CN116154601A - 一种大能量窄脉宽中红外激光器 - Google Patents

一种大能量窄脉宽中红外激光器 Download PDF

Info

Publication number
CN116154601A
CN116154601A CN202310006354.6A CN202310006354A CN116154601A CN 116154601 A CN116154601 A CN 116154601A CN 202310006354 A CN202310006354 A CN 202310006354A CN 116154601 A CN116154601 A CN 116154601A
Authority
CN
China
Prior art keywords
laser
ktp
crystal
mirror
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310006354.6A
Other languages
English (en)
Inventor
李磊
邓明发
乔迁
孙维娜
谭希言
王君光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Oriental Sharp Laser Technology Co ltd
Original Assignee
Beijing Oriental Sharp Laser Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Oriental Sharp Laser Technology Co ltd filed Critical Beijing Oriental Sharp Laser Technology Co ltd
Priority to CN202310006354.6A priority Critical patent/CN116154601A/zh
Publication of CN116154601A publication Critical patent/CN116154601A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lasers (AREA)

Abstract

本发明属于激光技术领域,公开了一种大能量窄脉宽中红外激光器,脉冲激光器的脉冲能量为600mJ、脉宽10ns的1.064μm脉冲激光经过高透射镜A反射,进入KTP‑OPO,路径为透过KTP晶体A,经过直角棱镜的两个直角面反射,透过KTP晶体B,经过高透射镜B反射出KTP‑OPO;1.064μm脉冲激光经过KTP‑OPO进行光学频率变换,产生250mJ、脉宽小于10ns的2.1μm激光,1.064μm脉冲激光到2.1μm激光的转换效率大于40%。本发明产生2.1μm激光只需要振荡器,系统结构简单,并且由于ZGP晶体放置于2.1μm谐振腔内部,当ZGP晶体开始出现损坏时,2.1μm激光由于腔损耗增大停止振荡,避免完全损毁ZGP晶体。

Description

一种大能量窄脉宽中红外激光器
发明领域
本发明涉及激光技术领域,具体涉及一种大能量窄脉宽中红外激光器。
背景发明
纳秒量级脉冲宽度,单脉冲能量大于100mJ,即峰值功率达到兆瓦级的3~5μm中红外激光器,在光谱学、远程探测、医学以及光电对抗等领域有广泛的应用。目前产生大能量窄脉宽中红外激光的方式为大能量窄脉宽2~2.1μm激光泵浦ZGP-OPO和ZGP-OPA。2014年MagnusW.Haakestad等人提出一种输出200mJ窄脉宽中红外激光的方案。由于大能量2.05μm不能通过激光振荡器直接获得,而是通过多级放大产生。如图1所示,500mJ的2.05μm激光需要振荡+多级放大获得,系统复杂。ZGP晶体放置于2.05μm激光振荡器外部,当ZGP晶体开始出现损伤时,2.05μm激光仍会持续作用在ZGP晶体上,造成晶体不可修复的损毁。
目前,产生窄脉宽大能量中红外激光的方式为:Ho掺杂晶体调Q脉冲激光振荡器进行多级放大,产生大能量窄脉宽2.1μm脉冲激光,腔外泵浦ZGP晶体,经过ZGP晶体及其谐振腔进行光参量振荡(ZGP-OPO)产生窄脉宽大能量中红外激光。但是,产生大能量窄脉宽2.1μm脉冲激光需要振荡级+多级放大,系统复杂。并且ZGP晶体出现损伤后,2.1μm激光仍会继续泵浦ZGP,造成ZGP晶体完全损毁。如图1所示为现有发明大能量窄脉宽中红外激光器原理图,2.1μm激光振荡器经过三级放大后,能量为250mJ,腔外泵浦ZGP-OPO产生大于100mJ中红外激光。产生的大于100mJ窄脉宽中红外激光需要大于250mJ的2~2.1μm泵浦源激光,而产生大于250mJ的2~2.1μm泵浦源需要激光振荡器+多级放大,系统复杂,成本高。
发明内容
本发明采用腔内ZGP-OPO,其中大能量2.1μm激光采用1.064μm激光泵浦KTP晶体获得,ZGP-OPO置于2.1μm激光谐振腔内。
本发明提供了一种大能量窄脉宽中红外激光器,包括:
600mJ、10ns、1.064μm脉冲激光器,为KTP-OPO的泵浦源;
1.064μm和3~5μm激光45°高反射并且2.1μm激光45°高透射镜A;
KTP晶体A,切割角度为θ=51.4°,φ=0°,为1.064μm激光转换成2.1μm激光的非线性晶体;
KTP晶体B,切割角度为θ=51.4°,φ=0°,作用同KTP晶体A,两块KTP晶体串联,KTP晶体A+KTP晶体B,比单块晶体具有更高的转换效率;
直角棱镜,两个直角面作为KTP-OPO的腔镜;
1.064μm和3~5μm激光45°高反射并且2.1μm激光45°高透射镜B;
ZGP晶体,切割角度θ=54.5°,φ=0°,为2.1μm激光转换成3~5μm激光的非线性晶体;
2.1μm激光45°高反射并且3~5μm激光45°部分输出镜;
2.1μm激光和3~5μm激光45°高反射镜;
其中,KTP晶体A、KTP晶体B、直角棱镜、输出镜和高反射镜组成2.1μm光学参量振荡器KTP-OPO;高透射镜A、高透射镜B、ZGP晶体、输出镜和高反射镜组成ZGP光学参量振荡器ZGP-OPO;
脉冲激光器的脉冲能量为600mJ、脉宽10ns的1.064μm脉冲激光经过高透射镜A反射,进入KTP-OPO,路径为透过KTP晶体A,经过直角棱镜的两个直角面反射,透过KTP晶体B,经过高透射镜B反射出KTP-OPO;
1.064μm脉冲激光经过KTP-OPO进行光学频率变换,产生250mJ、脉宽小于10ns的2.1μm激光,1.064μm脉冲激光到2.1μm激光的转换效率大于40%。
进一步,产生的2.1μm脉冲激光按照顺时针传播,依次透过KTP晶体A,经过直角棱镜的两个直角面反射,透过KTP晶体B、高透射镜B和ZGP晶体,经过输出镜和高反射镜反射,透过高透射镜A,再次透过KTP晶体A;如此循环下去,形成一个向环形振荡。
进一步,产生的250mJ、脉宽小于10ns的2.1μm激光,振荡过程中经过ZGP-OPO,ZGP-OPO进行光学频率变换产生大于100mJ、脉宽小于10ns的3~5μm中红外激光,2.1μm激光到3~5μm中红外激光转换效率大于40%。
本发明方法具有如下优点:
本发明采用腔内ZGP-OPO,其中大能量2.1μm激光采用1.064μm激光泵浦KTP晶体获得,ZGP-OPO置于2.1μm激光谐振腔内。采用这种方案,2.1μm只需要振荡器,并且由于ZGP晶体放置于2.1μm谐振腔内部,当ZGP晶体开始出现损坏时,2.1μm激光由于腔损耗增大停止振荡,由于2.1μm激光不能形成振荡,即2.1μm激光消失,避免完全损毁ZGP晶体。
附图说明
图1为现有发明的大能量窄脉宽中红外激光器;
图2为本发明大能量窄脉宽中红外激光器。
具体实施方式
下面将结合具体实施方案对本发明的发明方案进行清楚、完整的描述,但是本领域发明人员应当理解,下文所述的实施方案仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施方案,本领域普通发明人员在没有做出创造性劳动前提下所获得的所有其他实施方案,都属于本发明保护的范围。
本发明是设计了一种用于产生大能量窄脉宽中红外激光的方式,具体是把ZGP-OPO谐振腔放置于2.1μm谐振腔内(又称为腔内ZGP-OPO),泵浦源选用600mJ、10ns、1.064μm脉冲激光器。采用这种发明,ZGP晶体内的2.1μm激光功率密度高,能够提高激光器的光光效率,并且ZGP晶体损坏后,2.1μm激光也会停止振荡,不会继续损伤ZGP晶体。因此本发明的大能量窄脉宽中红外激光器,具有结构简单,并且有利于ZGP晶体保护等优点。
本发明的光路如图2所示,
1为600mJ、10ns、1.064μm脉冲激光器,为KTP-OPO的泵浦源;
2为1.064μm和3~5μm激光45°高反射并且2.1μm激光45°高透射镜A;
3为KTP晶体A,切割角度为θ=51.4°,φ=0°,为1.064μm激光转换成2.1μm激光的非线性晶体;
4为KTP晶体B,切割角度为θ=51.4°,φ=0°,作用同KTP晶体A,两块KTP晶体串联(KTP晶体A+KTP晶体B)比单块晶体具有更高的换效率;
5为直角棱镜,两个直角面作为KTP-OPO的腔镜;
6为1.064μm和3~5μm激光45°高反射并且2.1μm激光45°高透射镜B;
7为ZGP晶体,切割角度θ=54.5°,φ=0°,为2.1μm激光转换成3~5μm激光的非线性晶体;
8为2.1μm激光45°高反射并且3~5μm激光45°部分输出镜;
9为2.1μm激光和3~5μm激光45°高反射镜;
其中,KTP晶体A3、KTP晶体B4、直角棱镜5、输出镜8和高反射镜9组成2.1μm光学参量振荡器K(KTP-OPO);高透射镜A2、高透射镜B6、ZGP晶体7、输出镜8和高反射镜9组成ZGP光学参量振荡器Z(ZGP-OPO)。
本发明的一种大能量窄脉宽中红外激光器,包括:
脉冲激光器1的脉冲能量为600mJ、脉宽10ns的1.064μm脉冲激光经过高透射镜A2反射,进入KTP-OPO,路径为透过KTP晶体A3,经过直角棱镜5的两个直角面反射,透过KTP晶体B4,经过高透射镜B6反射出KTP-OPO;
1.064μm脉冲激光经过KTP-OPO进行光学频率变换,产生250mJ、脉宽小于10ns的2.1μm激光,1.064μm脉冲激光到2.1μm激光的转换效率大于40%;
产生的2.1μm脉冲激光按照顺时针传播,依次透过KTP晶体A3,经过直角棱镜5的两个直角面反射,透过KTP晶体B4、高透射镜B6和ZGP晶体7,经过输出镜8和高反射镜9反射,透过高透射镜A2,再次透过KTP晶体A3;如此循环下去,形成一个向环形振荡;
250mJ、脉宽小于10ns的2.1μm激光,振荡过程中经过高透射镜A2、高透射镜B6、ZGP晶体7、输出镜8和高反射镜9组成的ZGP-OPO,ZGP-OPO进行光学频率变换产生大于100mJ、脉宽小于10ns的3~5μm中红外激光,2.1μm激光到3~5μm中红外激光转换效率大于40%。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域发明人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (3)

1.一种大能量窄脉宽中红外激光器,包括:
600mJ、10ns、1.064μm脉冲激光器,为KTP-OPO的泵浦源;
1.064μm和3~5μm激光45°高反射并且2.1μm激光45°高透射镜A;
KTP晶体A,切割角度为θ=51.4°,
Figure FDA0004036989590000011
为1.064μm激光转换成2.1μm激光的非线性晶体;
KTP晶体B,切割角度为θ=51.4°,
Figure FDA0004036989590000012
作用同KTP晶体A,两块KTP晶体串联,KTP晶体A+KTP晶体B,比单块晶体具有更高的转换效率;
直角棱镜,两个直角面作为KTP-OPO的腔镜;
1.064μm和3~5μm激光45°高反射并且2.1μm激光45°高透射镜B;
ZGP晶体,切割角度θ=54.5°,
Figure FDA0004036989590000013
为2.1μm激光转换成3~5μm激光的非线性晶体;
2.1μm激光45°高反射并且3~5μm激光45°部分输出镜;
2.1μm激光和3~5μm激光45°高反射镜;
其中,KTP晶体A、KTP晶体B、直角棱镜、输出镜和高反射镜组成2.1μm光学参量振荡器KTP-OPO;高透射镜A、高透射镜B、ZGP晶体、输出镜和高反射镜组成ZGP光学参量振荡器ZGP-OPO;
脉冲激光器的脉冲能量为600mJ、脉宽10ns的1.064μm脉冲激光经过高透射镜A反射,进入KTP-OPO,路径为透过KTP晶体A,经过直角棱镜的两个直角面反射,透过KTP晶体B,经过高透射镜B反射出KTP-OPO;
1.064μm脉冲激光经过KTP-OPO进行光学频率变换,产生250mJ、脉宽小于10ns的2.1μm激光,1.064μm脉冲激光到2.1μm激光的转换效率大于40%。
2.权利要求1所述的大能量窄脉宽中红外激光器,其特征在于,产生的2.1μm脉冲激光按照顺时针传播,依次透过KTP晶体A,经过直角棱镜的两个直角面反射,透过KTP晶体B、高透射镜B和ZGP晶体,经过输出镜和高反射镜反射,透过高透射镜A,再次透过KTP晶体A;如此循环下去,形成一个向环形振荡。
3.权利要求1所述的大能量窄脉宽中红外激光器,其特征在于,产生的250mJ、脉宽小于10ns的2.1μm激光,振荡过程中经过ZGP-OPO,ZGP-OPO进行光学频率变换产生大于100mJ、脉宽小于10ns的3~5μm中红外激光,2.1μm激光到3~5μm中红外激光转换效率大于40%。
CN202310006354.6A 2023-01-04 2023-01-04 一种大能量窄脉宽中红外激光器 Pending CN116154601A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310006354.6A CN116154601A (zh) 2023-01-04 2023-01-04 一种大能量窄脉宽中红外激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310006354.6A CN116154601A (zh) 2023-01-04 2023-01-04 一种大能量窄脉宽中红外激光器

Publications (1)

Publication Number Publication Date
CN116154601A true CN116154601A (zh) 2023-05-23

Family

ID=86352031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310006354.6A Pending CN116154601A (zh) 2023-01-04 2023-01-04 一种大能量窄脉宽中红外激光器

Country Status (1)

Country Link
CN (1) CN116154601A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216121192U (zh) * 2021-09-30 2022-03-22 北京东方锐镭科技有限公司 一种腔内zgp-opo中红外激光器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216121192U (zh) * 2021-09-30 2022-03-22 北京东方锐镭科技有限公司 一种腔内zgp-opo中红外激光器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭剑: ""基于ZGP晶体中红外脉冲光参量振荡器研究"", 《光通信技术》, vol. 34, no. 11, pages 17 - 19 *

Similar Documents

Publication Publication Date Title
US10326250B2 (en) Method for expanding tuning range of all-solid-state continuous-wave single frequency laser
EP0715774B1 (en) Deep blue microlaser
Pavel Simultaneous dual-wavelength emission at 0.90 and 1.06 µm in Nd-doped laser crystals
KR100630028B1 (ko) 레이저 방사선의 공강내 주파수 변환
Ding et al. 5.2-W high-repetition-rate eye-safe laser at 1525 nm generated by Nd: YVO 4–YVO 4 stimulated Raman conversion
WO2007132229A1 (en) Optical parametric oscillator
US7733926B2 (en) Thulium laser pumped Mid-IR source with broadbanded output
CN105226491A (zh) 一种3微米波段固体激光器泵浦的硒镓钡光参量振荡器
US9190798B2 (en) Optical parametric oscillator with embedded resonator
Zhang et al. Passively Q-switched YVO 4 Raman operation with 816 and 890 cm-1 shifts by respective Raman configurations
US20090285248A1 (en) Uv light generation by frequency conversion of radiation of a ruby laser pumped with a second harmonic of a solid-state laser
US8369366B2 (en) Semiconductor laser excited solid-state laser device
US7362783B2 (en) Optical frequency mixing
US7627008B2 (en) Laser apparatus and method for harmonic beam generation
Duan et al. Generation of 589 nm Emission Via Frequency Doubling of a Composite c-Cut Nd: YVO 4 Self-Raman Laser
US8284812B2 (en) Resonantly pumped Tm doped cyrstalline lasers
CN116154601A (zh) 一种大能量窄脉宽中红外激光器
Li et al. 2μm single-frequency master-oscillator fiber power amplifier
Lin et al. Continuous-wave and passively Q-switched Nd: YVO 4 laser at 1085 nm
Ebrahimzadeh et al. Continuous-wave mode-locked optical parametric oscillator synchronously pumped by a diode-laser-pumped solid-state laser
CN112803233A (zh) 基于多阶金刚石拉曼的中红外激光发生方法和可调谐中红外激光器
US9431790B2 (en) Intracavity pumped OPO system
CN216598385U (zh) 一种中红外序列脉冲激光器
EP1664917A2 (en) Efficient optical parametric oscillator with photon recycling
CN113363801B (zh) 一种高效率中远红外激光装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20230523