CN116152253B - Cardiac magnetic resonance mapping quantification method, system and storage medium - Google Patents
Cardiac magnetic resonance mapping quantification method, system and storage medium Download PDFInfo
- Publication number
- CN116152253B CN116152253B CN202310428761.6A CN202310428761A CN116152253B CN 116152253 B CN116152253 B CN 116152253B CN 202310428761 A CN202310428761 A CN 202310428761A CN 116152253 B CN116152253 B CN 116152253B
- Authority
- CN
- China
- Prior art keywords
- magnetic resonance
- image
- contour
- target area
- cardiac magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013507 mapping Methods 0.000 title claims abstract description 47
- 230000000747 cardiac effect Effects 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000011002 quantification Methods 0.000 title claims description 15
- 238000004458 analytical method Methods 0.000 claims abstract description 34
- 230000002861 ventricular Effects 0.000 claims abstract description 20
- 210000004165 myocardium Anatomy 0.000 claims abstract description 11
- 230000011218 segmentation Effects 0.000 claims abstract description 9
- 238000007781 pre-processing Methods 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims abstract description 7
- 210000005240 left ventricle Anatomy 0.000 claims abstract description 5
- 238000003780 insertion Methods 0.000 claims description 12
- 230000037431 insertion Effects 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 11
- 210000005241 right ventricle Anatomy 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 10
- 230000005484 gravity Effects 0.000 claims description 10
- 210000001174 endocardium Anatomy 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 230000007797 corrosion Effects 0.000 claims description 5
- 238000005260 corrosion Methods 0.000 claims description 5
- 238000004445 quantitative analysis Methods 0.000 claims description 5
- 230000008439 repair process Effects 0.000 claims description 5
- 239000003086 colorant Substances 0.000 claims description 3
- 230000000877 morphologic effect Effects 0.000 claims description 3
- 238000004590 computer program Methods 0.000 claims description 2
- 210000001519 tissue Anatomy 0.000 description 6
- 238000012805 post-processing Methods 0.000 description 5
- 230000002107 myocardial effect Effects 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000010339 dilation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
- G06T5/30—Erosion or dilatation, e.g. thinning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/187—Segmentation; Edge detection involving region growing; involving region merging; involving connected component labelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30048—Heart; Cardiac
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Quality & Reliability (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Image Processing (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
技术领域technical field
本发明属于医学图像处理技术领域,具体涉及一种心脏磁共振mapping量化方法、系统和存储介质。The invention belongs to the technical field of medical image processing, and in particular relates to a cardiac magnetic resonance mapping quantification method, system and storage medium.
背景技术Background technique
近年来,心脏磁共振mapping技术在临床环境中的应用稳步增加, mapping是在图像的每个像素中量化一个或多个磁共振对比度驱动因素(即弛豫时间)。这些弛豫时间或弛豫参数是组织在磁场中的可量化特性,并且强烈依赖于该组织的生理特性。由于mapping图像不再依赖于一些特定的扫描参数(例如射频线圈接近度、接收器链效率或磁场不均匀性),这使mapping成像相对于定性成像具有巨大优势。量化的弛豫时间还减少了观察者间的变异性,允许动态追踪患者的组织参数,并允许比较个体患者间的组织参数。这些mapping图像只依赖于物理学和生物学的相互作用,因而理论上具有高度可重复性。In recent years there has been a steady increase in the use of cardiac MR mapping techniques in the clinical setting, which quantify one or more drivers of MR contrast (i.e., relaxation times) in each pixel of the image. These relaxation times or relaxation parameters are quantifiable properties of tissue in a magnetic field and are strongly dependent on the physiological properties of the tissue. Since the mapped image is no longer dependent on some specific scan parameters (such as RF coil proximity, receiver chain efficiency, or magnetic field inhomogeneity), this gives mapped imaging a huge advantage over qualitative imaging. Quantified relaxation times also reduce inter-observer variability, allow dynamic tracking of tissue parameters across patients, and allow comparison of tissue parameters between individual patients. These mapping images only rely on the interaction of physics and biology, so they are theoretically highly reproducible.
根据国际心脏磁共振协会(Society for Cardiovascular Magnetic Resonance,SCMR)于2020年发布的心脏磁共振图像标准后处理指南,mapping图像现有后处理分析方法包括视觉分析和手动定量分析两种方法,目前尚无具体推荐或首选的后处理软件包,分析者应接受当地标准或所选后处理软件包的培训。视觉分析即肉眼观察大体图像,旨在检测图像伪影并验证诊断图像质量,但并不能从mapping图像中获取定量数据。手动定量分析时,测量整体或弥漫性心肌病变时,指南推荐在心肌中层短轴层面的室间隔保守勾画一个感兴趣区,以减少来自邻近组织磁敏感伪影的影响。为准确评估弥漫性疾病,局灶性病灶应排除在mapping图像的感兴趣区之外。对于局灶性病变,推荐在视觉分析发现的异常区域外勾画额外的感兴趣区,同时应避免感兴趣区范围<20像素。在实际临床应用及研究中,医生(研究者)常根据美国心脏协会(American Heart Association,AHA)-16节段划分法,将左心室心肌划分为16节段,测量mapping图像中整体或节段心肌的平均值。According to the standard post-processing guidelines for cardiac magnetic resonance images released by the Society for Cardiovascular Magnetic Resonance (SCMR) in 2020, the existing post-processing analysis methods for mapping images include visual analysis and manual quantitative analysis. There is no specific recommendation or preferred post-processing package, and analysts should be trained in local standards or the post-processing package of choice. Visual analysis is to observe the general image with the naked eye, aiming to detect image artifacts and verify the quality of diagnostic images, but it cannot obtain quantitative data from mapping images. When measuring global or diffuse cardiomyopathy during manual quantitative analysis, guidelines recommend conservatively delineating a region of interest in the interventricular septum at the short-axis level of the myocardium to reduce the influence of susceptibility artifacts from adjacent tissues. For accurate assessment of diffuse disease, focal lesions should be excluded from the region of interest in the mapping image. For focal lesions, it is recommended to delineate additional ROIs outside the abnormal areas found by visual analysis, and the range of ROIs < 20 pixels should be avoided. In actual clinical application and research, doctors (researchers) often divide the left ventricular myocardium into 16 segments according to the American Heart Association (AHA)-16 segment division method, and measure the whole or segment in the mapping image Myocardial average.
上述现有心脏磁共振图像的后处理方法主要存在如下问题:mapping图像需先导入心脏影像专用的商用软件包,然后手动勾画左心室心内/外膜和(或)感兴趣区,测量方法耗时长,存在一定的观察者间差异,且测量的数据也需手动输出,极大限制了该技术的临床应用和推广。如果能够用计算机软件自动实现上述分割和量化过程将有效地解决这些问题。然而,由于心脏解剖结构特殊性以及图像背景噪声(尤其肌小梁、心包组织紧邻心内/外膜)干扰,心脏磁共振mapping图像中目标区域轮廓(如左心室心内/外膜、右心室插入部)的自动识别仍不够精确,对于心脏磁共振mapping图像如何实现准确的全自动化处理目前还缺乏相关的研究,本领域仍然亟需开发一种能够利用计算机自动分割和量化心脏磁共振mapping图像的方法和系统。The above existing post-processing methods of cardiac magnetic resonance images mainly have the following problems: the mapping image needs to be imported into a commercial software package dedicated to cardiac imaging, and then the left ventricular endocardium/epicardium and (or) region of interest are manually drawn, and the measurement method consumes There is a certain difference between observers, and the measured data also needs to be output manually, which greatly limits the clinical application and promotion of this technology. If computer software can be used to automatically realize the above segmentation and quantification process, these problems will be effectively solved. However, due to the special anatomical structure of the heart and the interference of image background noise (especially the muscle trabeculae and pericardial tissue adjacent to the endocardium/epicardium), the outline of the target area (such as left ventricular endocardium/epicardium, right ventricle) in cardiac magnetic resonance mapping images The automatic recognition of the insertion part) is still not accurate enough, and there is still a lack of relevant research on how to achieve accurate and fully automatic processing of cardiac magnetic resonance mapping images. There is still an urgent need in this field to develop a method that can automatically segment and quantify cardiac magnetic resonance mapping images by computer methods and systems.
发明内容Contents of the invention
针对现有技术的问题,本发明提供一种心脏磁共振mapping图像量化方法、系统和存储介质,实现利用计算机自动分割和量化心脏磁共振mapping图像的目的。In view of the problems in the prior art, the present invention provides a method, system and storage medium for quantifying cardiac magnetic resonance mapping images, so as to achieve the purpose of automatically segmenting and quantifying cardiac magnetic resonance mapping images by computer.
一种心脏磁共振mapping量化方法,包括如下步骤:A method for cardiac magnetic resonance mapping quantification, comprising the steps of:
步骤1,输入心脏磁共振mapping图像的原始数据,分别获取基底层、中层和心尖层的原始图像,对于所述基底层、中层和心尖层的原始图像中的至少一种执行后续步骤;Step 1, input the original data of cardiac magnetic resonance mapping image, obtain the original image of basal layer, middle layer and apical layer respectively, carry out follow-up step for at least one in the original image of described basal layer, middle layer and apical layer;
步骤2,对所述原始图像进行预处理,基于轮廓识别,确定左心室心肌的大概目标区域;Step 2, preprocessing the original image, and determining the approximate target area of the left ventricular myocardium based on contour recognition;
步骤3,通过连通域分析获得分割目标的精准目标区域;Step 3, obtain the precise target area of the segmented target through connected domain analysis;
步骤4,基于精准目标区域进行分段;Step 4, segmenting based on the precise target area;
步骤5,计算分段后的每段区域的原始图像像素平均值。
优选的,所述原始数据的格式为DICOM文件。Preferably, the format of the original data is a DICOM file.
优选的,步骤2具体包括:Preferably, step 2 specifically includes:
步骤2.1,将所述原始图像转换成灰度图;Step 2.1, converting the original image into a grayscale image;
步骤2.2,过滤背景噪音和前景噪音;Step 2.2, filter background noise and foreground noise;
步骤2.3,以图像中心点绘制半径为1/4宽度的参考圆;Step 2.3, draw a reference circle with a radius of 1/4 width with the center point of the image;
步骤2.4,对整个图像进行轮廓检测,遍历检测到的轮廓,轮廓的重心在所述参考圆内的则为备选轮廓;Step 2.4, performing contour detection on the entire image, traversing the detected contours, and those whose center of gravity of the contour is within the reference circle are candidate contours;
步骤2.5,获取面积区域最大的备选轮廓,作为目标轮廓;Step 2.5, obtain the candidate contour with the largest area as the target contour;
步骤2.6,绘制所述目标轮廓的极值点;Step 2.6, drawing the extreme points of the target contour;
步骤2.7,根据所述极值点获取所述大概目标区域。Step 2.7, obtaining the approximate target area according to the extreme points.
优选的,步骤2.2具体包括:Preferably, step 2.2 specifically includes:
步骤2.2.1,通过阈值分析、中值滤波过滤背景噪音;Step 2.2.1, filter the background noise by threshold analysis and median filtering;
步骤2.2.2,通过连通域分析过滤背景噪音;Step 2.2.2, filter background noise by connected domain analysis;
步骤2.2.3,图像取反,通过连通域分析过滤前景噪音;Step 2.2.3, the image is inverted, and the foreground noise is filtered through connected domain analysis;
步骤2.2.4,再次进行图像取反;Step 2.2.4, perform image inversion again;
所述大概目标区域的形状为矩形;步骤2.7具体包括:The shape of the approximate target area is a rectangle; step 2.7 specifically includes:
步骤2.7.1,以极左点为所述大概目标区域的中心点c(x0, y0);Step 2.7.1, taking the extreme left point as the center point c(x 0 , y 0 ) of the approximate target area;
步骤2.7.2,以极上点、极下点垂直距离的一半作为参考值d计算所述大概目标区域的左上点和右下点,计算公式为:Step 2.7.2, using half of the vertical distance between the upper extreme point and the lower extreme point as the reference value d to calculate the upper left point and lower right point of the approximate target area, the calculation formula is:
左上点坐标:lt(x1, y1) = (x0- 0.5*d, y0- 0.8*d);Coordinates of upper left point: lt(x 1 , y 1 ) = (x 0 - 0.5*d, y 0 - 0.8*d);
右下点坐标:rb(x2, y2) = (x0+ r, y0+ 0.8*d);Coordinates of lower right point: rb(x 2 , y 2 ) = (x 0 + r, y 0 + 0.8*d);
步骤2.7.3,绘制所述大概目标区域。Step 2.7.3, drawing the approximate target area.
优选的,步骤3具体包括:Preferably, step 3 specifically includes:
步骤3.1,通过阈值分析进行预处理;Step 3.1, preprocessing by threshold analysis;
步骤3.2,通过连通域分析,移除面积小的连通域,留下至少3个连通域作为备选区;Step 3.2, through connected domain analysis, remove connected domains with small area, leaving at least 3 connected domains as candidate regions;
步骤3.3,通过轮廓检测定位左心室;Step 3.3, locating the left ventricle by contour detection;
步骤3.4,采用凸包算法定位右心室前插入部;Step 3.4, using the convex hull algorithm to locate the anterior insertion of the right ventricle;
步骤3.5,进行图像取反;Step 3.5, perform image inversion;
步骤3.6,通过阈值分析、中值滤波、腐蚀、膨胀中的至少一种方法过滤背景噪音;Step 3.6, filtering the background noise by at least one method of threshold analysis, median filtering, corrosion, and expansion;
步骤3.7,通过连通域分析获取面积最大的连通域作为所述精准目标区域。In step 3.7, the connected domain with the largest area is obtained as the precise target area through connected domain analysis.
优选的,步骤4具体包括:Preferably, step 4 specifically includes:
步骤4.1,对所述左心室心内膜和心外膜进行轮廓修补,所述轮廓修补的方法为:通过形态学操作填补断层,删除臃肿;Step 4.1, perform contour repair on the left ventricular endocardium and epicardium, the method of contour repair is: fill the fault through morphological operation, and delete the bloat;
步骤4.2,绘制心外膜的轮廓环;Step 4.2, drawing the contour ring of the epicardium;
步骤4.3,基于左心室心腔的重心和右心室前插入部,绘制星型散射线均匀分割轮廓环;Step 4.3, based on the center of gravity of the left ventricular chamber and the anterior insertion of the right ventricle, draw star-shaped scattering lines to evenly segment the contour ring;
步骤4.4,对分割后的每段区域进行腐蚀操作;Step 4.4, performing corrosion operation on each segmented area;
步骤4.5,从右心室前插入部开始,以顺时针方向对每段区域的重心进行编号。In step 4.5, number the center of gravity of each segmented region in a clockwise direction, starting from the anterior insertion of the right ventricle.
优选的,步骤4中,对基底层的原始图像或中层的原始图像进行6节段划分,对心尖层的原始图像进行4节段划分。Preferably, in step 4, the original image of the basal layer or the original image of the middle layer is divided into 6 segments, and the original image of the apical layer is divided into 4 segments.
优选的,步骤5具体包括:Preferably,
步骤5.1,获取分段后每段区域的所有像素点,并对每段区域用不同的颜色进行着色;Step 5.1, obtain all the pixel points of each segment area after segmentation, and color each segment area with different colors;
步骤5.2,将每个像素点的坐标位置映射到所述原始图像,获取像素值;Step 5.2, mapping the coordinate position of each pixel point to the original image to obtain the pixel value;
步骤5.3,根据每段区域的原始图像的像素值计算每段区域的像素平均值。Step 5.3, calculating the pixel average value of each region according to the pixel value of the original image of each region.
本发明还提供一种心脏磁共振mapping图像量化系统,包括:The present invention also provides a cardiac magnetic resonance mapping image quantification system, comprising:
输入模块,用于输入心脏磁共振mapping图像的原始数据;The input module is used to input the raw data of the cardiac magnetic resonance mapping image;
计算模块,用于按照上述心脏磁共振mapping图像量化方法对所述原始数据进行处理;A calculation module, configured to process the raw data according to the above-mentioned cardiac magnetic resonance mapping image quantification method;
输出模块,用于输出计算模块的处理结果。The output module is used to output the processing result of the calculation module.
本发明还提供一种计算机可读存储介质,其上存储有:用于实现上述心脏磁共振mapping量化方法的计算机程序。The present invention also provides a computer-readable storage medium, on which is stored: a computer program for realizing the above-mentioned cardiac magnetic resonance mapping quantification method.
本发明首次设计了心脏磁共振mapping图像自动量化方法的流程,能够实现利用计算机对心脏磁共振mapping图像进行自动处理的目的。解决了目前心肌mapping图像定量测量需要手动勾画左心室心内/外膜、手动定位室间隔插入部导致耗时长的问题,实现了测量全自动化;操作简便、快速,所得结果可靠性强、可重复性高,解决了因分析者熟练程度不同所致手动测量数据差异大的问题。因而,本发明具有很好的应用前景。The present invention designs the flow of the method for automatic quantification of cardiac magnetic resonance mapping images for the first time, and can realize the purpose of using a computer to automatically process cardiac magnetic resonance mapping images. It solves the time-consuming problem of manually delineating the left ventricular endocardium/epicardium and manually positioning the interventricular septum insertion part in the current quantitative measurement of myocardial mapping images, and realizes fully automatic measurement; the operation is simple and fast, and the obtained results are reliable and repeatable High reliability, which solves the problem of large differences in manual measurement data caused by different proficiency levels of analysts. Therefore, the present invention has good application prospects.
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。Apparently, according to the above content of the present invention, according to common technical knowledge and conventional means in this field, without departing from the above basic technical idea of the present invention, other various forms of modification, replacement or change can also be made.
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。The above-mentioned content of the present invention will be further described in detail below through specific implementation in the form of examples. However, this should not be construed as limiting the scope of the above-mentioned subject matter of the present invention to the following examples. All technologies realized based on the above contents of the present invention belong to the scope of the present invention.
附图说明Description of drawings
图1为本发明实施例1中获取大概目标区域的流程示意图。FIG. 1 is a schematic flow chart of obtaining an approximate target area in Embodiment 1 of the present invention.
图2为本发明实施例1中获取精准目标区域的流程示意图。FIG. 2 is a schematic flow diagram of obtaining a precise target area in Embodiment 1 of the present invention.
图3为本发明实施例1中轮廓分段及数据提取的流程示意图。Fig. 3 is a schematic flow chart of contour segmentation and data extraction in Embodiment 1 of the present invention.
图4为原始图像预处理步骤。A. DICOM图像灰度图;B. 通过阈值分析、中值滤波过滤背景噪声;C. 通过连通域分析过滤背景噪声; D. 图像取反后,通过连通域分析过滤前景噪声。图中,横坐标轴和纵坐标的单位均为像素。Figure 4 shows the original image preprocessing steps. A. DICOM image grayscale image; B. Filter background noise by threshold analysis and median filter; C. Filter background noise by connected domain analysis; D. After image inversion, filter foreground noise by connected domain analysis. In the figure, the unit of the axis of abscissa and the axis of ordinate is pixel.
图5为根据极值点获取大概目标区域。图中,横坐标轴和纵坐标的单位均为像素。Figure 5 shows the approximate target area obtained according to the extreme points. In the figure, the unit of the axis of abscissa and the axis of ordinate is pixel.
图6为根据连通域分析获取备选区。A. 图像取反;B.移除小面积连通域;C. 获取备选区。图中,横坐标轴和纵坐标的单位均为像素。Figure 6 shows the candidate regions obtained according to connected domain analysis. A. Invert the image; B. Remove the small-area connected domain; C. Get the candidate area. In the figure, the unit of the axis of abscissa and the axis of ordinate is pixel.
图7为采用凸包算法定位右心室前插入部。图中,横坐标轴和纵坐标的单位均为像素。Figure 7 shows the location of the anterior insertion of the right ventricle using the convex hull algorithm. In the figure, the unit of the axis of abscissa and the axis of ordinate is pixel.
图8为过滤背景噪声。A. 通过阈值分析过滤背景噪声; B. 通过中值滤波过滤背景噪声;C. 通过腐蚀过滤背景噪声;D. 通过膨胀过滤背景噪声。图中,横坐标轴和纵坐标的单位均为像素。Figure 8 is for filtering background noise. A. Filtering background noise by threshold analysis; B. Filtering background noise by median filtering; C. Filtering background noise by erosion; D. Filtering background noise by dilation. In the figure, the unit of the axis of abscissa and the axis of ordinate is pixel.
图9为获取最大面积连通域作为精准目标区域。图中,横坐标轴和纵坐标的单位均为像素。Figure 9 shows the acquisition of the largest area connected domain as the precise target area. In the figure, the unit of the axis of abscissa and the axis of ordinate is pixel.
图10为对目标区域进行轮廓修补。A.填补断层 ;B. 删除臃肿;C. 绘制左心室心肌轮廓环。图中,横坐标轴和纵坐标的单位均为像素。Figure 10 shows the contour patching of the target area. A. Fill the fault; B. Delete the bloat; C. Draw the contour ring of the left ventricular myocardium. In the figure, the unit of the axis of abscissa and the axis of ordinate is pixel.
图11为分割左心室心肌轮廓环。A. 绘制星型散射线;B.分割轮廓环;C.获取每段区域重心。图中,横坐标轴和纵坐标的单位均为像素。Figure 11 is the segmented left ventricular myocardium outline ring. A. Draw a star-shaped scattering line; B. Split the contour ring; C. Get the center of gravity of each segment. In the figure, the unit of the axis of abscissa and the axis of ordinate is pixel.
图12为获取每段区域像素点并进行着色。图中,横坐标轴和纵坐标的单位均为像素。Figure 12 is to obtain and color the pixel points of each area. In the figure, the unit of the axis of abscissa and the axis of ordinate is pixel.
具体实施方式Detailed ways
需要特别说明的是,实施例中未具体说明的数据采集、传输、储存和处理等步骤的算法,以及未具体说明的硬件结构、电路连接等均可通过现有技术已公开的内容实现。It should be noted that the algorithms for the steps of data collection, transmission, storage and processing not specifically described in the embodiments, as well as the hardware structures and circuit connections not specifically described can be realized by the disclosed content of the prior art.
实施例1 心脏磁共振mapping图像量化方法和系统Example 1 Cardiac magnetic resonance mapping image quantification method and system
本实施例提供对心脏磁共振mapping图像进行自动分割和量化处理的系统,该系统包括:This embodiment provides a system for automatically segmenting and quantifying cardiac magnetic resonance mapping images, the system comprising:
输入模块,用于输入心脏磁共振mapping图像的原始数据;The input module is used to input the raw data of the cardiac magnetic resonance mapping image;
计算模块,用于对心脏磁共振mapping图像量化方法对所述原始数据进行处理;Calculation module, used to process the raw data by the cardiac magnetic resonance mapping image quantification method;
输出模块,用于输出计算模块的处理结果。The output module is used to output the processing result of the calculation module.
其中,计算模块中算法的工作流程如图1-图3所示,图4-图12以一组心肌T1mapping的DICOM文件进行示例操作,具体包括如下步骤:Among them, the workflow of the algorithm in the calculation module is shown in Figure 1-Figure 3, and Figure 4-Figure 12 uses a set of DICOM files of myocardial T1mapping as an example operation, specifically including the following steps:
步骤1,输入心脏磁共振mapping图像的原始数据,分别获取基底层、中层和心尖层的原始图像,对于所述基底层、中层和心尖层的原始图像分别执行后续步骤;需要说明的是,在后续步骤中,对基底层的原始图像或中层的原始图像进行6节段划分,对心尖层的原始图像进行4节段划分;Step 1, input the original data of the cardiac magnetic resonance mapping image, obtain the original images of the basal layer, the middle layer and the apical layer respectively, and perform subsequent steps for the original images of the basal layer, the middle layer and the apical layer respectively; it should be noted that, in In the subsequent steps, the original image of the basal layer or the original image of the middle layer is divided into 6 segments, and the original image of the apical layer is divided into 4 segments;
具体的:specific:
步骤1.1,将需要测量的一组心脏磁共振mapping图像的原始数据(本实施例中的示例为一组心肌T1 mapping图像)以DICOM形式导出归类于一个文件夹,包括基底层、中层、心尖层三个DICOM文件。 Step 1.1, export the raw data of a set of cardiac magnetic resonance mapping images that need to be measured (the example in this embodiment is a set of myocardial T1 mapping images) in DICOM form and classify them into a folder, including basal layer, middle layer, and apex Layer three DICOM files.
步骤1.2,利用pydicom库读取每个DICOM文件的Slice Location,并通过SliceLocation对每个DICOM文件进行倒序排序,以此来决定每张DICOM的位置(即基底层、中层、心尖层)。Step 1.2, use the pydicom library to read the Slice Location of each DICOM file, and sort each DICOM file in reverse order through SliceLocation to determine the location of each DICOM (ie, basal layer, middle layer, and apical layer).
步骤2,对所述原始图像进行预处理,基于轮廓识别,确定左心室心肌的大概目标区域;所述大概目标区域的形状为矩形;Step 2, performing preprocessing on the original image, and determining an approximate target area of the left ventricular myocardium based on contour recognition; the approximate target area is rectangular in shape;
具体的:specific:
步骤2.1,将所述原始图像转换成灰度图;Step 2.1, converting the original image into a grayscale image;
步骤2.2,过滤背景噪音和前景噪音;Step 2.2, filter background noise and foreground noise;
步骤2.2具体包括:Step 2.2 specifically includes:
步骤2.2.1,通过阈值分析、中值滤波过滤背景噪音(图4);Step 2.2.1, filter background noise by threshold analysis, median filter (Figure 4);
步骤2.2.2,通过连通域分析过滤背景噪音(图4);Step 2.2.2, filter background noise by connected domain analysis (Figure 4);
步骤2.2.3,图像取反,通过连通域分析过滤前景噪音(图4);Step 2.2.3, the image is inverted, and the foreground noise is filtered through connected domain analysis (Figure 4);
步骤2.2.4,再次进行图像取反;Step 2.2.4, perform image inversion again;
步骤2.3,以图像中心点绘制半径为1/4宽度的参考圆;Step 2.3, draw a reference circle with a radius of 1/4 width with the center point of the image;
步骤2.4,对整个图像进行轮廓检测,遍历检测到的轮廓,轮廓的重心在所述参考圆内的则为备选轮廓;Step 2.4, performing contour detection on the entire image, traversing the detected contours, and those whose center of gravity of the contour is within the reference circle are candidate contours;
步骤2.5,获取面积区域最大的备选轮廓,作为目标轮廓;Step 2.5, obtain the candidate contour with the largest area as the target contour;
步骤2.6,绘制所述目标轮廓的极值点;Step 2.6, drawing the extreme points of the target contour;
步骤2.7,根据所述极值点获取所述大概目标区域(图5);Step 2.7, obtaining the approximate target area according to the extreme points (Figure 5);
步骤2.7具体包括:Step 2.7 specifically includes:
步骤2.7.1,以极左点为所述大概目标区域的中心点c(x0, y0);Step 2.7.1, taking the extreme left point as the center point c(x 0 , y 0 ) of the approximate target area;
步骤2.7.2,以极上点、极下点垂直距离的一半作为参考值d计算所述大概目标区域的左上点和右下点,计算公式为:Step 2.7.2, using half of the vertical distance between the upper extreme point and the lower extreme point as the reference value d to calculate the upper left point and lower right point of the approximate target area, the calculation formula is:
左上点坐标:lt(x1, y1) = (x0- 0.5*d, y0- 0.8*d);Coordinates of upper left point: lt(x 1 , y 1 ) = (x 0 - 0.5*d, y 0 - 0.8*d);
右下点坐标:rb(x2, y2) = (x0+ r, y0+ 0.8*d);Coordinates of lower right point: rb(x 2 , y 2 ) = (x 0 + r, y 0 + 0.8*d);
步骤2.7.3,绘制所述大概目标区域。Step 2.7.3, drawing the approximate target area.
步骤3,通过连通域分析获得分割目标的精准目标区域;Step 3, obtain the precise target area of the segmented target through connected domain analysis;
具体的:specific:
步骤3.1,通过阈值分析进行预处理;Step 3.1, preprocessing by threshold analysis;
步骤3.2,通过连通域分析,移除面积小的连通域,留下至少3个连通域作为备选区(图6);Step 3.2, through connected domain analysis, remove the connected domains with small area, leaving at least 3 connected domains as candidate areas (Figure 6);
步骤3.3,通过轮廓检测定位左心室;具体的:在备选区域中获取前3个面积最大的连通域轮廓,然后通过连通域的极下点和极左点定位左心室;Step 3.3, locate the left ventricle through contour detection; specifically: obtain the contours of the first three connected domains with the largest areas in the candidate area, and then locate the left ventricle through the extreme lower point and extreme left point of the connected domain;
步骤3.4,采用凸包算法定位右心室前插入部(图7);Step 3.4, using the convex hull algorithm to locate the anterior insertion of the right ventricle (Figure 7);
步骤3.5,进行图像取反;Step 3.5, perform image inversion;
步骤3.6,通过阈值分析、中值滤波、腐蚀、膨胀过滤背景噪音(图8);Step 3.6, filter background noise by threshold analysis, median filter, erosion, dilation (Figure 8);
步骤3.7,通过连通域分析获取面积最大的连通域作为所述精准目标区域(图9)。In step 3.7, the connected domain with the largest area is obtained through connected domain analysis as the precise target area (Figure 9).
步骤4,基于精准目标区域进行分段;Step 4, segmenting based on the precise target area;
具体的:specific:
步骤4.1,对所述左心室心内膜和心外膜进行轮廓修补,所述轮廓修补的方法为:通过形态学操作填补断层,删除臃肿(图10);Step 4.1, performing contour repair on the left ventricular endocardium and epicardium, the method of contour repair is: filling faults through morphological operations and deleting bloat (Figure 10);
步骤4.2,绘制左心室心肌轮廓环(图10);Step 4.2, drawing the contour ring of the left ventricular myocardium (Figure 10);
步骤4.3,基于左心室心腔的重心和右心室前插入部,绘制星型散射线均匀分割轮廓环(图11);Step 4.3, based on the center of gravity of the left ventricular chamber and the anterior insertion of the right ventricle, draw star-shaped scattering lines to evenly segment the contour ring (Fig. 11);
步骤4.4,对分割后的每段区域进行腐蚀操作;Step 4.4, performing corrosion operation on each segmented area;
步骤4.5,从右心室前插入部开始,以顺时针方向对每段区域的重心进行编号。In step 4.5, number the center of gravity of each segmented region in a clockwise direction, starting from the anterior insertion of the right ventricle.
步骤5,计算分段后的每段区域的原始图像像素平均值。
具体的:specific:
步骤5.1,获取分段后每段区域的所有像素点,并对每段区域用不同的颜色进行着色(图12);Step 5.1, get all the pixels of each segment area after segmentation, and color each segment area with different colors (Figure 12);
步骤5.2,将每个像素点的坐标位置映射到所述原始图像,获取像素值;Step 5.2, mapping the coordinate position of each pixel point to the original image to obtain the pixel value;
步骤5.3,根据每段区域的原始图像的像素值计算每段区域的像素平均值。Step 5.3, calculating the pixel average value of each region according to the pixel value of the original image of each region.
以50例健康人群(共计150张DICOM原始图像)T1 mapping图像为例进行验证,精确识别目标区域的成功率达到了91.3%。 Taking T1 mapping images of 50 healthy people (a total of 150 DICOM original images) as an example for verification, the success rate of accurately identifying the target area reached 91.3%.
通过上述方法可以看到,本发明实现了利用计算机对心脏磁共振mapping图像进行自动处理的目的,具有极高的准确性和高重复性,和减少医生工作量的优点,具有很好的应用前景。It can be seen from the above method that the present invention achieves the purpose of using computer to automatically process cardiac magnetic resonance mapping images, has extremely high accuracy and high repeatability, and has the advantages of reducing the workload of doctors, and has a good application prospect .
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310428761.6A CN116152253B (en) | 2023-04-20 | 2023-04-20 | Cardiac magnetic resonance mapping quantification method, system and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310428761.6A CN116152253B (en) | 2023-04-20 | 2023-04-20 | Cardiac magnetic resonance mapping quantification method, system and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116152253A CN116152253A (en) | 2023-05-23 |
CN116152253B true CN116152253B (en) | 2023-06-16 |
Family
ID=86360398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310428761.6A Active CN116152253B (en) | 2023-04-20 | 2023-04-20 | Cardiac magnetic resonance mapping quantification method, system and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116152253B (en) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103236062A (en) * | 2013-05-03 | 2013-08-07 | 北京国铁华晨通信信息技术有限公司 | Magnetic resonance imaging blood vessel segmentation method and system based on human brain tumor nuclear magnetic library |
CN104680127A (en) * | 2014-12-18 | 2015-06-03 | 闻泰通讯股份有限公司 | Gesture identification method and gesture identification system |
CN105956587A (en) * | 2016-04-20 | 2016-09-21 | 哈尔滨工业大学 | Method for automatically extracting meniscus from knee-joint magnetic resonance image sequence based on shape constraint |
CN106780460A (en) * | 2016-12-13 | 2017-05-31 | 杭州健培科技有限公司 | A kind of Lung neoplasm automatic checkout system for chest CT image |
CN106997594A (en) * | 2016-01-26 | 2017-08-01 | 上海联影医疗科技有限公司 | The localization method and device of a kind of part tissue of eye |
CN108185984A (en) * | 2017-12-28 | 2018-06-22 | 中山大学 | The method that eyeground color picture carries out eyeground lesion identification |
CN108257214A (en) * | 2018-02-12 | 2018-07-06 | 成都信息工程大学 | Heart left ventricle flow field domain method for numerical simulation, computer, computer program |
CN110895817A (en) * | 2019-11-01 | 2020-03-20 | 复旦大学 | MRI image hepatic fibrosis automatic grading method based on image omics analysis |
CN111815586A (en) * | 2020-06-29 | 2020-10-23 | 苏州润心医疗器械有限公司 | Method and system for acquiring connected domain of left atrium and left ventricle based on CT image |
CN112017198A (en) * | 2020-10-16 | 2020-12-01 | 湖南师范大学 | Right ventricle segmentation method and device based on self-attention mechanism multi-scale features |
CN112435272A (en) * | 2020-12-07 | 2021-03-02 | 南京派光高速载运智慧感知研究院有限公司 | High-voltage transmission line connected domain removing method based on image contour analysis |
CN113344991A (en) * | 2021-05-17 | 2021-09-03 | 山东师范大学 | Unsupervised medical image registration method and system based on deep learning |
EP3985605A1 (en) * | 2020-10-15 | 2022-04-20 | Koninklijke Philips N.V. | Image segmentation methods and systems |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9949643B2 (en) * | 2014-10-18 | 2018-04-24 | International Business Machines Corporation | Automatic visualization of regional functional parameters of left ventricle from cardiac imaging |
US10290109B2 (en) * | 2015-12-22 | 2019-05-14 | Shanghai United Imaging Healthcare Co., Ltd. | Method and system for cardiac image segmentation |
EP3816933B1 (en) * | 2019-10-28 | 2021-09-08 | AI4Medimaging - Medical Solutions, S.A. | Artificial intelligence based cardiac motion classification |
US11836921B2 (en) * | 2019-10-28 | 2023-12-05 | Ai4Medimaging—Medical Solutions, S.A. | Artificial-intelligence-based global cardiac motion classification |
-
2023
- 2023-04-20 CN CN202310428761.6A patent/CN116152253B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103236062A (en) * | 2013-05-03 | 2013-08-07 | 北京国铁华晨通信信息技术有限公司 | Magnetic resonance imaging blood vessel segmentation method and system based on human brain tumor nuclear magnetic library |
CN104680127A (en) * | 2014-12-18 | 2015-06-03 | 闻泰通讯股份有限公司 | Gesture identification method and gesture identification system |
CN106997594A (en) * | 2016-01-26 | 2017-08-01 | 上海联影医疗科技有限公司 | The localization method and device of a kind of part tissue of eye |
CN105956587A (en) * | 2016-04-20 | 2016-09-21 | 哈尔滨工业大学 | Method for automatically extracting meniscus from knee-joint magnetic resonance image sequence based on shape constraint |
CN106780460A (en) * | 2016-12-13 | 2017-05-31 | 杭州健培科技有限公司 | A kind of Lung neoplasm automatic checkout system for chest CT image |
CN108185984A (en) * | 2017-12-28 | 2018-06-22 | 中山大学 | The method that eyeground color picture carries out eyeground lesion identification |
CN108257214A (en) * | 2018-02-12 | 2018-07-06 | 成都信息工程大学 | Heart left ventricle flow field domain method for numerical simulation, computer, computer program |
CN110895817A (en) * | 2019-11-01 | 2020-03-20 | 复旦大学 | MRI image hepatic fibrosis automatic grading method based on image omics analysis |
CN111815586A (en) * | 2020-06-29 | 2020-10-23 | 苏州润心医疗器械有限公司 | Method and system for acquiring connected domain of left atrium and left ventricle based on CT image |
EP3985605A1 (en) * | 2020-10-15 | 2022-04-20 | Koninklijke Philips N.V. | Image segmentation methods and systems |
CN112017198A (en) * | 2020-10-16 | 2020-12-01 | 湖南师范大学 | Right ventricle segmentation method and device based on self-attention mechanism multi-scale features |
CN112435272A (en) * | 2020-12-07 | 2021-03-02 | 南京派光高速载运智慧感知研究院有限公司 | High-voltage transmission line connected domain removing method based on image contour analysis |
CN113344991A (en) * | 2021-05-17 | 2021-09-03 | 山东师范大学 | Unsupervised medical image registration method and system based on deep learning |
Non-Patent Citations (1)
Title |
---|
"多发性肌炎或皮肌炎患者亚临床心脏受累的磁共振心肌分层应变特征 及诊断价值";邓巧等;《中国医学影像学杂志》;第第30卷卷(第第7期期);第648-654页 * |
Also Published As
Publication number | Publication date |
---|---|
CN116152253A (en) | 2023-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10949977B2 (en) | Methods and systems for image segmentation | |
CN107644420B (en) | Vascular image segmentation method and MRI system based on centerline extraction | |
CN110197713B (en) | Medical image processing method, device, equipment and medium | |
CN102920477B (en) | Apparatus and method for determining boundary of target area in medical imaging | |
CN108615239B (en) | Tongue Image Segmentation Method Based on Thresholding Technique and Grayscale Projection | |
CN113066064B (en) | Biological structure recognition and 3D reconstruction system of cone beam CT images based on artificial intelligence | |
JP7695243B2 (en) | Method for determining severity of skin disease based on percentage of body surface area occupied by lesions | |
CN107798679A (en) | Breast molybdenum target image breast area is split and tufa formation method | |
CN108378869B (en) | Image processing method and processing system for automatically measuring head circumference length of fetus from ultrasonic image | |
CN107680110B (en) | Three-dimensional level set segmentation method of inner ear based on statistical shape model | |
CN105389810A (en) | Identification system and method of intravascular plaque | |
CN116485814A (en) | Intracranial hematoma region segmentation method based on CT image | |
Benčević et al. | Epicardial adipose tissue segmentation from CT images with a semi-3D neural network | |
CN1632830A (en) | Automatic Segmentation of Cerebral Ischemic Lesions | |
CN116152253B (en) | Cardiac magnetic resonance mapping quantification method, system and storage medium | |
CN110276772A (en) | A method and system for automatic positioning of structural elements in muscle tissue | |
WO2025077819A1 (en) | Heart function detection method and apparatus based on hierarchical semantic elements | |
US20190333212A1 (en) | Visual cardiomyocyte analysis | |
CN113012127A (en) | Cardiothoracic ratio measuring method based on chest medical image | |
Le et al. | Progress in the Clinical Application of Artificial Intelligence for Left Ventricle Analysis in Cardiac Magnetic Resonance | |
CN108629780B (en) | Tongue image segmentation method based on color decomposition and threshold technology | |
CN117036311A (en) | Mammary gland segmentation method, system and medium based on progressive growth learning | |
Karwoski et al. | Processing of CT images for analysis of diffuse lung disease in the lung tissue research consortium | |
Sriraam et al. | Performance evaluation of computer-aided automated master frame selection techniques for fetal echocardiography | |
Morais et al. | Fully automatic left ventricular myocardial strain estimation in 2D short-axis tagged magnetic resonance imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |