗口分析方法生成模拟结果状态-变化指标的空间分布图;Step 6) adopt the spatial dislocation-moving window analysis method to generate the spatial distribution diagram of the simulation result state-change index;
步骤7)输出并保存模拟结果和空间分布图作为可信度评估结果。Step 7) outputting and saving the simulation result and the spatial distribution map as the reliability evaluation result.
所述步骤1)包括以下步骤:Described step 1) comprises the following steps:
步骤1-1)利用陆地卫星遥感图像,采用监督分类方法获取土地利用分类图;Step 1-1) using Landsat remote sensing images, using a supervised classification method to obtain land use classification maps;
步骤1-2)利用矢量数据集和栅格图像,提取影响城市扩张的驱动因子图。Steps 1-2) Using vector datasets and raster images, extract a map of driving factors affecting urban sprawl.
所述步骤2)包括以下步骤:Described step 2) comprises the following steps:
步骤2-1)对城市土地利用分类图和驱动因子图进行系统采样,为构建CA转换规则提供训练样本,其中,转换规则的函数表示为:Step 2-1) Systematically sample the urban land use classification map and driving factor map, and provide training samples for constructing CA conversion rules, where the function of the conversion rules is expressed as:
P·g~UrbanTranRule(Statecu,Ptr,NE,Res,Sto)P·g~UrbanTranRule(State cu ,P tr ,NE,Res,Sto)
式中,Pg是全局转换概率,Statecu是当前元胞状态,Ptr是由驱动因子定义的转换概率,NE是邻域效应,Res是全局和局部限制,Sto为随机因子;In the formula, Pg is the global transition probability, State cu is the current cell state, P tr is the transition probability defined by the driving factor, NE is the neighborhood effect, Res is the global and local constraints, and Sto is the random factor;
步骤2-2)基于交叉熵优化算法CEO搜索CA参数,建立CA模型。Step 2-2) Based on the cross-entropy optimization algorithm, CEO searches for CA parameters, and establishes a CA model.
所述步骤2-2)包括以下步骤:Described step 2-2) comprises the following steps:
步骤2-2-1)构建将CA模型与实际城市增长联系起来的目标函数;Step 2-2-1) Construct an objective function linking the CA model to actual urban growth;
步骤2-2-2)根据概率分布构建一组随机序列样本;Step 2-2-2) Construct a group of random sequence samples according to the probability distribution;
步骤2-2-3)通过更新概率分布参数和目标函数寻找更优解,其中,为了找到最合适的概率Ptr(a),自动更新的概率参数P={P1,P2,…,Pk}表示为:Step 2-2-3) Find a better solution by updating the probability distribution parameters and the objective function, wherein, in order to find the most suitable probability P tr (a), the automatically updated probability parameters P={P 1 ,P 2 ,..., P k } is expressed as:
式中,为指示函数,γ为预定义的小残差,aij为第i个驱动因子的第j个参数,k为CEO的种群规模;In the formula, is an indicator function, γ is a predefined small residual, a ij is the jth parameter of the i-th driving factor, and k is the population size of the CEO;
步骤2-2-4)当CEO迭代结束时,得到最优解a,即CA参数,由CA参数确定CA模型。Step 2-2-4) When the CEO iteration ends, the optimal solution a, namely the CA parameters, is obtained, and the CA model is determined by the CA parameters.
所述步骤3)包括以下步骤:Described step 3) comprises the following steps:
步骤3-1)对构建的CA模型进行校正:在GIS建模和模拟环境下,选用某一年的城市分布格局为校正时期的初始状态,将构建的模型运行A次,得到城市分布格局的模拟结果,并将模拟结果输出,其中,A为模型校正时期初始与结束的年份差;Step 3-1) Calibrate the constructed CA model: in the GIS modeling and simulation environment, select the urban distribution pattern of a certain year as the initial state of the correction period, run the constructed model A times, and obtain the urban distribution pattern Simulation results, and output the simulation results, where A is the year difference between the beginning and end of the model calibration period;
步骤3-2)对构建的CA模型进行验证:在GIS建模和模拟环境下,选用某一年的城市分布格局为验证时期的初始状态,将构建的模型运行B次,得到城市分布格局的模拟结果,并将模拟结果输出,其中,B为模型验证时期初始与结束的年份差。Step 3-2) Verify the constructed CA model: in the GIS modeling and simulation environment, select the urban distribution pattern of a certain year as the initial state of the verification period, run the constructed model B times, and obtain the urban distribution pattern Simulation results, and output the simulation results, where B is the difference between the beginning and end of the model verification period.
所述步骤4)包括以下步骤:Described step 4) comprises the following steps:
步骤4-1)采用逐像元对比方法中的列联矩阵对模拟结果进行状态-静止指标评估;Step 4-1) using the contingency matrix in the pixel-by-pixel comparison method to evaluate the state-stationary index of the simulation results;
步骤4-2)采用逐像元对比方法中的真实-模拟叠加生成四个指标:命中、漏报、误报和正确拒绝,并基于所述四个指标计算用于评估城市的动态增长的状态-变化指标。Step 4-2) Using the real-simulated overlay in the pixel-by-pixel comparison method to generate four indicators: hits, false negatives, false positives and correct rejections, and calculate the status for evaluating the dynamic growth of the city based on the four indicators - Change indicators.
所述状态-静止指标包括总体精度、使用者精度、生产者精度。The state-stationary indicators include overall accuracy, user accuracy, and producer accuracy.
所述状态-变化指标包括品质因数、准确率、召回率。The state-change indicators include quality factor, precision rate, and recall rate.
所述步骤5)包括以下步骤:Described step 5) comprises the following steps:
步骤5-1)生成基础评估指标图层:Step 5-1) Generate the basic evaluation indicator layer:
图层a.真实模式和模拟结果均为城市类别Cor_Ur;Layer a. Both the real model and the simulation results are of the city category Cor_Ur;
图层b.真实模式为城市类别、模拟结果为非城市类别Fal_Ur;Layer b. The real model is the urban category, and the simulation result is the non-urban category Fal_Ur;
图层c.真实模式为非城市类别、模拟结果为城市类别Fal_NUr;Layer c. The real mode is the non-urban category, and the simulation result is the urban category Fal_NUr;
图层d.真实模式和模拟结果均为非城市类别Cor_NUr;Layer d. The real model and simulation results are both non-urban categories Cor_NUr;
步骤5-2)使用空间错位-移动窗口分析:采用ArcGIS中的焦点统计工具计算焦点级别指标;Step 5-2) Using spatial dislocation-moving window analysis: using the focus statistics tool in ArcGIS to calculate the focus level index;
步骤5-3)生成精度和误差图:通过以下公式生成状态-静止指标焦点级别的评估图:Step 5-3) Generate precision and error graphs: Generate state-stationary index focus level evaluation graphs by the following formula:
其中,Mapmw()表示图层,SPOA表示总体精度的空间化结果,SPPA表示生产者精度的空间化结果,SPUA表示使用者精度的空间化结果。Among them, Map mw () represents the layer, SPOA represents the spatialization result of overall precision, SPPA represents the spatialization result of producer precision, and SPUA represents the spatialization result of user precision.
所述步骤6)包括以下步骤:Described step 6) comprises the following steps:
步骤6-1)生成基础评估指标图层:Step 6-1) Generate the basic evaluation index layer:
图层a.模拟结果与实际模式均为城市URHit;Layer a. The simulation results and the actual model are urban URHit;
图层b.模拟结果为城市、实际模式为非城市URFalse;Layer b. The simulation result is urban, and the actual mode is non-urban URFalse;
图层c.模拟结果为非城市、实际模式为城市URMiss;Layer c. The simulation result is non-urban, and the actual model is urban URMiss;
图层d.模拟结果与实际模式均为非城市CR;Layer d. The simulation results and the actual model are both non-urban CR;
步骤6-2)使用空间错位-移动窗口分析:采用ArcGIS中的焦点统计工具计算焦点级别指标;Step 6-2) using spatial dislocation-moving window analysis: using the focus statistics tool in ArcGIS to calculate the focus level index;
步骤6-3)生成精度和误差图:通过以下公式生成状态-变化指标焦点级别的评估图:Step 6-3) Generate precision and error graphs: generate evaluation graphs of state-change indicator focus levels by the following formula:
其中,Mapmw()表示图层,SPFOM表示品质因数的空间化结果,SPPRE表示准确度的空间化结果,SPRE表示召回率的空间化结果。Among them, Map mw () represents the layer, SPFOM represents the spatialization result of quality factor, SPPRE represents the spatialization result of accuracy, and SPRE represents the spatialization result of recall rate.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明的方法能够在考虑邻域影响的条件下识别每个像元的数量精度,而不是只提供单个数值对模拟质量和模型性能进行总结,较好地反映了CA模型在模拟不同区域的城市增长的效果,其优点在于:1)可以生成报告每个像元的模拟精度/误差的评估图,显示模拟精度和误差的空间分布;2)可以量化驱动因子与评估指标之间的关系。这种空间评价方法不仅可用于评价CA模型的模拟结果,还可用于评价遥感影像分类器。The method of the present invention can identify the quantitative accuracy of each pixel under the condition of considering the influence of the neighborhood, instead of only providing a single value to summarize the simulation quality and model performance, which better reflects the CA model in simulating cities in different regions The advantages of the growth effect are: 1) It can generate an evaluation map reporting the simulation accuracy/error of each pixel, showing the spatial distribution of simulation accuracy and error; 2) It can quantify the relationship between the driving factor and the evaluation index. This spatial evaluation method can be used not only to evaluate the simulation results of the CA model, but also to evaluate remote sensing image classifiers.
附图说明Description of drawings
图1为本发明的方法流程示意图;Fig. 1 is a schematic flow chart of the method of the present invention;
图2为本发明实施例案例区域历史土地利用分布图;Fig. 2 is the historical land use distribution diagram of the case region of the embodiment of the present invention;
图3为1995-2015年土地利用变化的驱动因子图;Figure 3 shows the driving factors of land use change from 1995 to 2015;
图4为2005年和2015年模拟结果及评估图;Figure 4 shows the simulation results and evaluation charts in 2005 and 2015;
图5为2005年模拟结果的状态-静止指标空间模式图;Fig. 5 is the state-stationary index spatial model diagram of the simulation results in 2005;
图6为2005年模拟结果的状态-变化指标空间模式图;Figure 6 is the state-change index spatial model diagram of the simulation results in 2005;
图7为2015年模拟结果的状态-静止指标空间模式图;Fig. 7 is the state-stationary index spatial model diagram of the simulation results in 2015;
图8为2015年模拟结果的状态-变化指标空间模式图。Figure 8 is the state-change indicator spatial model diagram of the simulation results in 2015.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments. This embodiment is carried out on the premise of the technical solution of the present invention, and detailed implementation and specific operation process are given, but the protection scope of the present invention is not limited to the following embodiments.
不同于全局级别和局部级别,移动窗口分析是一种在焦点级别上评估模拟结果的有效方法。一些GIS学者已经应用这种方法来检测模拟结果和实际模式之间的局部差异或相似性,并指出,移动窗口分析可用于评估土地利用类别在组成和空间结构上的相似性。该方法的特点是使用单一数值评估指标的模糊评价,如Kappa。与逐像元对比的精确比较相比,基于空间错位的土地利用变化模拟可信度评估克服了以往评估方法可能低估模拟精度的缺点。因此,本发明提供一种基于空间错位的土地利用变化模拟可信度评估方法,如图1所示,包括以下步骤:Unlike global and local levels, moving window analysis is an efficient way to evaluate simulation results at the focal level. Some GIS scholars have applied this method to detect local differences or similarities between simulation results and actual patterns, and pointed out that moving window analysis can be used to assess the similarity of land use categories in composition and spatial structure. The method is characterized by fuzzy evaluation using a single numerical evaluation metric, such as Kappa. Compared with the precise comparison of pixel-by-pixel comparison, the land use change simulation credibility assessment based on spatial dislocation overcomes the shortcomings of previous assessment methods that may underestimate the simulation accuracy. Therefore, the present invention provides a land use change simulation credibility evaluation method based on spatial dislocation, as shown in Figure 1, including the following steps:
步骤1)收集用于构建CA模型的涵盖研究初始和结束年份的土地利用分类图和影响城市扩张的驱动因子图。Step 1) Collect land use classification maps and driving factor maps that affect urban expansion covering the initial and end years of the study for building the CA model.
步骤1-1)利用陆地卫星遥感图像,在ENVI软件中采用监督分类方法获取CA模型校正和验证时期所需要输入的初始和结束年份的土地利用分类图。Step 1-1) Using Landsat remote sensing images, use the supervised classification method in the ENVI software to obtain the land use classification maps of the initial and end years that need to be input during the calibration and verification of the CA model.
步骤1-2)利用矢量数据集和栅格图像,提取影响城市扩张的驱动因子图。Steps 1-2) Using vector datasets and raster images, extract a map of driving factors affecting urban sprawl.
具体的,综合地形图、人口分布图、行政区划图、道路交通图、POI等数据,在GIS环境中利用欧几里德距离方法获取到城市中心、区县中心、主要道路、基础设施等关键要素的距离,从而提取影响城市扩张的驱动因子。Specifically, comprehensive topographic maps, population distribution maps, administrative division maps, road traffic maps, POI and other data, use the Euclidean distance method in the GIS environment to obtain key points such as city centers, district and county centers, main roads, and infrastructure. The distance of the elements is used to extract the driving factors affecting urban expansion.
步骤2)基于智能优化算法获取土地转换概率图,建立CA模型。Step 2) Obtain the land conversion probability map based on the intelligent optimization algorithm, and establish the CA model.
步骤2-1)对城市土地利用分类图和驱动因子图进行系统采样,为构建CA转换规则提供训练样本。Step 2-1) Systematically sample urban land use classification maps and driving factor maps to provide training samples for building CA conversion rules.
元胞自动机(CA)是一类自组织模型的总称,采用自下而上方法进行自动演化,由模型构造的规则构成。由当前元胞状态(Statecu)、基于驱动因子的转换概率(Ptr)、邻域效应(NE)、全局和局部限制(Res)以及随机因素(Sto)共同决定的全局转换概率P·g和转换规则UrbanTranRule可以表示为:Cellular Automata (CA) is a general term for a class of self-organizing models that adopt bottom-up methods for automatic evolution and consist of rules for model construction. The global transition probability P g determined by the current cell state (State cu ), the transition probability based on the driving factor (P tr ), the neighborhood effect (NE), the global and local constraints (Res), and the stochastic factor (Sto) And the transformation rule UrbanTranRule can be expressed as:
P·g~UrbanTranRule(Statecu,Ptr,NE,Res,Sto) (1)P·g~UrbanTranRule(State cu ,P tr ,NE,Res,Sto) (1)
式中,Pg是全局转换概率,Statecu是当前元胞状态,Ptr是由驱动因子定义的转换概率,NE是邻域效应,Res是全局和局部限制,Sto为随机因子。where Pg is the global transition probability, State cu is the current cell state, P tr is the transition probability defined by the driving factor, NE is the neighborhood effect, Res is the global and local constraints, and Sto is the random factor.
在UrbanCA软件中实现CA模型的构建,全局转换概率Pall可由下式计算:Realize the construction of CA model in UrbanCA software, the global conversion probability P all can be calculated by the following formula:
式中,TIP表示调节概率衰减效应的缩放参数,范围为0.0-0.1,值越大表示缩放效果越强;而LAP表示调节邻域效应的缩放参数,范围为0.5-1.0,值越小表示缩放效果越弱。In the formula, TIP represents the scaling parameter for adjusting the probability attenuation effect, the range is 0.0-0.1, and the larger the value, the stronger the scaling effect; while LAP represents the scaling parameter for adjusting the neighborhood effect, the range is 0.5-1.0, and the smaller the value represents the scaling The effect is weaker.
由驱动因子决定的转换概率Ptr是CA转换规则的核心部分,表示了驱动因子对土地利用变化和城市发展的影响并通过概率的方式影响下一时刻的元胞状态。The transition probability P tr determined by the driving factor is the core part of the CA transition rule, which expresses the impact of the driving factor on land use change and urban development, and affects the cell state at the next moment through probability.
步骤2-2)基于交叉熵优化算法CEO搜索CA参数,建立CA模型。Step 2-2) Based on the cross-entropy optimization algorithm, CEO searches for CA parameters, and establishes a CA model.
交叉熵优化算法(CEO)CEO是一种启发式算法,目前被广泛用于搜索目标值与其预测值之间的差异,在CA建模中可采用目标函数指导模型实现自动参数化。具体的,包括以下步骤:Cross-entropy Optimization Algorithm (CEO) CEO is a heuristic algorithm that is widely used to search for the difference between the target value and its predicted value. In CA modeling, the objective function can be used to guide the model to achieve automatic parameterization. Specifically, the following steps are included:
步骤2-2-1)构建将CA模型与实际城市增长联系起来的目标函数;Step 2-2-1) Construct an objective function linking the CA model to actual urban growth;
步骤2-2-2)根据概率分布构建一组随机序列样本;Step 2-2-2) Construct a group of random sequence samples according to the probability distribution;
步骤2-2-3)通过更新概率分布参数和目标函数寻找更优解(即CA参数)。为了找到最合适的概率Ptr(a),自动更新的概率参数P={P1,P2,…,Pk}表示为:Step 2-2-3) Find a better solution (ie, CA parameters) by updating the probability distribution parameters and the objective function. In order to find the most suitable probability P tr (a), the automatically updated probability parameter P={P 1 ,P 2 ,…,P k } is expressed as:
式中,为指示函数,γ为预定义的小残差,aij为第i个驱动因子的第j个参数,k为CEO的种群规模;In the formula, is an indicator function, γ is a predefined small residual, a ij is the jth parameter of the i-th driving factor, and k is the population size of the CEO;
步骤2-2-4)当CEO迭代结束时,得到最优解a,即CA参数,由CA参数确定CA模型。Step 2-2-4) When the CEO iteration ends, the optimal solution a, namely the CA parameters, is obtained, and the CA model is determined by the CA parameters.
步骤3)利用CA模型模拟城市格局并输出保存模拟结果。Step 3) Use the CA model to simulate the urban pattern and output and save the simulation results.
步骤3-1)对构建的CA模型进行校正:在GIS建模和模拟环境下,选用某一年的城市分布格局为校正时期的初始状态,将构建的模型运行A次,得到城市分布格局的模拟结果,并将模拟结果输出,其中,A为模型校正时期初始与结束的年份差。Step 3-1) Calibrate the constructed CA model: in the GIS modeling and simulation environment, select the urban distribution pattern of a certain year as the initial state of the correction period, run the constructed model A times, and obtain the urban distribution pattern The simulation results are output, where A is the year difference between the beginning and end of the model calibration period.
步骤3-2)对构建的CA模型进行验证:在GIS建模和模拟环境下,选用某一年的城市分布格局为验证时期的初始状态,将构建的模型运行B次,得到城市分布格局的模拟结果,并将模拟结果输出,其中,B为模型验证时期初始与结束的年份差。Step 3-2) Verify the constructed CA model: in the GIS modeling and simulation environment, select the urban distribution pattern of a certain year as the initial state of the verification period, run the constructed model B times, and obtain the urban distribution pattern Simulation results, and output the simulation results, where B is the difference between the beginning and end of the model verification period.
步骤4)采用逐像元比较法对CA模型的模拟结果进行单个数值评估。Step 4) Use the pixel-by-pixel comparison method to perform a single numerical evaluation on the simulation results of the CA model.
步骤4-1)采用逐像元对比方法中的列联矩阵对模拟结果进行状态-静止指标评估。本实施例中,状态-静止指标包括总体精度(OA)、生产者精度(PA)、使用者精度(UA)。Step 4-1) Use the contingency matrix in the pixel-by-pixel comparison method to evaluate the state-stationary index of the simulation results. In this embodiment, the state-static index includes overall accuracy (OA), producer accuracy (PA), and user accuracy (UA).
步骤4-2)采用逐像元对比方法中的真实-模拟叠加生成四个指标:命中(URHit)、漏报(URMiss)、误报(URFalse)和正确拒绝(CR),并基于所述四个指标计算用于评估城市的动态增长的状态-变化指标。本实施例中,状态-变化指标包括品质因数(FOM)、准确率(PRE)、召回率(RE)。Step 4-2) Using the real-simulated overlay in the pixel-by-pixel comparison method to generate four indicators: hit (URHit), false negative (URMiss), false negative (URFalse) and correct rejection (CR), and based on the four indicators The indicators are calculated to assess the dynamic growth of the city - a state-change indicator. In this embodiment, the state-change indicators include figure of merit (FOM), precision rate (PRE), and recall rate (RE).
步骤4)具体为:选用逐像元对比方法衡量模拟结果中每个像元的状态是否与实际的城市格局相匹配。选择作为CA模型定量评估的指标。OA是一个表示模拟结果与实际城市模式的一致性的单个数值概率,可以表示为:Step 4) is specifically: use the pixel-by-pixel comparison method to measure whether the state of each pixel in the simulation results matches the actual urban pattern. Selected as a metric for the quantitative evaluation of the CA model. OA is a single numerical probability representing the agreement of the simulated results with the actual urban pattern, which can be expressed as:
式中,pnn是正确模拟的像元数,SUM是所有像元数,tcn是实际结果中城市像元数。In the formula, p nn is the number of pixels correctly simulated, SUM is the number of all pixels, and t cn is the number of urban pixels in the actual result.
起始年实际地图、终止年实际地图和终止年模拟地图的空间叠合可以揭示结构格局的差异。真实-模拟叠合生成四个指标,包括命中(URHit)、漏报(URMiss)、误报(URFlase)和正确拒绝(CR)。其中,URHit表示一个元胞在实际模式和模拟结果中都是城市状态,URMiss表示一个元胞在实际模式中是城市状态而在模拟结果中是非城市状态,URFlase表示一个元胞在实际模式中是非城市状态而在模拟结果中是城市状态,CR表示一个元胞在实际模式和模拟结果中都是非城市状态。由以上空间叠合生成的指标可以计算出用于评估城市动态增长的状态-变化指标,如FOM:The spatial superposition of the actual map of the start year, the actual map of the end year and the simulated map of the end year can reveal the differences in structural patterns. The real-simulated overlay generates four metrics, including hits (URHit), false negatives (URMiss), false positives (URFlase), and correct rejections (CR). Among them, URHit indicates that a cell is in the urban state in both the actual model and the simulation result, URMiss indicates that a cell is in the urban state in the actual model but is a non-urban state in the simulation result, and URFlase indicates that a cell is in the non-urban state in the actual model. The urban state is urban in the simulation results, and CR indicates that a cell is non-urban in both the actual model and the simulation results. The indicators generated by the above spatial superposition can be used to calculate the state-change indicators used to evaluate the dynamic growth of cities, such as FOM:
式中,FOM表示CA模型捕获新的城市化像元的能力。In the formula, FOM represents the ability of the CA model to capture new urbanization pixels.
步骤5)采用空间错位-移动窗口分析方法生成模拟结果状态-静止指标的空间分布图。Step 5) Using the spatial dislocation-moving window analysis method to generate the spatial distribution diagram of the state-stationary index of the simulation results.
移动窗口分析一般是以某个像元为中心,设置固定大小与形状的窗口并在窗口内进行统计计算,再将计算的结果返回窗口中心像元。对每个像元重复计算过程,可生成新的栅格表面图层。若将移动窗口分析用于模型评价,可获得精度和误差的空间分布结果。The moving window analysis generally takes a certain pixel as the center, sets a window with a fixed size and shape and performs statistical calculations in the window, and then returns the calculation results to the center pixel of the window. Repeating the calculation process for each cell produces a new raster surface layer. If the moving window analysis is used for model evaluation, the spatial distribution results of precision and error can be obtained.
以传统的逐像元比较方法为基础,要实现状态-静止指标空间可视化主要包括以下几个步骤:Based on the traditional pixel-by-pixel comparison method, the visualization of the state-stationary index space mainly includes the following steps:
步骤5-1)基于T2时刻的实际土地利用格局和模拟土地利用格局,获取四个基础评估指标TIF图层:Step 5-1) Based on the actual land use pattern and the simulated land use pattern at T2 time, four basic evaluation index TIF layers are obtained:
图层a.真实模式和模拟结果均为城市类别Cor_Ur;Layer a. Both the real model and the simulation results are of the city category Cor_Ur;
图层b.真实模式为城市类别、模拟结果为非城市类别Fal_Ur;Layer b. The real model is the urban category, and the simulation result is the non-urban category Fal_Ur;
图层c.真实模式为非城市类别、模拟结果为城市类别Fal_NUr;Layer c. The real mode is the non-urban category, and the simulation result is the urban category Fal_NUr;
图层d.真实模式和模拟结果均为非城市类别Cor_Nur。Layer d. Both ground truth and simulated results are for the non-urban category Cor_Nur.
步骤5-2)使用空间错位-移动窗口分析:采用ArcGIS中的焦点统计工具,输入步骤5-1)中提取的各指标图层,设置移动窗口的形状、大小并确定数值统计方式,计算焦点级别指标,生成的结果用于计算各状态-静止指标的空间可视化结果。Step 5-2) Use spatial dislocation-moving window analysis: use the focus statistics tool in ArcGIS, input the index layers extracted in step 5-1), set the shape and size of the moving window and determine the numerical statistics method to calculate the focus Level indicators, the generated results are used to calculate the spatial visualization results of each state-stationary indicator.
步骤5-3)生成精度和误差图:通过以下公式生成状态-静止指标焦点级别的评估图:Step 5-3) Generate precision and error graphs: Generate state-stationary index focus level evaluation graphs by the following formula:
其中,Mapmw()表示图层,SPOA表示总体精度的空间化结果,SPPA表示生产者精度的空间化结果,SPUA表示使用者精度的空间化结果。Among them, Map mw () represents the layer, SPOA represents the spatialization result of overall precision, SPPA represents the spatialization result of producer precision, and SPUA represents the spatialization result of user precision.
步骤6)采用空间错位-移动窗口分析方法生成模拟结果状态-变化指标的空间分布图。Step 6) Using the spatial dislocation-moving window analysis method to generate a spatial distribution diagram of the state-change index of the simulation result.
以传统的逐像元比较方法为基础,要实现状态-变化指标空间可视化主要包括以下几个步骤:Based on the traditional pixel-by-pixel comparison method, the visualization of the state-change indicator space mainly includes the following steps:
步骤6-1)基于T1时刻的实际土地利用格局、T2时刻的实际土地利用格局和模拟土地利用格局,生成基础评估指标图层,用于获取状态-变化指标的空间可视化结果:Step 6-1) Based on the actual land use pattern at T1 time, the actual land use pattern at T2 time and the simulated land use pattern, generate a basic evaluation index layer for obtaining the spatial visualization results of state-change indicators:
图层a.模拟结果与实际模式均为城市URHit;Layer a. The simulation results and the actual model are urban URHit;
图层b.模拟结果为城市、实际模式为非城市URFalse;Layer b. The simulation result is urban, and the actual mode is non-urban URFalse;
图层c.模拟结果为非城市、实际模式为城市URMiss;Layer c. The simulation result is non-urban, and the actual model is urban URMiss;
图层d.模拟结果与实际模式均为非城市CR。Layer d. Simulation results and actual model are non-urban CR.
步骤6-2)使用空间错位-移动窗口分析:采用ArcGIS中的焦点统计工具,输入步骤6-1)中提取的各指标图层,设置移动窗口的形状、大小并确定数值统计方式,生成的结果用于计算各状态-变化指标的空间可视化结果。Step 6-2) Use spatial dislocation-moving window analysis: use the focus statistics tool in ArcGIS, input the index layers extracted in step 6-1), set the shape and size of the moving window and determine the numerical statistics method, the generated The results are used to calculate spatial visualization results for each state-change indicator.
步骤6-3)生成精度和误差图:通过以下公式生成状态-变化指标焦点级别的评估图:Step 6-3) Generate precision and error graphs: generate evaluation graphs of state-change indicator focus levels by the following formula:
其中,Mapmw()表示图层,SPFOM表示品质因数的空间化结果,SPPRE表示准确度的空间化结果,SPRE表示召回率的空间化结果。Among them, Map mw () represents the layer, SPFOM represents the spatialization result of quality factor, SPPRE represents the spatialization result of accuracy, and SPRE represents the spatialization result of recall rate.
步骤7)输出并保存模拟结果和空间分布图作为可信度评估结果。Step 7) outputting and saving the simulation result and the spatial distribution map as the reliability evaluation result.
本实施例采用陆地卫星遥感影像和矢量数据集获取宁波市1995年、2005年和2015年的城市土地格局和影响城市扩张的驱动因子。在UrbanCA软件中基于CEO方法构建CA转换规则,生成宁波市的土地转换概率图,构建CEO-CA模型来模拟1995-2015年的城市扩张。在采用逐像元比较方法获取单一数值评估结果后,再利用所提出的空间评估方法来评估校正和验证阶段的模拟结果,获取2005年和2015年模拟结果的SPOA、SPPA、SPUA、SPFOM、SPPRE和SPRE。This example uses Landsat remote sensing images and vector datasets to obtain the urban land pattern and driving factors affecting urban expansion in Ningbo in 1995, 2005 and 2015. In the UrbanCA software, the CA conversion rules are constructed based on the CEO method, the land conversion probability map of Ningbo is generated, and the CEO-CA model is constructed to simulate the urban expansion from 1995 to 2015. After using the pixel-by-pixel comparison method to obtain a single numerical evaluation result, the proposed spatial evaluation method is used to evaluate the simulation results in the calibration and verification stages, and the SPOA, SPPA, SPUA, SPFOM, SPPRE of the simulation results in 2005 and 2015 are obtained and SPRE.
在步骤1)中,以宁波市为研究区,收集1995、2005和2015年的陆地卫星遥感图像,以及行政区划图、交通路网图、人口图、地形图和POI等数据,作为研究中构建CA模型的基础数据。In step 1), Ningbo City was taken as the research area to collect Landsat remote sensing images in 1995, 2005 and 2015, as well as administrative division maps, traffic road network maps, population maps, topographic maps and POI data, as the data constructed in the study The basic data of the CA model.
在ENVI软件中采用监督分类方法对宁波市的Landsat遥感图像进行土地利用分类,从而生成宁波市1995、2005和2015年的真实城市空间格局图,如图2所示。In the ENVI software, the Landsat remote sensing image of Ningbo is classified by the supervised classification method to generate the real urban spatial pattern map of Ningbo in 1995, 2005 and 2015, as shown in Figure 2.
基于行政区划图层、道路交通图层和基础设施图层,在GIS环境下利用空间分析工具中的欧几里德距离计算出各元胞到城市中心、区县中心、主干道路、教育机构和医疗设施等的距离,并获取地形、人口等栅格图,形成影响宁波市城市空间扩张的驱动因子图,如表1和图3所示。Based on the administrative division layer, road traffic layer and infrastructure layer, use the Euclidean distance in the spatial analysis tool to calculate the distance between each cell to the city center, district and county center, main roads, and educational institutions in the GIS environment The distance to medical facilities, etc., and the grid map of terrain and population are obtained to form a map of driving factors that affect the urban spatial expansion of Ningbo, as shown in Table 1 and Figure 3.
表1.影响宁波城市发展的驱动因子Table 1. Driving factors affecting Ningbo's urban development
在步骤2)-步骤4)中,将宁波市1995年的真实城市模式作为初始状态,采用CEO-CA模型模拟2005年的城市格局;并将宁波市2005年的真实城市模式作为初始状态,采用CEO-CA模型模拟2015年的城市格局。对模拟结果进行单一数值评估,表2和图4为模拟结果与精度。In step 2)-step 4), take the real urban model of Ningbo in 1995 as the initial state, use the CEO-CA model to simulate the urban pattern in 2005; take the real urban model of Ningbo in 2005 as the initial state, use The CEO-CA model simulates the urban landscape in 2015. A single numerical evaluation is performed on the simulation results, and Table 2 and Figure 4 show the simulation results and accuracy.
表2.校正和验证时期模拟结果精度评估Table 2. Accuracy assessment of simulation results during calibration and validation periods
在步骤5)和步骤6)中,对于CA模型的模拟结果,采用移动窗口分析方法将焦点级别的精度可视化,并分析其统计数据(范围、平均值和SD)。表3和表4分别为CA模型校正和验证时期状态-静止和状态-变化空间评估指标的统计信息。In step 5) and step 6), for the simulation results of the CA model, the focus-level accuracy was visualized and its statistics (range, mean, and SD) were analyzed using a moving window analysis method. Table 3 and Table 4 are the statistical information of the state-stationary and state-change space evaluation indicators during CA model calibration and verification, respectively.
表3.对校正时期状态-静止和状态-变化空间评估指标的统计Table 3. Statistics of evaluation indicators for state-stationary and state-change spaces during the correction period
表4.对验证时期状态-静止和状态-变化空间评估指标的统计Table 4. Statistics of the state-stationary and state-change space evaluation indicators during the verification period
图5和图6分别为CA模型校正时期模拟结果的空间评估图,其中图5显示的是2005年模拟结果的SPOA、SPPA和SPUA,图6显示的是2005年模拟结果的SPFOM、SPPRE和SPRE。Figure 5 and Figure 6 are the spatial evaluation diagrams of the simulation results during the calibration period of the CA model, in which Figure 5 shows the SPOA, SPPA and SPUA of the simulation results in 2005, and Figure 6 shows the SPFOM, SPPRE and SPRE of the simulation results in 2005 .
图7和图8分别为CA模型验证时期模拟结果的空间评估图,其中图7显示的是2015年模拟结果的SPOA、SPPA和SPUA,图8显示的是2015年模拟结果的SPFOM、SPPRE和SPRE。Figure 7 and Figure 8 are the spatial evaluation diagrams of the simulation results during the CA model verification period, in which Figure 7 shows the SPOA, SPPA and SPUA of the simulation results in 2015, and Figure 8 shows the SPFOM, SPPRE and SPRE of the simulation results in 2015 .
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依据本发明的构思在现有技术的基础上通过逻辑分析、推理、或者有限的实验可以得到的技术方案,皆应在权利要求书所确定的保护范围内。The preferred specific embodiments of the present invention have been described in detail above. It should be understood that those skilled in the art can make many modifications and changes according to the concept of the present invention without creative efforts. Therefore, all technical solutions that can be obtained by those skilled in the art based on the concept of the present invention through logical analysis, reasoning, or limited experiments on the basis of the prior art shall be within the scope of protection defined in the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310175701.8A CN116167661A (en) | 2023-02-28 | 2023-02-28 | Land utilization change simulation credibility assessment method based on space dislocation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310175701.8A CN116167661A (en) | 2023-02-28 | 2023-02-28 | Land utilization change simulation credibility assessment method based on space dislocation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116167661A true CN116167661A (en) | 2023-05-26 |
Family
ID=86419786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310175701.8A Pending CN116167661A (en) | 2023-02-28 | 2023-02-28 | Land utilization change simulation credibility assessment method based on space dislocation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116167661A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117993191A (en) * | 2024-01-30 | 2024-05-07 | 河海大学 | Quantitative assessment method of land use change-precipitation feedback based on water vapor tracking |
-
2023
- 2023-02-28 CN CN202310175701.8A patent/CN116167661A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117993191A (en) * | 2024-01-30 | 2024-05-07 | 河海大学 | Quantitative assessment method of land use change-precipitation feedback based on water vapor tracking |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ali et al. | A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making | |
Abbasabadi et al. | An integrated data-driven framework for urban energy use modeling (UEUM) | |
CN112163367B (en) | A Simulation and Prediction Method of Urban Expansion Combining Firefly Algorithm and Cellular Automata | |
CN101354757B (en) | Method for predicting dynamic risk and vulnerability under fine dimension | |
CN108446470B (en) | Medical facility accessibility analysis method based on vehicle trajectory data and population distribution | |
CN110909924B (en) | A Cellular Automata Method for Multi-Scenario Simulation of Urban Expansion Based on Cross-Entropy Optimizer | |
CN110458048A (en) | Spatial-temporal evolution and cognition of population distribution considering the characteristics of urban pattern | |
CN111080070A (en) | A Cellular Automata Method for Urban Land Use Simulation Based on Spatial Error | |
CN113297174B (en) | Land use change simulation method based on deep learning | |
Li et al. | Firefly algorithm-based cellular automata for reproducing urban growth and predicting future scenarios | |
Feng et al. | A cellular automata model based on nonlinear kernel principal component analysis for urban growth simulation | |
CN110991262A (en) | Multi-bandwidth Geographically Weighted Regression Cellular Automata Method for Ecological Service Value Prediction | |
CN114861277A (en) | Long-time-sequence national soil space function and structure simulation method | |
CN110826244A (en) | Conjugate gradient cellular automata method for simulating influence of rail transit on urban growth | |
CN115728463A (en) | Interpretable water quality prediction method based on semi-embedded feature selection | |
He et al. | Does partition matter? A new approach to modeling land use change | |
CN117114176A (en) | Land utilization change prediction method and system based on data analysis and machine learning | |
CN104361255A (en) | Simulation method for urban expansion through modified cellular automaton | |
CN116167661A (en) | Land utilization change simulation credibility assessment method based on space dislocation | |
Momeni et al. | Pattern‐based calibration of cellular automata by genetic algorithm and Shannon relative entropy | |
CN117827863A (en) | Atmospheric environment monitoring and analysis method and system based on CLDAS database | |
CN117422096A (en) | Integrated learning score prediction method and system based on GA-PSO optimization | |
Zeng et al. | An urban cellular automata model based on a spatiotemporal non-stationary neighborhood | |
CN116757305A (en) | Typhoon disaster risk assessment and dynamic forecasting method | |
CN115564255A (en) | A method and system for evaluating the importance of monitoring sites based on graph neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |