CN116150579A - 一种红外预警卫星接收方法 - Google Patents

一种红外预警卫星接收方法 Download PDF

Info

Publication number
CN116150579A
CN116150579A CN202310402177.3A CN202310402177A CN116150579A CN 116150579 A CN116150579 A CN 116150579A CN 202310402177 A CN202310402177 A CN 202310402177A CN 116150579 A CN116150579 A CN 116150579A
Authority
CN
China
Prior art keywords
satellite
target
early warning
detection
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310402177.3A
Other languages
English (en)
Other versions
CN116150579B (zh
Inventor
李润杰
匡敏驰
张晓涛
郭京京
乔直
王祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Xinyiyuan Intelligent Technology Co Ltd
Original Assignee
Beijing Yufei Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Yufei Technology Development Co ltd filed Critical Beijing Yufei Technology Development Co ltd
Priority to CN202310402177.3A priority Critical patent/CN116150579B/zh
Publication of CN116150579A publication Critical patent/CN116150579A/zh
Application granted granted Critical
Publication of CN116150579B publication Critical patent/CN116150579B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B35/00Testing or checking of ammunition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Operations Research (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开一种红外预警卫星接收方法,包括:地面背景修正模型、目标的探测信噪比模型和探测概率模型;根据地面背景的影响系数以及卫星探测地面时的大气透过率来构建红外预警卫星的地面背景修正模型;根据地面背景修正系数、信号峰值因子、弥散系数等来构建红外预警卫星所探测目标的信噪比模型;根据信噪比影响因子以及气象影响因子来构建探测概率模型;本发明提出了一种精确的红外预警卫星探测概率计算方法,通过计算目标的探测信噪比以及气象影响因子来确定卫星的探测效果。

Description

一种红外预警卫星接收方法
技术领域
本发明涉及卫星接收领域,更具体地说,涉及一种红外预警卫星接收方法。
背景技术
红外预警卫星主要用于探测地球表面和大气层的红外辐射信号,以便及早发现并警报可能出现的威胁,红外预警卫星是反导作战体系中的重要组成部分,其原理是利用弹道导弹的高温尾焰辐射特性进行早期发现和连续跟踪,为反导拦截作战提供了充足的预警时间。
红外预警卫星对弹道导弹主动段弹道的探测能力是指其通过设定的战术需求,及时、有效探测其覆盖空域内目标的能力,主要包括覆盖范围和预警时间两个方面。研究探测能力可为评估外军预警卫星的作战效能以及未来构建国内天基红外预警卫星系统等提供有效参考。
现有的红外预警卫星接收方法大多侧重于评估红外信号接收以及目标的识别效果,缺少一种在复杂环境下计算卫星识别目标概率的方法。
发明内容
针对上述缺少评估卫星识别目标概率的问题,本发明提出一种红外预警卫星接收方法,包括如下步骤:
S1:输入探测目标的参数:目标辐射强度
Figure SMS_1
、弹道导弹飞行高度/>
Figure SMS_2
、卫星与目标的距离/>
Figure SMS_3
以及卫星相对目标的天顶角/>
Figure SMS_4
S2:输入卫星红外载荷参数:卫星光学系统有效通光口径
Figure SMS_5
、卫星光学系统透过率
Figure SMS_8
、焦距/>
Figure SMS_11
、水平方向探测器面元大小/>
Figure SMS_7
、垂直方向探测器面元大小/>
Figure SMS_9
、水平方向像元数量/>
Figure SMS_12
、垂直方向像元数量/>
Figure SMS_13
、系统等效噪声温差/>
Figure SMS_6
以及帧频/>
Figure SMS_10
S3:构建红外预警卫星所探测目标的地面背景修正模型;
设卫星与目标的距离
Figure SMS_14
、地面平均发射率/>
Figure SMS_15
、导弹预警卫星采用的波长/>
Figure SMS_16
,成像点弥散系数/>
Figure SMS_17
设卫星相对目标的天顶角基础插值角度
Figure SMS_18
为:
Figure SMS_19
对应天顶角的大气透过率
Figure SMS_20
为:
Figure SMS_21
卫星探测地面时的大气透过率
Figure SMS_22
为:
Figure SMS_23
/>
其中
Figure SMS_24
为一维插值函数;
天顶角的cos值
Figure SMS_25
为:
Figure SMS_26
Figure SMS_27
地面背景影响计算系数/>
Figure SMS_28
为:
Figure SMS_29
地面背景辐射修正因子/>
Figure SMS_30
为:
进行地面背景修正后的目标辐射强度
Figure SMS_31
为:
Figure SMS_32
以上即为探测目标的地面背景修正方程;
S4:根据地面背景修正模型构建目标的探测信噪比模型;
Figure SMS_33
设导弹受大气衰减影响因子/>
Figure SMS_34
,信号峰值因子/>
Figure SMS_35
,弥散修正系数/>
Figure SMS_36
,卫星轨道距离地面的高度/>
Figure SMS_37
,参考探测器峰值星探测度/>
Figure SMS_38
,参考系统等效噪声温差/>
Figure SMS_39
探测器峰值星探测度
Figure SMS_40
为:
探测器像元面积
Figure SMS_41
为:
Figure SMS_42
Figure SMS_43
系统等效带宽/>
Figure SMS_44
为:
Figure SMS_45
其中/>
Figure SMS_46
为每秒帧频的倒数
Figure SMS_47
目标的探测信噪比/>
Figure SMS_48
为:
以上即为目标的探测信噪比计算方程;
S5:根据探测信噪比模型以及气象影响因子构建探测概率模型;
Figure SMS_49
Figure SMS_50
Figure SMS_51
当弹道导弹高度/>
Figure SMS_52
10km以内时,
当弹道导弹高度
Figure SMS_53
10km时,忽略天气对探测结果的影响;
Figure SMS_54
气象影响因子/>
Figure SMS_55
为:/>
Figure SMS_56
SNR影响因子/>
Figure SMS_57
为:
探测概率
Figure SMS_58
为:
Figure SMS_59
以上即为红外预警卫星探测概率计算方程。
附图说明
图1为本发明的红外预警卫星探测流程图;
图2为红外预警卫星探测示意图;
图3为红外预警卫星受天气大气影响下探测导弹示意图。
具体实施方式
为验证上述方法的有效性,本部分进行实例计算,计算流程如图1所示;
选取典型场景为红外成像卫星探测模型如图2所示;
S1:输入探测目标的参数:
Figure SMS_60
目标辐射强度/>
Figure SMS_61
其中助推段洲际弹道导弹总辐射强度为
Figure SMS_62
,其中中波取值0.3,取一级发动机推力为/>
Figure SMS_63
弹道导弹飞行高度
Figure SMS_64
卫星与目标的距离
Figure SMS_65
卫星相对目标的天顶角
Figure SMS_66
S2:输入卫星红外载荷参数:
卫星光学系统有效通光口径
Figure SMS_67
卫星光学系统透过率
Figure SMS_68
焦距
Figure SMS_69
水平方向探测器面元大小
Figure SMS_70
垂直方向探测器面元大小
Figure SMS_71
水平方向像元数量
Figure SMS_72
垂直方向像元数量
Figure SMS_73
系统等效噪声温差
Figure SMS_74
帧频
Figure SMS_75
S3:通过上述输入的探测目标参数以及卫星红外载荷参数构建红外预警卫星所探测目标的地面背景修正模型;
设卫星与目标的距离
Figure SMS_76
地面平均发射率
Figure SMS_77
导弹预警卫星采用的波长
Figure SMS_78
成像点弥散系数
Figure SMS_79
设卫星相对目标的天顶角基础插值角度
Figure SMS_80
为:
Figure SMS_81
对应天顶角的大气透过率
Figure SMS_82
为:
Figure SMS_83
卫星探测地面时的大气透过率
Figure SMS_84
为:
利用上述数据计算得,
Figure SMS_85
天顶角的cos值
Figure SMS_86
为:
Figure SMS_87
地面背景影响计算系数
Figure SMS_88
为:
Figure SMS_89
Figure SMS_90
地面背景辐射修正因子/>
Figure SMS_91
为:
进行地面背景修正后的目标辐射强度
Figure SMS_92
为:
Figure SMS_93
以上即为探测目标的地面背景修正系数;
S4:通过上述输入的探测目标参数、卫星红外载荷参数以及经过地面背景修正的目标辐射强度系数构建目标的探测信噪比模型;
设导弹受大气衰减影响因子
Figure SMS_94
信号峰值因子
Figure SMS_95
弥散修正系数
Figure SMS_96
卫星轨道距离地面的高度
Figure SMS_97
Figure SMS_98
参考探测器峰值星探测度
参考系统等效噪声温差
Figure SMS_99
/>
Figure SMS_100
探测器峰值星探测度
Figure SMS_101
为:
探测器像元面积
Figure SMS_102
为:
Figure SMS_103
Figure SMS_104
系统等效带宽/>
Figure SMS_105
为:
Figure SMS_106
其中/>
Figure SMS_107
为每秒帧频的倒数
目标的探测信噪比
Figure SMS_108
为:
Figure SMS_109
以上即为目标的探测信噪比;
Figure SMS_110
Figure SMS_111
Figure SMS_112
S5:根据探测信噪比模型以及气象影响因子构建探测概率模型;
当弹道导弹高度
Figure SMS_113
10km以内时,如图3所示,卫星探测效果受大气、天气等外界环境影响;
Figure SMS_114
当弹道导弹高度/>
Figure SMS_115
10km时,忽略天气对探测结果的影响,假定当前道道高度/>
Figure SMS_116
10km且当前天气状况为少云、薄雾、黄昏,则气象影响因子/>
Figure SMS_117
为:
当前
Figure SMS_118
,则SNR影响因子/>
Figure SMS_119
为:
Figure SMS_120
探测概率
Figure SMS_121
为:
Figure SMS_122
以上即为红外预警卫星对助推段洲际弹道导弹的探测概率。

Claims (4)

1.一种红外预警卫星接收方法, 其特征在于,包括以下步骤:
S1:输入探测目标的参数:目标辐射强度、飞行高度、卫星与目标的距离以及卫星相对目标的天顶角;
S2:输入卫星红外载荷参数:卫星光学系统有效通光口径、卫星光学系统透过率、焦距、水平与垂直方向探测器面元大小、水平与垂直方向像元数量、系统等效噪声温差以及帧频;
S3:构建红外预警卫星所探测目标的地面背景修正模型;
S4:根据地面背景修正模型构建目标的探测信噪比模型;
S5:根据探测信噪比模型以及气象影响因子构建探测概率模型。
2.如权利要求1所述的一种红外预警卫星接收方法,其特征在于,所述的地面背景修正模型为:
设天顶角的cos值
Figure QLYQS_1
,卫星与目标的距离/>
Figure QLYQS_2
,地面背景影响计算系数/>
Figure QLYQS_3
,卫星探测地面时的大气透过率/>
Figure QLYQS_4
Figure QLYQS_5
地面背景辐射修正因子/>
Figure QLYQS_6
为:
Figure QLYQS_7
进行地面背景修正后的目标辐射强度/>
Figure QLYQS_8
为:
如上为红外预警卫星所探测目标的地面背景修正方程。
3.如权利要求1所述的一种红外预警卫星接收方法,其特征在于,所述的目标探测信噪比模型为:
设导弹受大气衰减影响因子
Figure QLYQS_12
,信号峰值因子/>
Figure QLYQS_13
,光学系统有效通光口径/>
Figure QLYQS_14
,光学系统透过率/>
Figure QLYQS_15
,探测器峰值星探测度/>
Figure QLYQS_16
,弥散系数/>
Figure QLYQS_17
,修正系数/>
Figure QLYQS_18
,探测器像元面积/>
Figure QLYQS_9
,系统等效带宽/>
Figure QLYQS_10
,卫星轨道距离地面的高度/>
Figure QLYQS_11
Figure QLYQS_19
目标的探测信噪比/>
Figure QLYQS_20
为:
如上为目标的探测信噪比模型。
4.如权利要求1所述的一种红外预警卫星接收方法,其特征在于,所述的探测概率模型为:
当弹道导弹高度在10km以内时,
Figure QLYQS_21
Figure QLYQS_22
Figure QLYQS_23
当弹道导弹高度大于10km时,忽略天气对探测结果的影响;
Figure QLYQS_24
气象影响因子/>
Figure QLYQS_25
为:/>
Figure QLYQS_26
SNR影响因子/>
Figure QLYQS_27
为:
探测概率
Figure QLYQS_28
为:
Figure QLYQS_29
以最后计算所得到的
Figure QLYQS_30
对红外预警卫星探测目标的概率进行评估。/>
CN202310402177.3A 2023-04-17 2023-04-17 一种红外预警卫星接收方法 Active CN116150579B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310402177.3A CN116150579B (zh) 2023-04-17 2023-04-17 一种红外预警卫星接收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310402177.3A CN116150579B (zh) 2023-04-17 2023-04-17 一种红外预警卫星接收方法

Publications (2)

Publication Number Publication Date
CN116150579A true CN116150579A (zh) 2023-05-23
CN116150579B CN116150579B (zh) 2023-07-04

Family

ID=86373926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310402177.3A Active CN116150579B (zh) 2023-04-17 2023-04-17 一种红外预警卫星接收方法

Country Status (1)

Country Link
CN (1) CN116150579B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117375706A (zh) * 2023-12-04 2024-01-09 成都本原星通科技有限公司 一种面向接收端的低轨卫星星间干扰优化方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050275582A1 (en) * 2004-06-14 2005-12-15 Mohan Paul L System and method for onboard detection of ballistic threats to aircraft
CN106570253A (zh) * 2016-10-26 2017-04-19 中国运载火箭技术研究院 一种实时天基红外视景仿真方法
CN112612064A (zh) * 2020-11-20 2021-04-06 中国人民解放军91776部队 一种天基探测与跟踪红外动态飞行目标的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050275582A1 (en) * 2004-06-14 2005-12-15 Mohan Paul L System and method for onboard detection of ballistic threats to aircraft
CN106570253A (zh) * 2016-10-26 2017-04-19 中国运载火箭技术研究院 一种实时天基红外视景仿真方法
CN112612064A (zh) * 2020-11-20 2021-04-06 中国人民解放军91776部队 一种天基探测与跟踪红外动态飞行目标的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李文杰 等: "红外预警卫星探测波段地球背景辐射仿真研究", 红外与激光工程, vol. 48, no. 12 *
雷萍 等: "天基红外预警系统扫描相机预警探测能力研究", 红外与激光工程, vol. 51, no. 9 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117375706A (zh) * 2023-12-04 2024-01-09 成都本原星通科技有限公司 一种面向接收端的低轨卫星星间干扰优化方法和系统
CN117375706B (zh) * 2023-12-04 2024-03-12 成都本原星通科技有限公司 一种面向接收端的低轨卫星星间干扰优化方法和系统

Also Published As

Publication number Publication date
CN116150579B (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
US9759605B2 (en) Low-orbit satellite-borne image-spectrum associated detection method and payload
US8355536B2 (en) Passive electro-optical tracker
US6877691B2 (en) High altitude stripping for threat discrimination
CN109313256A (zh) 自适应激光雷达接收器
US7210392B2 (en) Autonomous weapon system
US7899644B2 (en) Threat launch detection system and method
CN112612064B (zh) 一种天基探测与跟踪红外动态飞行目标的方法
CN116150579B (zh) 一种红外预警卫星接收方法
JPH02105087A (ja) 物体の始動と飛行を識別する方法とその装置
RU2686566C2 (ru) Способ для детектирования и классифицирования событий сцены
Malchow et al. High speed Short Wave Infrared (SWIR) imaging and range gating cameras
EP4109042A2 (en) Camera and radar systems and devices for ballistic parameter measurements from a single side of a target volume
CN107273697B (zh) 一种基于红外热成像系统的海天环境参数计算方法
Downey Electro-optical tracking considerations II
AU779584B2 (en) In-action boresight
WO2011059530A2 (en) Passive electro-optical tracker
US5560567A (en) Passive missile tracking and guidance system
LaCroix et al. Peeling the onion: an heuristic overview of hit-to-kill missile defense in the 21st century
Strickland Infrared techniques for military applications
CN110703274A (zh) 一种宽光谱多波段探测装置、目标位置测量系统及方法
de Jong et al. Enhanced IR point target detection by atmospheric effects
Takken et al. Navy DAS program for SBIRST
EP4109034A2 (en) Camera systems and devices for ballistic parameter measurements in an outdoor environment
Wilmot et al. Warning systems
Luo et al. Research of Limit Performance of Infrared Seeker Based on Image Information

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230901

Address after: 4-1-1, No. 2, Jianxin West Road, Jiangbei District, Chongqing 400020 (from No. 08)

Patentee after: Chongqing xinyiyuan Intelligent Technology Co.,Ltd.

Address before: Room 101, 5th Floor, Building 9, Yard 55, Zique Road, Haidian District, Beijing, 100095

Patentee before: Beijing Yufei Technology Development Co.,Ltd.

TR01 Transfer of patent right