CN116148806A - Method and device for determining depth of target object and electronic equipment - Google Patents
Method and device for determining depth of target object and electronic equipment Download PDFInfo
- Publication number
- CN116148806A CN116148806A CN202310164928.2A CN202310164928A CN116148806A CN 116148806 A CN116148806 A CN 116148806A CN 202310164928 A CN202310164928 A CN 202310164928A CN 116148806 A CN116148806 A CN 116148806A
- Authority
- CN
- China
- Prior art keywords
- target
- information
- target object
- preset
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 239000013598 vector Substances 0.000 claims abstract description 98
- 238000007781 pre-processing Methods 0.000 claims abstract description 35
- 238000012360 testing method Methods 0.000 claims description 98
- 238000012549 training Methods 0.000 claims description 79
- 238000012545 processing Methods 0.000 claims description 15
- 238000004590 computer program Methods 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 13
- 238000007635 classification algorithm Methods 0.000 claims description 9
- 230000004044 response Effects 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000013461 design Methods 0.000 description 20
- 230000008569 process Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 9
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000010606 normalization Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008447 perception Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013450 outlier detection Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4802—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Image Processing (AREA)
Abstract
一种确定目标物体深度的方法、装置及电子设备,该方法包括:获得目标物体对应的物体信息,基于数据预处理模型将物体信息转化为多维特征向量,将多维特征向量输入预设深度模型中,获得目标物体对应的长度信息。通过上述的方法,将目标物体的物体信息输入数据预处理模型,得到物体信息对应的多维特征向量,并将多维特征向量输入至训练完成的预设深度模型中,确定出目标物体的深度信息,由于数据预处理模型以及预设深度模型都是预先训练好的模型,因此,能够确保基于数据预处理模型以及预设深度模型确定出的目标物体的深度信息的准确性。
A method, device, and electronic device for determining the depth of a target object, the method comprising: obtaining object information corresponding to the target object, converting the object information into a multidimensional feature vector based on a data preprocessing model, and inputting the multidimensional feature vector into a preset depth model , to obtain the length information corresponding to the target object. Through the above method, the object information of the target object is input into the data preprocessing model to obtain the multi-dimensional feature vector corresponding to the object information, and the multi-dimensional feature vector is input into the trained preset depth model to determine the depth information of the target object. Since both the data preprocessing model and the preset depth model are pre-trained models, the accuracy of the depth information of the target object determined based on the data preprocessing model and the preset depth model can be ensured.
Description
技术领域technical field
本申请涉及智能驾驶技术领域,尤其涉及一种确定目标物体深度的方法、装置及电子设备。The present application relates to the technical field of intelligent driving, and in particular to a method, device and electronic equipment for determining the depth of a target object.
背景技术Background technique
在自动驾驶技术的发展过程中,自动驾驶的软件架构可划分为感知模块与决策模块,感知模块通过车辆系统中的传感器获取车辆外部的数据,该传感器可以为激光雷达、图像采集设备等,决策模块基于感知模块获取的数据进行指令的下发。In the development process of autonomous driving technology, the software architecture of autonomous driving can be divided into perception module and decision-making module. The perception module obtains the data outside the vehicle through the sensor in the vehicle system. The module issues instructions based on the data acquired by the sensing module.
当上述描述的感知模块中的传感器为激光雷达时,该激光雷达能够基于发送的脉冲信号的发射时间、返回时间以及发射角度、返回角度确定出目标物体在三维空间中的位置,将该激光雷达采集的数据作为点云数据,因此,对激光雷达采集的点云数据的处理如下:When the sensor in the perception module described above is a laser radar, the laser radar can determine the position of the target object in three-dimensional space based on the emission time, return time, emission angle, and return angle of the pulse signal sent, and the laser radar The collected data is regarded as point cloud data, therefore, the processing of the point cloud data collected by lidar is as follows:
基于激光雷达检测目标物体时,激光雷达会获取包含目标物体的场景中的所有第一点云数据,并基于PointNet算法对该第一点云数据进行处理,获得该目标物体对应的第二点云数据,该点云数据为多个点构成的场景或者物体的点云集合,每一个点能够用空间直角坐标系中的坐标表示,需要从目标物体的所有点的x中确定出x的最小值与最大值,得到x方向上的范围;从目标物体的所有点的y中确定出y的最小值与最大值,得到y方向上的范围;从目标物体的所有点的z中确定出z的最小值与最大值,得到z方向上的范围。When detecting a target object based on the lidar, the lidar will obtain all the first point cloud data in the scene containing the target object, and process the first point cloud data based on the PointNet algorithm to obtain the second point cloud corresponding to the target object Data, the point cloud data is a point cloud collection of scenes or objects composed of multiple points, each point can be represented by the coordinates in the space Cartesian coordinate system, and the minimum value of x needs to be determined from all points x of the target object and the maximum value to obtain the range in the x direction; determine the minimum and maximum values of y from the y of all points of the target object to obtain the range in the y direction; determine the value of z from all points of the target object in z The minimum and maximum values get the range in the z direction.
基于上述得到的6个值,能够确定出该目标物体的3D框,基于该3D框能够获得目标物体的高度信息、宽度信息以及深度信息,由于激光雷达不能很好的估计物体深度的特性,因此,基于该3D框得到的目标物体的深度信息不准确。Based on the 6 values obtained above, the 3D frame of the target object can be determined. Based on the 3D frame, the height information, width information and depth information of the target object can be obtained. Since the laser radar cannot estimate the depth characteristics of the object well, so , the depth information of the target object obtained based on the 3D frame is inaccurate.
发明内容Contents of the invention
本申请提供了一种确定目标物体深度的方法、装置及电子设备,用与提高目标物体的深度信息的准确性。The present application provides a method, device and electronic equipment for determining the depth of a target object, which are used to improve the accuracy of the depth information of the target object.
第一方面,本申请提供了一种确定目标物体深度的方法,所述方法包括:In a first aspect, the present application provides a method for determining the depth of a target object, the method comprising:
获得目标物体对应的物体信息,其中,所述物体信息包括:所述目标物体的高度信息、宽度信息以及目标类型;Obtain object information corresponding to the target object, wherein the object information includes: height information, width information, and target type of the target object;
基于数据预处理模型将所述物体信息转化为多维目标特征向量;converting the object information into a multidimensional target feature vector based on a data preprocessing model;
将所述多维目标特征向量输入预设深度模型中,获得所述目标物体对应的深度信息。Inputting the multi-dimensional target feature vector into a preset depth model to obtain depth information corresponding to the target object.
通过上述的方法,通过数据预处理模型对目标物体的物体信息进行处理,获得目标物体对应的多维目标特征向量,再通过预设深度模型对多维目标特征向量进行处理,从而得到目标物体的深度信息,由于数据预处理模型以及预设深度模型都是提前训练好的模型,因此,能够确保获得的目标物体的深度信息的准确性。Through the above method, the object information of the target object is processed through the data preprocessing model to obtain the multi-dimensional target feature vector corresponding to the target object, and then the multi-dimensional target feature vector is processed through the preset depth model to obtain the depth information of the target object , since the data preprocessing model and the preset depth model are pre-trained models, the accuracy of the obtained depth information of the target object can be ensured.
在一种可能的设计中,获得目标物体对应的物体信息之前,包括:In a possible design, before obtaining the object information corresponding to the target object, it includes:
获得m个测试物体各自对应的测试物体信息,其中,所述测试物体信息为测试物体的高度信息、宽度信息、深度信息、以及测试物体的类型信息,m为正整数;Obtaining test object information corresponding to each of the m test objects, wherein the test object information is height information, width information, depth information, and type information of the test object, and m is a positive integer;
基于所述m个测试物体进行训练,获得所述m个测试物体对应的训练模型;performing training based on the m test objects, and obtaining a training model corresponding to the m test objects;
响应于所述训练模型符合预设条件,确定出所述m个测试物体对应的预设深度模型。In response to the training model meeting the preset condition, the preset depth models corresponding to the m test objects are determined.
通过上述的方法,对m个测试物体进行训练,并获得m个测试物体的训练模型,当训练模型符合预设条件时,则确定出的预设深度模型,对训练过程中得到的训练模型进行筛选,提高了预设深度模型预测深度信息的准确性。Through the above method, m test objects are trained, and the training models of m test objects are obtained. When the training models meet the preset conditions, the preset depth model is determined, and the training model obtained in the training process is carried out. Screening, improves the accuracy of the preset depth model to predict depth information.
在一种可能的设计中,基于所述m个测试物体进行训练,获得所述m个测试物体对应的训练模型,包括:In a possible design, training is performed based on the m test objects, and a training model corresponding to the m test objects is obtained, including:
确定出所述m个测试物体对应的所有高度信息、宽度信息以及深度信息中的最大值,以及所述m个测试物体分别对应的类别特征向量;determining the maximum value of all height information, width information, and depth information corresponding to the m test objects, and category feature vectors corresponding to the m test objects;
基于所述最大值对各个测试物体各自对应的高度信息以及宽度信息进行归一化处理,获得所述各个测试物体各自对应的二维特征向量;Performing normalization processing on the height information and width information corresponding to each test object based on the maximum value, to obtain the two-dimensional feature vectors corresponding to each test object;
将所述各个测试物体各自的二维特征向量以及各自对应的类别特征向量进行拼接,获得所述各个测试物体分别对应的多维特征向量;Splicing the respective two-dimensional feature vectors of each of the test objects and their corresponding category feature vectors to obtain the respective multi-dimensional feature vectors corresponding to each of the test objects;
基于所述各个测试物体各自对应的深度信息以及所述各个多维特征向量进行训练,获得所述m个测试物体对应的训练模型。Training is performed based on the respective depth information corresponding to each of the test objects and the respective multi-dimensional feature vectors to obtain training models corresponding to the m test objects.
通过上述的方法,通过目标物体的二维特征向量以及类别特征向量的拼接,获得目标物体的多维特征向量,基于各个测试物体的多维特征向量以及深度信息进行模型训练,确保了训练模型的准确性。Through the above method, the multi-dimensional feature vector of the target object is obtained by splicing the two-dimensional feature vector and the category feature vector of the target object, and model training is performed based on the multi-dimensional feature vector and depth information of each test object to ensure the accuracy of the training model .
在一种可能的设计中,响应于所述训练模型符合预设条件,包括:In a possible design, responding to the training model meeting preset conditions, including:
获得所述m个测试物体对应的总训练次数,以及确定出所述m个测试物体每一次训练对应的训练模型的损失值,其中,所述损失值表征模型预测深度值和训练样本实际深度值之间的差异;Obtaining the total number of training times corresponding to the m test objects, and determining the loss value of the training model corresponding to each training of the m test objects, wherein the loss value represents the predicted depth value of the model and the actual depth value of the training sample difference between;
当所述总训练次数达到预设训练次数时,响应于所述训练模型符合预设条件;以及When the total number of training times reaches a preset number of training times, responding to the training model meeting a preset condition; and
当所述损失值小于预设损失阈值时,响应于所述训练模型符合预设条件。When the loss value is less than a preset loss threshold, it is responded that the training model meets a preset condition.
通过上述的方法,对m个测试物体每一次进行训练之后的训练模型进行检测,用以确保得到的训练模型符合预设条件,从而提高了训练模型的准确性。Through the above method, the training model after each training of the m test objects is tested to ensure that the obtained training model meets the preset conditions, thereby improving the accuracy of the training model.
在一种可能的设计中,获得目标物体对应的物体信息,包括:In a possible design, the object information corresponding to the target object is obtained, including:
确定出所述目标物体的三维检测框,基于预设分类算法获得所述目标物体的目标类型;Determine the three-dimensional detection frame of the target object, and obtain the target type of the target object based on a preset classification algorithm;
响应于所述目标类型在预设类别集中,基于所述三维检测框读取出所述目标物体的高度信息以及宽度信息,其中,所述预设类别集包含多个预设物体各自对应的类别;In response to the target type being in a preset category set, read out the height information and width information of the target object based on the three-dimensional detection frame, wherein the preset category set includes a plurality of categories corresponding to each preset object ;
将所述目标类型、所述高度信息以及所述宽度信息作为所述目标物体对应的物体信息。The target type, the height information, and the width information are used as object information corresponding to the target object.
通过上述的方法,通过三维检测框获得目标物体的宽度信息以及高度信息,并确定出目标物体的目标类型与预设类别集中的预设物体的类别一致,从而确保了获得的目标物体的物体信息的准确性。Through the above method, the width information and height information of the target object are obtained through the three-dimensional detection frame, and the target type of the target object is determined to be consistent with the category of the preset object in the preset category set, thereby ensuring the obtained object information of the target object accuracy.
在一种可能的设计中,基于预设分类算法获得所述目标物体的目标类型,包括:In a possible design, the target type of the target object is obtained based on a preset classification algorithm, including:
提取出所述目标物体对应的多个目标特征;extracting a plurality of target features corresponding to the target object;
将所述多个目标特征与预设类别特征集进行匹配,确定出所述多个目标特征集对应的多个相似度值,其中,所述预设类别特征集中包括每一个预设物体对应的特征集;Matching the multiple target features with a preset category feature set to determine multiple similarity values corresponding to the multiple target feature sets, wherein the preset category feature set includes each preset object corresponding to feature set;
从所述多个相似度值中确定出最大相似度对应的预设物体的预设类别,并将所述预设类别作为所述目标物体的目标类型。The preset category of the preset object corresponding to the maximum similarity is determined from the multiple similarity values, and the preset category is used as the target type of the target object.
通过上述的方法,确定出最大相似度对应的预设物体的预设类别,并将该预设类别作为目标物体的目标类型,从而提高了确定出目标物体的目标类型的准确性。Through the above method, the preset category of the preset object corresponding to the maximum similarity is determined, and the preset category is used as the target type of the target object, thereby improving the accuracy of determining the target type of the target object.
在一种可能的设计中,基于数据预处理模型将所述物体信息转化为多维目标特征向量,包括:In a possible design, the object information is converted into a multidimensional target feature vector based on a data preprocessing model, including:
将所述目标物体对应的所述物体信息输入所述数据预处理模型,获得所述目标物体的目标二维特征向量以及目标类别向量;input the object information corresponding to the target object into the data preprocessing model, and obtain a target two-dimensional feature vector and a target category vector of the target object;
将所述目标二维特征向量以及所述目标类别向量组合,获得所述目标物体对应的多维目标特征向量。Combining the target two-dimensional feature vector and the target category vector to obtain a multi-dimensional target feature vector corresponding to the target object.
通过上述的方法,通过数据预处理模型将目标物体的物体信息转化为多维目标特征向量,对目标物体的物体信息进行预处理,有利于提高确定出目标物体的深度信息的准确性。Through the above method, the object information of the target object is converted into a multi-dimensional object feature vector through the data preprocessing model, and the object information of the target object is preprocessed, which is conducive to improving the accuracy of determining the depth information of the target object.
第二方面,本申请提供了一种确定目标物体深度的装置,所述装置包括:In a second aspect, the present application provides a device for determining the depth of a target object, the device comprising:
获得模块,用于获得目标物体对应的物体信息,其中,所述物体信息包括:所述目标物体的高度信息、宽度信息以及目标类型;An obtaining module, configured to obtain object information corresponding to the target object, wherein the object information includes: height information, width information, and target type of the target object;
转化模块,用于基于数据预处理模型将所述物体信息转化为多维目标特征向量;A conversion module, configured to convert the object information into a multidimensional target feature vector based on a data preprocessing model;
深度模块,用于将所述多维目标特征向量输入预设深度模型中,获得所述目标物体对应的深度信息。A depth module, configured to input the multi-dimensional target feature vector into a preset depth model to obtain depth information corresponding to the target object.
在一种可能的设计中,所述获得模块,具体用于获得m个测试物体各自对应的测试物体信息,基于所述m个测试物体进行训练,获得所述m个测试物体对应的训练模型,响应于所述训练模型符合预设条件,确定出所述m个测试物体对应的预设深度模型。In a possible design, the obtaining module is specifically configured to obtain test object information corresponding to each of the m test objects, perform training based on the m test objects, and obtain a training model corresponding to the m test objects, In response to the training model meeting the preset condition, the preset depth models corresponding to the m test objects are determined.
在一种可能的设计中,所述获得模块,还用于确定出所述m个测试物体对应的所有高度信息、宽度信息以及深度信息中的最大值,以及所述m个测试物体分别对应的类别特征向量,基于所述最大值对各个测试物体各自对应的高度信息以及宽度信息进行归一化处理,获得所述各个测试物体各自对应的二维特征向量,将所述各个测试物体各自的二维特征向量以及各自对应的类别特征向量进行拼接,获得所述各个测试物体分别对应的多维特征向量,基于所述各个测试物体各自对应的深度信息以及所述各个多维特征向量进行训练,获得所述m个测试物体对应的训练模型。In a possible design, the obtaining module is further configured to determine the maximum value of all height information, width information, and depth information corresponding to the m test objects, and the maximum values of the m test objects respectively. Category feature vectors, based on the maximum value, the height information and width information corresponding to each test object are normalized to obtain the respective two-dimensional feature vectors corresponding to each test object, and the respective two-dimensional feature vectors of each test object are obtained. Dimensional feature vectors and their corresponding category feature vectors are spliced to obtain multi-dimensional feature vectors corresponding to the respective test objects, and training is performed based on the depth information corresponding to each of the test objects and the respective multi-dimensional feature vectors to obtain the described The training model corresponding to m test objects.
在一种可能的设计中,所述获得模块,还用于获得所述m个测试物体对应的总训练次数,以及确定出所述m个测试物体每一次训练对应的训练模型的损失值,当所述总训练次数达到预设训练次数时,响应于所述训练模型符合预设条件,以及当所述损失值小于预设损失阈值时,响应于所述训练模型符合预设条件。In a possible design, the obtaining module is also used to obtain the total number of training times corresponding to the m test objects, and determine the loss value of the training model corresponding to each training of the m test objects, when When the total number of training times reaches a preset number of training times, the response is that the training model meets a preset condition, and when the loss value is smaller than a preset loss threshold, it is response that the training model meets a preset condition.
在一种可能的设计中,所述获得模块,还用于确定出所述目标物体的三维检测框,基于预设分类算法获得所述目标物体的目标类型,响应于所述目标类型在预设类别集中,基于所述三维检测框读取出所述目标物体的高度信息以及宽度信息,将所述目标类型、所述高度信息以及所述宽度信息作为所述目标物体对应的物体信息。In a possible design, the obtaining module is further configured to determine the three-dimensional detection frame of the target object, obtain the target type of the target object based on a preset classification algorithm, and respond to the target type being within a preset In category concentration, the height information and width information of the target object are read out based on the three-dimensional detection frame, and the target type, the height information, and the width information are used as object information corresponding to the target object.
在一种可能的设计中,所述获得模块,还用于提取出所述目标物体对应的多个目标特征,将所述多个目标特征与预设类别特征集进行匹配,确定出所述多个目标特征集对应的多个相似度值,从所述多个相似度值中确定出最大相似度对应的预设物体的预设类别,并将所述预设类别作为所述目标物体的目标类型。In a possible design, the obtaining module is further configured to extract multiple target features corresponding to the target object, match the multiple target features with a preset category feature set, and determine the multiple Multiple similarity values corresponding to target feature sets, determine the preset category of the preset object corresponding to the maximum similarity from the multiple similarity values, and use the preset category as the target of the target object type.
在一种可能的设计中,所述转化模块,具体用于将所述目标物体对应的所述物体信息输入所述数据预处理模型,获得所述目标物体的目标二维特征向量以及目标类别向量,将所述目标二维特征向量以及所述目标类别向量组合,获得所述目标物体对应的多维目标特征向量。In a possible design, the conversion module is specifically configured to input the object information corresponding to the target object into the data preprocessing model, and obtain the target two-dimensional feature vector and target category vector of the target object , combining the target two-dimensional feature vector and the target category vector to obtain a multi-dimensional target feature vector corresponding to the target object.
第三方面,本申请提供了一种电子设备,包括:In a third aspect, the present application provides an electronic device, including:
存储器,用于存放计算机程序;memory for storing computer programs;
处理器,用于执行所述存储器上所存放的计算机程序时,实现上述的一种确定目标物体深度的方法步骤。The processor is configured to implement the steps of the above-mentioned method for determining the depth of a target object when executing the computer program stored in the memory.
第四方面,一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述的一种确定目标物体深度的方法步骤。In a fourth aspect, a computer-readable storage medium stores a computer program in the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the above-mentioned method for determining the depth of a target object are implemented.
上述第一方面至第四方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面或第一方面中的各种可能方案可以达到的技术效果说明,这里不再重复赘述。For the various aspects and possible technical effects of the above-mentioned first to fourth aspects, please refer to the above description of the technical effects that can be achieved by the first aspect or various possible solutions in the first aspect, and will not be repeated here.
附图说明Description of drawings
图1为本申请提供的一种确定目标物体深度的方法步骤的流程图;FIG. 1 is a flow chart of the steps of a method for determining the depth of a target object provided by the present application;
图2为本申请提供的基于数据预处理模型处理目标物体的物体信息的示意图;FIG. 2 is a schematic diagram of processing object information of a target object based on a data preprocessing model provided by the present application;
图3为本申请提供的基于预设深度模型获得目标物体的深度信息的示意图;FIG. 3 is a schematic diagram of obtaining depth information of a target object based on a preset depth model provided by the present application;
图4为本申请提供的一种确定目标物体深度的装置的结构示意图;FIG. 4 is a schematic structural diagram of a device for determining the depth of a target object provided by the present application;
图5为本申请提供的一种电子设备的结构示意图。FIG. 5 is a schematic structural diagram of an electronic device provided by the present application.
具体实施方式Detailed ways
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。需要说明的是,在本申请的描述中“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。A与B连接,可以表示:A与B直接连接和A与B通过C连接这两种情况。另外,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。In order to make the purpose, technical solution and advantages of the application clearer, the application will be further described in detail below in conjunction with the accompanying drawings. The specific operation methods in the method embodiments can also be applied to the device embodiments or system embodiments. It should be noted that in the description of the present application, "plurality" is understood as "at least two". "And/or" describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently. The connection between A and B can mean: A and B are directly connected and A and B are connected through C. In addition, in the description of the present application, words such as "first" and "second" are only used for the purpose of distinguishing descriptions, and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating or implying order.
在以往的技术中,基于激光雷达获取目标物体的深度信息的具体方法为,基于激光雷达获取包含目标物体的场景中的所有第一点云数据,并基于PointNet算法处理该第一点云数据,获得该目标物体对应的第二点云数据,第二点云数据中的每一个点能够用空间直角坐标系中的坐标表示,需要从目标物体的所有点的x中确定出x的最小值与最大值,得到x方向上的范围;从目标物体的所有点的y中确定出y的最小值与最大值,得到y方向上的范围;从目标物体的所有点的z中确定出z的最小值与最大值,得到z方向上的范围。In the previous technology, the specific method of obtaining the depth information of the target object based on the laser radar is to obtain all the first point cloud data in the scene containing the target object based on the laser radar, and process the first point cloud data based on the PointNet algorithm, Obtain the second point cloud data corresponding to the target object. Each point in the second point cloud data can be represented by the coordinates in the space Cartesian coordinate system. It is necessary to determine the minimum value of x from all points x of the target object and Maximum value, get the range in the x direction; determine the minimum and maximum values of y from all points of the target object in y, get the range in the y direction; determine the minimum value of z from all points of the target object in z value and the maximum value to get the range in the z direction.
基于上述得到的6个值,能够确定出该目标物体的3D框,基于该3D框能够获得目标物体的高度信息、宽度信息以及深度信息,由于激光雷达不能很好的估计物体深度的特性,因此,基于该3D框得到的目标物体的深度信息不准确。Based on the 6 values obtained above, the 3D frame of the target object can be determined. Based on the 3D frame, the height information, width information and depth information of the target object can be obtained. Since the laser radar cannot estimate the depth characteristics of the object well, so , the depth information of the target object obtained based on the 3D frame is inaccurate.
为了解决上述描述的问题,本申请提供了一种确定目标物体深度的方法,用以准确确定出目标物体的深度信息。其中,本申请实施例所述方法和装置基于同一技术构思,由于方法及装置所解决问题的原理相似,因此装置与方法的实施例可以相互参见,重复之处不再赘述。In order to solve the problems described above, the present application provides a method for determining the depth of a target object, so as to accurately determine the depth information of the target object. Wherein, the method and the device described in the embodiment of the present application are based on the same technical concept. Since the principles of the problems solved by the method and the device are similar, the embodiments of the device and the method can be referred to each other, and the repetition will not be repeated.
下面结合附图,对本申请实施例进行详细描述。The embodiments of the present application will be described in detail below in conjunction with the accompanying drawings.
参照图1,本申请提供了一种确定目标物体深度的方法,该方法可以准确确定出目标物体的深度信息,该方法的实现流程如下:Referring to Figure 1, the present application provides a method for determining the depth of a target object, which can accurately determine the depth information of the target object, and the implementation process of the method is as follows:
步骤S1:获得目标物体对应的物体信息。Step S1: Obtain object information corresponding to the target object.
本申请实施例是为了获得目标物体准确的深度信息,首先,需要基于激光雷达对目标物体进行检测,获得目标物体对应的点云数据,虽然激光雷达获得目标物体的深度信息的准确度低,但是,基于该激光雷达能够获取目标物体的宽度信息以及高度信息。The embodiment of the present application is to obtain accurate depth information of the target object. First, it is necessary to detect the target object based on the laser radar to obtain the point cloud data corresponding to the target object. Although the accuracy of the depth information of the target object obtained by the laser radar is low, but , based on the lidar, the width information and height information of the target object can be obtained.
为了能够获得目标物体准确的宽度信息以及高度信息,需要对获得的点云数据进行聚类处理,本申请实施例中进行聚类处理的方式可以为欧式聚类,对目标物体进行分类可以采用PointNet算法,对点云数据进行聚类处理之后,将生成该目标物体对应的3D框,获得3D框之后,还需要对3D框进行过滤以及矫正,过滤用于去除该3D框中的噪声数据以及其他干扰,矫正用于基于该点云数据得到准确的高度信息以及宽度信息。In order to obtain accurate width information and height information of the target object, it is necessary to perform clustering processing on the obtained point cloud data. In the embodiment of the present application, the clustering processing method can be European clustering, and PointNet can be used to classify the target object. Algorithm, after clustering the point cloud data, a 3D frame corresponding to the target object will be generated. After obtaining the 3D frame, the 3D frame needs to be filtered and corrected. Filtering is used to remove the noise data in the 3D frame and other Interference and correction are used to obtain accurate height information and width information based on the point cloud data.
具体的,该过滤以及矫正的方式通常为检测3D框的高度以及宽度是否小于预设值,当高度以及宽度都小于预设值时,则认为3D框是由于噪声引起的,将采用离群点检测方法进行矫正,通过对3D框中的点云数据进行离群点检测,去除离群点后重新生成3D框,由于离群点检测为本领域技术人员公知的技术,因此,这里不作过多说明。Specifically, the filtering and correction method is usually to detect whether the height and width of the 3D frame are smaller than the preset value. When the height and width are smaller than the preset value, the 3D frame is considered to be caused by noise, and the outlier will be used The detection method is corrected. By performing outlier detection on the point cloud data in the 3D frame, the 3D frame is regenerated after removing the outlier points. Since the outlier point detection is a technology well known to those skilled in the art, so we will not do too much here illustrate.
基于处理之后的3D框后,为了获得目标物体准确的深度信息,还需要确定目标物体的目标类型是否在预设类别集中,当目标物体的目标类型在预设类别集中时,则进行获取目标物体的深度信息的流程;当目标物体的目标类型不在预设类别集中时,将退出获取目标物体的深度信息的流程。Based on the processed 3D frame, in order to obtain accurate depth information of the target object, it is also necessary to determine whether the target type of the target object is in the preset category set. When the target type of the target object is in the preset category set, the target object is acquired. The process of obtaining the depth information of the target object; when the target type of the target object is not in the preset category set, the process of obtaining the depth information of the target object will be exited.
由于本申请实施例是基于数据预处理模型以及预设深度模型获得目标物体的深度信息,因此,在获得目标物体的物体信息之前,需要获得数据预处理模型以及预设深度模型,具体获得过程如下:Since the embodiment of the present application obtains the depth information of the target object based on the data preprocessing model and the preset depth model, it is necessary to obtain the data preprocessing model and the preset depth model before obtaining the object information of the target object. The specific obtaining process is as follows :
获得m个测试物体各自对应的测试物体信息,m为正整数,该测试物体信息包括:测试物体信息的高度信息、宽度信息、深度信息、以及测试物体的类型信息,从测试的所有测试物体的高度信息、宽度信息以及深度信息中确定出最大值,以及各个测试物体分别对应的类别特征向量,再对测试物体的高度信息以及宽度信息进行归一化处理,归一化处理的过程如下:Obtain the test object information corresponding to each of the m test objects, m is a positive integer, the test object information includes: the height information of the test object information, the width information, the depth information, and the type information of the test object, from all the test objects tested Determine the maximum value from the height information, width information, and depth information, and the category feature vectors corresponding to each test object, and then normalize the height information and width information of the test object. The normalization process is as follows:
将各个测试物体的高度信息除以最大值,以及将各个测试物体的宽度信息除以最大值,分别得到各个测试物体的二维特征向量,该二维特征向量包括:各个测试物体的高度信息对应的一维特征向量,以及各个测试物体的宽度信息对应的一维特征向量,再将二维特征向量与类别特征向量进行拼接,获得各个测试物体分别对应的多维特征向量,从而得到数据预处理模型处理数据的流程。Divide the height information of each test object by the maximum value, and divide the width information of each test object by the maximum value to obtain the two-dimensional feature vector of each test object, the two-dimensional feature vector includes: the height information of each test object corresponds to The one-dimensional feature vector of each test object, and the one-dimensional feature vector corresponding to the width information of each test object, and then the two-dimensional feature vector and the category feature vector are spliced to obtain the multi-dimensional feature vector corresponding to each test object, so as to obtain the data preprocessing model The process of processing data.
为了使得基于预设深度模型得到的深度信息准确,需要基于各个测试物体各自对应的深度信息以及各自对应的多维特征向量进行训练,将多维特征向量输入全连接模块,本申请实施例中的全连接模块中可以包括:全连接(fully connected layers,FC)层、批归一化(Batch Normalization,BN)层以及线性整流函数(Rectified Linear Unit,ReLU)层,该FC层用于将特征向量整合成一个值,减少特征位置对于分类结果的影响,BN层用于防止测试过程中过拟合的发生,该ReLU层用于增加神经网络各层之间的非线性关系,将各个测试物体的多维特征向量输入全连接模块进行多次训练,得到各个测试物体对应的测试模型。In order to make the depth information obtained based on the preset depth model accurate, it is necessary to perform training based on the corresponding depth information of each test object and its corresponding multi-dimensional feature vector, and input the multi-dimensional feature vector into the fully connected module. The fully connected module in the embodiment of this application The module can include: a fully connected (fully connected layers, FC) layer, a batch normalization (Batch Normalization, BN) layer, and a linear rectification function (Rectified Linear Unit, ReLU) layer, which is used to integrate feature vectors into A value to reduce the impact of the feature position on the classification results. The BN layer is used to prevent overfitting during the test process. The ReLU layer is used to increase the nonlinear relationship between the layers of the neural network, and the multi-dimensional features of each test object The vector input fully connected module is trained multiple times to obtain the test model corresponding to each test object.
确定出各个测试物体的总训练次数,以及确定出各个测试物体在每一次进行训练时对应的训练模型的损失值,该损失值表征模型预测深度值与训练样本深度值之间的差异,当总训练次数达到预设训练次数时,则代表最后一次训练得到的训练模型符合预设条件;或者当损失值小于预设损失值时,则代表该损失值对应的训练模型符合预设条件,确定出损失值的具体公式如下:Determine the total number of training times for each test object, and determine the loss value of the training model corresponding to each test object during each training. The loss value represents the difference between the model's predicted depth value and the depth value of the training sample. When the total When the number of training times reaches the preset number of training times, it means that the training model obtained from the last training meets the preset conditions; or when the loss value is less than the preset loss value, it means that the training model corresponding to the loss value meets the preset conditions The specific formula of the loss value is as follows:
在上述公式中,L代表损失值,N代表训练次数,li表示测试物体i的实际深度值,表示测试物体i的预测深度值,需要进行说明的是,li是对测试物体深度进行归一化后的数值。In the above formula, L represents the loss value, N represents the number of training times, l i represents the actual depth value of the test object i, represents the predicted depth value of the test object i, and it should be noted that l i is a value after normalizing the depth of the test object.
当训练模型符合上述描述的条件时,则将确定出的训练模型作为预设深度模型。When the training model meets the conditions described above, the determined training model is used as the preset depth model.
确定出数据预处理模型以及预设深度模型之后,获得目标物体的三维检测框,并基于预设分类算法获得目标物体的目标类型,该预设分类算法可以为PointNet算法,基于预设分类算法确定出目标物体的目标类型之后,需要判断目标物体的目标类型是否在预设类别集中,具体判断过程如下:After the data preprocessing model and the preset depth model are determined, the three-dimensional detection frame of the target object is obtained, and the target type of the target object is obtained based on the preset classification algorithm. The preset classification algorithm can be the PointNet algorithm, which is determined based on the preset classification algorithm After finding the target type of the target object, it is necessary to judge whether the target type of the target object is in the preset category set. The specific judgment process is as follows:
服务器提取出目标物体的多个目标特征,并将多个目标特征与预设类别特征集进行匹配,该预设类别特征集中包含了每一个预设物体对应的特征集,确定出与多个目标特征与预设类别特征集中各个特征集的相似度值,再从获得的多个相似度值中确定出最大相似度值,并获得最大相似度值对应的预设物体的预设类别,并将该预设类别作为目标物体的目标类型。The server extracts multiple target features of the target object, and matches the multiple target features with the preset category feature set. The preset category feature set contains the feature set corresponding to each preset object, and determines the feature and the similarity value of each feature set in the preset category feature set, and then determine the maximum similarity value from the obtained multiple similarity values, and obtain the preset category of the preset object corresponding to the maximum similarity value, and The preset category serves as the target type of the target object.
基于上述的描述确定出目标物体的目标类型在预设类别中时,再基于该三维检测框确定出目标物体的宽度信息以及高度信息,物体信息,并将获得的宽度信息、高度信息以及目标类型作为目标物体的物体信息。When it is determined that the target type of the target object is in the preset category based on the above description, the width information, height information, and object information of the target object are determined based on the three-dimensional detection frame, and the obtained width information, height information, and target type are obtained. Object information as the target object.
基于上述的描述,获得了目标物体的物体信息,由于在获得物体信息之前,确定出了数据预处理模型以及预设深度模型,因此,能够基于物体信息获得数据预处理模型以及预设深度模型的输入,有利于确定出目标物体的深度信息。Based on the above description, the object information of the target object is obtained. Since the data preprocessing model and the preset depth model are determined before obtaining the object information, the data preprocessing model and the preset depth model can be obtained based on the object information. Input is beneficial to determine the depth information of the target object.
步骤S2:基于数据预处理模型将所述物体信息转化为多维目标特征向量。Step S2: Transform the object information into a multi-dimensional target feature vector based on the data preprocessing model.
由于上述已经描述了获得数据预处理模型的过程,以及目标物体的物体信息,因此,能够从该物体信息中提取出目标物体的高度信息、宽度信息以及目标类型,再将高度信息、宽度信息以及目标类型输入数据预处理模型中,获得目标物体对应的目标二维特征向量以及目标类别向量,并将目标二维特征向量以及目标类别向量拼接,获得目标物体对应的多维目标特征向量。Since the above has described the process of obtaining the data preprocessing model and the object information of the target object, the height information, width information and target type of the target object can be extracted from the object information, and then the height information, width information and The target type is input into the data preprocessing model to obtain the target two-dimensional feature vector and target category vector corresponding to the target object, and splice the target two-dimensional feature vector and target category vector to obtain the multi-dimensional target feature vector corresponding to the target object.
需要进行说明的是,基于数据预处理模型处理目标物体的物体信息的示意图如图2所示,在图2中,将物体信息输入数据预处理模型中之后,在数据预处理模型中将分别对目标物体的高度信息以及宽度信息进行归一化处理,获得高度信息以及宽度信息分别对应的一维特征向量,再将目标物体的多个目标特征通过嵌入法确定出n维特征向量,n为正整数,最后,将高度信息以及宽度信息各自对应的一维特征向量与n维特征向量进行拼接,获得n+2维特征向量,并将拼接之后的n+2维特征向量作为数据预处理模型的输出。It should be noted that the schematic diagram of processing the object information of the target object based on the data preprocessing model is shown in Figure 2. In Figure 2, after inputting the object information into the data preprocessing model, the data preprocessing model will respectively The height information and width information of the target object are normalized to obtain the one-dimensional feature vectors corresponding to the height information and width information respectively, and then the multiple target features of the target object are determined by the embedding method to obtain an n-dimensional feature vector, n is positive Integer, finally, splice the one-dimensional feature vector corresponding to the height information and the width information with the n-dimensional feature vector to obtain the n+2-dimensional feature vector, and use the spliced n+2-dimensional feature vector as the data preprocessing model output.
基于上述描述的方法,基于数据预处理模型获得目标物体对应的多维目标特征向量,使得多维目标特征向量能够代表目标物体的物体信息,有利于获得目标物体的深度信息。Based on the method described above, the multi-dimensional target feature vector corresponding to the target object is obtained based on the data preprocessing model, so that the multi-dimensional target feature vector can represent the object information of the target object, which is beneficial to obtain the depth information of the target object.
步骤S3:将所述多维目标特征向量输入预设深度模型中,获得所述目标物体对应的深度信息。Step S3: Input the multi-dimensional target feature vector into a preset depth model to obtain depth information corresponding to the target object.
上述已经确定出了多维目标特征向量以及预设深度模型,为了获得目标物体的深度信息,需要将多维目标特征向量输入预设深度模型,基于预设深度模型获得目标物体的深度信息的示意图如图3所示,在图3中,将多维目标特征向量输入至预设深度模型中,经过预设深度模型中的全连接模型对目标物体的深度信息进行预测,最后,将预设的深度信息输出,从而获得目标物体对应的深度信息。The multi-dimensional target feature vector and the preset depth model have been determined above. In order to obtain the depth information of the target object, the multi-dimensional target feature vector needs to be input into the preset depth model. The schematic diagram of obtaining the depth information of the target object based on the preset depth model is shown in the figure 3, in Figure 3, the multi-dimensional target feature vector is input into the preset depth model, the depth information of the target object is predicted through the fully connected model in the preset depth model, and finally, the preset depth information is output , so as to obtain the depth information corresponding to the target object.
基于上述描述的方法,通过激光雷达确定出目标物体的高度信息以及宽度信息,再通过训练完成的数据预处理模型以及预设深度模型对目标物体的深度信息进行预测,避免了基于激光雷达获得的目标物体的深度信息不准确的物体,由于数据预处理模型以及预设深度模型是经过多次训练的模型,因此,能够确保基于预设深度模型获得的目标物体的深度信息的准确性。Based on the method described above, the height information and width information of the target object are determined through the lidar, and then the depth information of the target object is predicted through the trained data preprocessing model and the preset depth model, avoiding the For objects with inaccurate depth information of the target object, since the data preprocessing model and the preset depth model are models that have been trained many times, the accuracy of the depth information of the target object obtained based on the preset depth model can be ensured.
基于同一发明构思,本申请实施例中还提供了一种电子设备,所述电子设备可以实现前述一种确定目标物体深度的装置的功能,参考图4,所述电子设备包括:Based on the same inventive concept, an electronic device is also provided in an embodiment of the present application, which can realize the function of the aforementioned device for determining the depth of a target object. Referring to FIG. 4, the electronic device includes:
获得模块401,用于获得目标物体对应的物体信息,其中,所述物体信息包括:所述目标物体的高度信息、宽度信息以及目标类型;An obtaining
转化模块402,用于基于数据预处理模型将所述物体信息转化为多维目标特征向量;A
深度模块403,用于将所述多维目标特征向量输入预设深度模型中,获得所述目标物体对应的深度信息。The
在一种可能的设计中,所述获得模块401,具体用于获得m个测试物体各自对应的测试物体信息,基于所述m个测试物体进行训练,获得所述m个测试物体对应的训练模型,响应于所述训练模型符合预设条件,确定出所述m个测试物体对应的预设深度模型。In a possible design, the obtaining
在一种可能的设计中,所述获得模块401,还用于确定出所述m个测试物体对应的所有高度信息、宽度信息以及深度信息中的最大值,以及所述m个测试物体分别对应的类别特征向量,基于所述最大值对各个测试物体各自对应的高度信息以及宽度信息进行归一化处理,获得所述各个测试物体各自对应的二维特征向量,将所述各个测试物体各自的二维特征向量以及各自对应的类别特征向量进行拼接,获得所述各个测试物体分别对应的多维特征向量,基于所述各个测试物体各自对应的深度信息以及所述各个多维特征向量进行训练,获得所述m个测试物体对应的训练模型。In a possible design, the obtaining
在一种可能的设计中,所述获得模块401,还用于获得所述m个测试物体对应的总训练次数,以及确定出所述m个测试物体每一次训练对应的训练模型的损失值,当所述总训练次数达到预设训练次数时,响应于所述训练模型符合预设条件,以及当所述损失值小于预设损失阈值时,响应于所述训练模型符合预设条件。In a possible design, the obtaining
在一种可能的设计中,所述获得模块401,还用于确定出所述目标物体的三维检测框,基于预设分类算法获得所述目标物体的目标类型,响应于所述目标类型在预设类别集中,基于所述三维检测框读取出所述目标物体的高度信息以及宽度信息,将所述目标类型、所述高度信息以及所述宽度信息作为所述目标物体对应的物体信息。In a possible design, the obtaining
在一种可能的设计中,所述获得模块401,还用于提取出所述目标物体对应的多个目标特征,将所述多个目标特征与预设类别特征集进行匹配,确定出所述多个目标特征集对应的多个相似度值,从所述多个相似度值中确定出最大相似度对应的预设物体的预设类别,并将所述预设类别作为所述目标物体的目标类型。In a possible design, the obtaining
在一种可能的设计中,所述转化模块402,具体用于将所述目标物体对应的所述物体信息输入所述数据预处理模型,获得所述目标物体的目标二维特征向量以及目标类别向量,将所述目标二维特征向量以及所述目标类别向量组合,获得所述目标物体对应的多维目标特征向量。In a possible design, the
基于同一发明构思,本申请实施例中还提供了一种电子设备,所述电子设备可以实现前述一种确定目标物体深度的装置的功能,参考图5,所述电子设备包括:Based on the same inventive concept, the embodiment of the present application also provides an electronic device, which can realize the function of the aforementioned device for determining the depth of a target object. Referring to FIG. 5, the electronic device includes:
至少一个处理器501,以及与至少一个处理器501连接的存储器502,本申请实施例中不限定处理器501与存储器502之间的具体连接介质,图5中是以处理器501和存储器502之间通过总线500连接为例。总线500在图5中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线500可以分为地址总线、数据总线、控制总线等,为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。或者,处理器501也可以称为控制器,对于名称不做限制。At least one
在本申请实施例中,存储器502存储有可被至少一个处理器501执行的指令,至少一个处理器501通过执行存储器502存储的指令,可以执行前文论述的一种确定目标物体深度的方法。处理器501可以实现图4所示的装置中各个模块的功能。In the embodiment of the present application, the
其中,处理器501是该装置的控制中心,可以利用各种接口和线路连接整个该控制设备的各个部分,通过运行或执行存储在存储器502内的指令以及调用存储在存储器502内的数据,该装置的各种功能和处理数据,从而对该装置进行整体监控。Wherein, the
在一种可能的设计中,处理器501可包括一个或多个处理单元,处理器501可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器501中。在一些实施例中,处理器501和存储器502可以在同一芯片上实现,在一些实施例中,它们也可以在独立的芯片上分别实现。In a possible design, the
处理器501可以是通用处理器,例如中央处理器(CPU)、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的一种确定目标物体深度的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。The
存储器502作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块。存储器502可以包括至少一种类型的存储介质,例如可以包括闪存、硬盘、多媒体卡、卡型存储器、随机访问存储器(Random AccessMemory,RAM)、静态随机访问存储器(Static Random Access Memory,SRAM)、可编程只读存储器(Programmable Read Only Memory,PROM)、只读存储器(Read Only Memory,ROM)、带电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁性存储器、磁盘、光盘等等。存储器502是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器502还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。The
通过对处理器501进行设计编程,可以将前述实施例中介绍的一种确定目标物体深度的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行图1所示的实施例的一种确定目标物体深度的步骤。如何对处理器501进行设计编程为本领域技术人员所公知的技术,这里不再赘述。By designing and programming the
基于同一发明构思,本申请实施例还提供一种存储介质,该存储介质存储有计算机指令,当该计算机指令在计算机上运行时,使得计算机执行前文论述的一种确定目标物体深度的方法。Based on the same inventive concept, an embodiment of the present application also provides a storage medium, the storage medium stores computer instructions, and when the computer instructions are run on the computer, the computer executes the method for determining the depth of the target object discussed above.
在一些可能的实施方式中,本申请提供一种确定目标物体深度的方法的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在装置上运行时,程序代码用于使该控制设备执行本说明书上述描述的根据本申请各种示例性实施方式的一种确定目标物体深度的方法中的步骤。In some possible implementations, various aspects of the method for determining the depth of a target object provided by the present application can also be implemented in the form of a program product, which includes program code. When the program product is run on the device, the program code uses The control device executes the steps in a method for determining the depth of a target object according to various exemplary embodiments of the present application described above in this specification.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to the present application. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the application without departing from the spirit and scope of the application. In this way, if these modifications and variations of the present application fall within the scope of the claims of the present application and their equivalent technologies, the present application is also intended to include these modifications and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310164928.2A CN116148806A (en) | 2023-02-14 | 2023-02-14 | Method and device for determining depth of target object and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310164928.2A CN116148806A (en) | 2023-02-14 | 2023-02-14 | Method and device for determining depth of target object and electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116148806A true CN116148806A (en) | 2023-05-23 |
Family
ID=86361699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310164928.2A Pending CN116148806A (en) | 2023-02-14 | 2023-02-14 | Method and device for determining depth of target object and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116148806A (en) |
-
2023
- 2023-02-14 CN CN202310164928.2A patent/CN116148806A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230087526A1 (en) | Neural network training method, image classification system, and related device | |
CN108038474B (en) | Face detection method, convolutional neural network parameter training method, device and medium | |
CN110020592B (en) | Object detection model training method, device, computer equipment and storage medium | |
US10311099B2 (en) | Method and system for 3D model database retrieval | |
CN112336342B (en) | Hand key point detection method and device and terminal equipment | |
US10262214B1 (en) | Learning method, learning device for detecting lane by using CNN and testing method, testing device using the same | |
CN110909618B (en) | Method and device for identifying identity of pet | |
WO2023193401A1 (en) | Point cloud detection model training method and apparatus, electronic device, and storage medium | |
WO2023151237A1 (en) | Face pose estimation method and apparatus, electronic device, and storage medium | |
CN112037256A (en) | Target tracking method and device, terminal equipment and computer readable storage medium | |
CN116337072A (en) | Construction method, construction equipment and readable storage medium for engineering machinery | |
CN114612919B (en) | Bill information processing system, method and device | |
WO2019100348A1 (en) | Image retrieval method and device, and image library generation method and device | |
CN112101139B (en) | Human shape detection method, device, equipment and storage medium | |
CN111723688A (en) | Evaluation method, device and electronic device for human action recognition results | |
CN116148806A (en) | Method and device for determining depth of target object and electronic equipment | |
CN115439733A (en) | Image processing method, image processing device, terminal equipment and computer readable storage medium | |
CN113569934A (en) | LOGO classification model construction method and system, electronic device and storage medium | |
CN111753723A (en) | Fingerprint identification method and device based on density calibration | |
CN111368624A (en) | Loop detection method and device based on generation of countermeasure network | |
CN114445804B (en) | Lane line identification method and device and electronic equipment | |
Hussain et al. | Face-to-camera distance estimation using machine learning | |
CN111428679B (en) | Image identification method, device and equipment | |
CN118887689A (en) | Method and device for verifying authenticity of handwritten electronic signature | |
CN116189127A (en) | A scene recognition method, device and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |