CN116152226A - 基于可融合的特征金字塔的换向器内侧图像缺陷检测方法 - Google Patents
基于可融合的特征金字塔的换向器内侧图像缺陷检测方法 Download PDFInfo
- Publication number
- CN116152226A CN116152226A CN202310350973.7A CN202310350973A CN116152226A CN 116152226 A CN116152226 A CN 116152226A CN 202310350973 A CN202310350973 A CN 202310350973A CN 116152226 A CN116152226 A CN 116152226A
- Authority
- CN
- China
- Prior art keywords
- feature
- commutator
- pyramid
- network
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007547 defect Effects 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000001514 detection method Methods 0.000 claims abstract description 73
- 230000002776 aggregation Effects 0.000 claims abstract description 30
- 238000004220 aggregation Methods 0.000 claims abstract description 30
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 27
- 238000000605 extraction Methods 0.000 claims abstract description 22
- 238000012549 training Methods 0.000 claims abstract description 14
- 230000006870 function Effects 0.000 claims description 17
- 230000004927 fusion Effects 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 7
- 238000011176 pooling Methods 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 11
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/80—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
- G06V10/806—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20016—Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/07—Target detection
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Data Mining & Analysis (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310350973.7A CN116152226A (zh) | 2023-04-04 | 2023-04-04 | 基于可融合的特征金字塔的换向器内侧图像缺陷检测方法 |
PCT/CN2024/084862 WO2024208100A1 (zh) | 2023-04-04 | 2024-03-29 | 基于可融合的特征金字塔的换向器内侧图像缺陷检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310350973.7A CN116152226A (zh) | 2023-04-04 | 2023-04-04 | 基于可融合的特征金字塔的换向器内侧图像缺陷检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116152226A true CN116152226A (zh) | 2023-05-23 |
Family
ID=86362057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310350973.7A Pending CN116152226A (zh) | 2023-04-04 | 2023-04-04 | 基于可融合的特征金字塔的换向器内侧图像缺陷检测方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116152226A (zh) |
WO (1) | WO2024208100A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116542974A (zh) * | 2023-07-05 | 2023-08-04 | 杭州百子尖科技股份有限公司 | 一种基于多尺度网格化的覆铜板表面缺陷检测方法 |
CN117495884A (zh) * | 2024-01-02 | 2024-02-02 | 湖北工业大学 | 一种钢铁表面缺陷分割方法、装置、电子设备及存储介质 |
WO2024208100A1 (zh) * | 2023-04-04 | 2024-10-10 | 东莞职业技术学院 | 基于可融合的特征金字塔的换向器内侧图像缺陷检测方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110544253A (zh) * | 2019-09-12 | 2019-12-06 | 福州大学 | 基于图像金字塔和列模板的织物瑕疵检测方法 |
CN111598861A (zh) * | 2020-05-13 | 2020-08-28 | 河北工业大学 | 基于改进的Faster R-CNN模型的非均匀纹理小缺陷的检测方法 |
CN113052834A (zh) * | 2021-04-20 | 2021-06-29 | 河南大学 | 一种基于卷积神经网络多尺度特征的管道缺陷检测方法 |
CN113674247A (zh) * | 2021-08-23 | 2021-11-19 | 河北工业大学 | 一种基于卷积神经网络的x射线焊缝缺陷检测方法 |
WO2022088628A1 (zh) * | 2020-10-30 | 2022-05-05 | 北京市商汤科技开发有限公司 | 缺陷检测方法、装置、计算机设备及存储介质 |
CN115526864A (zh) * | 2022-09-30 | 2022-12-27 | 郑州轻工业大学 | 基于改进的特征金字塔网络和度量学习的钢轨表面缺陷检测方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018125580A1 (en) * | 2016-12-30 | 2018-07-05 | Konica Minolta Laboratory U.S.A., Inc. | Gland segmentation with deeply-supervised multi-level deconvolution networks |
CN112699953B (zh) * | 2021-01-07 | 2024-03-19 | 北京大学 | 基于多信息路径聚合的特征金字塔神经网络架构搜索方法 |
CN112784779A (zh) * | 2021-01-28 | 2021-05-11 | 武汉大学 | 一种基于特征金字塔多级特征融合的遥感影像场景分类方法 |
CN113205502A (zh) * | 2021-05-10 | 2021-08-03 | 内蒙古大学 | 一种基于深度学习的绝缘子缺陷检测方法及其系统 |
CN116152226A (zh) * | 2023-04-04 | 2023-05-23 | 东莞职业技术学院 | 基于可融合的特征金字塔的换向器内侧图像缺陷检测方法 |
-
2023
- 2023-04-04 CN CN202310350973.7A patent/CN116152226A/zh active Pending
-
2024
- 2024-03-29 WO PCT/CN2024/084862 patent/WO2024208100A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110544253A (zh) * | 2019-09-12 | 2019-12-06 | 福州大学 | 基于图像金字塔和列模板的织物瑕疵检测方法 |
CN111598861A (zh) * | 2020-05-13 | 2020-08-28 | 河北工业大学 | 基于改进的Faster R-CNN模型的非均匀纹理小缺陷的检测方法 |
WO2022088628A1 (zh) * | 2020-10-30 | 2022-05-05 | 北京市商汤科技开发有限公司 | 缺陷检测方法、装置、计算机设备及存储介质 |
CN113052834A (zh) * | 2021-04-20 | 2021-06-29 | 河南大学 | 一种基于卷积神经网络多尺度特征的管道缺陷检测方法 |
CN113674247A (zh) * | 2021-08-23 | 2021-11-19 | 河北工业大学 | 一种基于卷积神经网络的x射线焊缝缺陷检测方法 |
CN115526864A (zh) * | 2022-09-30 | 2022-12-27 | 郑州轻工业大学 | 基于改进的特征金字塔网络和度量学习的钢轨表面缺陷检测方法 |
Non-Patent Citations (1)
Title |
---|
郭启帆;刘磊;张珹;徐文娟;靖稳峰;: "基于特征金字塔的多尺度特征融合网络", 工程数学学报, no. 05, 15 October 2020 (2020-10-15) * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024208100A1 (zh) * | 2023-04-04 | 2024-10-10 | 东莞职业技术学院 | 基于可融合的特征金字塔的换向器内侧图像缺陷检测方法 |
CN116542974A (zh) * | 2023-07-05 | 2023-08-04 | 杭州百子尖科技股份有限公司 | 一种基于多尺度网格化的覆铜板表面缺陷检测方法 |
CN116542974B (zh) * | 2023-07-05 | 2023-09-26 | 杭州百子尖科技股份有限公司 | 一种基于多尺度网格化的覆铜板表面缺陷检测方法 |
CN117495884A (zh) * | 2024-01-02 | 2024-02-02 | 湖北工业大学 | 一种钢铁表面缺陷分割方法、装置、电子设备及存储介质 |
CN117495884B (zh) * | 2024-01-02 | 2024-03-22 | 湖北工业大学 | 一种钢铁表面缺陷分割方法、装置、电子设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
WO2024208100A1 (zh) | 2024-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111210443B (zh) | 基于嵌入平衡的可变形卷积混合任务级联语义分割方法 | |
CN109977943B (zh) | 一种基于yolo的图像目标识别方法、系统和存储介质 | |
CN110929593B (zh) | 一种基于细节辨别区别的实时显著性行人检测方法 | |
CN116152226A (zh) | 基于可融合的特征金字塔的换向器内侧图像缺陷检测方法 | |
CN112766188B (zh) | 一种基于改进yolo算法的小目标行人检测方法 | |
CN110569814B (zh) | 视频类别识别方法、装置、计算机设备及计算机存储介质 | |
CN112560831B (zh) | 一种基于多尺度空间校正的行人属性识别方法 | |
CN114841972A (zh) | 基于显著性图和语义嵌入特征金字塔的输电线路缺陷识别方法 | |
CN111783819B (zh) | 小规模数据集上基于感兴趣区域训练改进的目标检测方法 | |
CN109886159B (zh) | 一种非限定条件下的人脸检测方法 | |
CN110781980B (zh) | 目标检测模型的训练方法、目标检测方法及装置 | |
CN113920468B (zh) | 一种基于跨尺度特征增强的多分支行人检测方法 | |
CN111368636A (zh) | 目标分类方法、装置、计算机设备和存储介质 | |
CN113870286B (zh) | 一种基于多级特征和掩码融合的前景分割方法 | |
CN114648714A (zh) | 一种基于yolo的车间规范行为的监测方法 | |
CN116416244A (zh) | 一种基于深度学习的裂缝检测方法及系统 | |
CN115019039A (zh) | 一种结合自监督和全局信息增强的实例分割方法及系统 | |
CN112991239A (zh) | 一种基于深度学习的图像反向恢复方法 | |
CN115482529A (zh) | 近景色水果图像识别方法、设备、存储介质及装置 | |
CN110728238A (zh) | 一种融合型神经网络的人员再检测方法 | |
CN113936299A (zh) | 建筑工地中危险区域检测方法 | |
CN116206248B (zh) | 一种基于机器学习引导深度学习的目标检测方法 | |
CN111160282B (zh) | 一种基于二值化Yolov3网络的红绿灯检测方法 | |
CN117372853A (zh) | 一种基于图像增强和注意力机制的水下目标检测算法 | |
CN117351409A (zh) | 混凝土坝面作业风险智能识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Xiaomian Inventor after: Shu Yufeng Inventor after: Chen Yongtao Inventor after: Liu Zhiwei Inventor after: Mei Yanghan Inventor after: Zuo Dali Inventor after: Zheng Weibin Inventor after: Tao Lixun Inventor before: Shu Yufeng Inventor before: Liu Zhiwei Inventor before: Mei Yanghan Inventor before: Zuo Dali Inventor before: Zheng Weibin Inventor before: Tao Lixun |