CN116139697A - Mass transfer method for strengthening membrane contactor based on hydrophilic/hydrophobic double-layer membrane - Google Patents

Mass transfer method for strengthening membrane contactor based on hydrophilic/hydrophobic double-layer membrane Download PDF

Info

Publication number
CN116139697A
CN116139697A CN202211560915.9A CN202211560915A CN116139697A CN 116139697 A CN116139697 A CN 116139697A CN 202211560915 A CN202211560915 A CN 202211560915A CN 116139697 A CN116139697 A CN 116139697A
Authority
CN
China
Prior art keywords
membrane
hydrophilic
hydrophobic
mass transfer
membrane contactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211560915.9A
Other languages
Chinese (zh)
Other versions
CN116139697B (en
Inventor
徐泽文
侯影飞
王明
任重义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202211560915.9A priority Critical patent/CN116139697B/en
Publication of CN116139697A publication Critical patent/CN116139697A/en
Application granted granted Critical
Publication of CN116139697B publication Critical patent/CN116139697B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention relates to the technical field of membrane contactors, in particular to a method for strengthening mass transfer of a membrane contactor based on a hydrophilic/hydrophobic double-layer membrane. The method will decompose H 2 O 2 Dispersing the high-activity catalyst into polyvinylidene fluoride casting film liquid, preparing a hydrophilic/hydrophobic double-layer film by a certain technical means, constructing a film contactor system to enable the hydrophilic side of the double-layer film to be in direct contact with the absorption liquid, and adding a certain concentration of H into the absorption liquid 2 O 2 . During the operation of the membrane contactor, the catalyst in the hydrophilic side of the membrane degrades H in the absorption liquid 2 O 2 Production of O 2 Nanometer micro-bubbles, in-situ bubbling, improves turbulence degree of fluid boundary layer, and remarkably reduces membrane contactor boundarySurface mass transfer resistance, and mass transfer efficiency is improved. The method for improving mass transfer does not need a complex device, has strong adaptability, is suitable for the technical field of membrane contactors, and has good industrial application prospect.

Description

Mass transfer method for strengthening membrane contactor based on hydrophilic/hydrophobic double-layer membrane
Technical Field
The invention relates to the technical field of membrane contactors, in particular to a method for strengthening mass transfer of a membrane contactor based on a hydrophilic/hydrophobic double-layer membrane.
Background
Climate change is a global problem faced by humans, and as carbon dioxide is emitted from various countries, greenhouse gases are increased, which forms a threat to life systems. Under the background, greenhouse gases are reduced in a global agreement mode in countries of the world, and China brings forward carbon reaching peaks and carbon neutralization targets. Carbon capture technology is considered as a key means for carbon emission reduction, and at present, the carbon capture technology mainly comprises absorption separation, adsorption separation and membrane separation. The absorption method is a relatively mature carbon trapping technology at present and has wide application.
However, the biggest problem at present is that absorption liquid consumption is large, so that the power generation efficiency is reduced after the power plant installs the process, and a series of problems such as flooding exist in the absorption process. The membrane absorption system is a novel absorption system which combines the membrane with the common absorption, and has the characteristics of high mass transfer efficiency, small size of absorption equipment, easy operation and the like, but also has the defects of high mass transfer resistance and the like.
Disclosure of Invention
The technical problem to be solved by the invention is to provide a method for strengthening mass transfer of a membrane contactor based on a hydrophilic/hydrophobic double-layer membrane, which aims at solving the problem that a membrane absorption system absorbs CO 2 The problem of large mass transfer resistance in the process is that the in-situ bubbling hydrophilic/hydrophobic double-layer membrane is applied to the technical field of membrane contactors, and has good industrial application prospect. The technical scheme adopted is as follows:
a method for strengthening mass transfer of a membrane contactor based on a hydrophilic/hydrophobic double-layer membrane utilizes a reaction of the hydrophilic/hydrophobic double-layer membrane at an interface of the membrane contactor, and in-situ bubbling reduces interface mass transfer resistance, and specifically comprises the following steps:
step one, preparing a high-activity catalyst: preparation of degradable H 2 O 2 Production of O 2 Is a high activity catalyst of (a);
step two, preparing a casting film liquid: dissolving PVDF in an organic solvent, mechanically stirring at 60 ℃ for 24 hours, adding the high-activity catalyst and the additive prepared in the step 1 into the organic solvent, mechanically stirring at 60 ℃ for 12 hours, ultrasonically stirring for 3 hours, and vacuum defoaming for 24 hours to prepare hydrophilic side casting film liquid; dissolving PVDF in an organic solvent, mechanically stirring at 60 ℃ for 24 hours, and vacuum defoaming for 24 hours to prepare a hydrophobic side casting film solution;
step three, preparing a hydrophilic/hydrophobic double-layer film: preparing the casting solution in the second step into a hydrophilic/hydrophobic double-layer membrane with a hydrophilic side loaded with a high-activity catalyst by a certain technical means;
preparing absorption liquid and constructing a membrane contactor system: adding a certain concentration of H into the absorption liquid 2 O 2 And (3) building a gas-liquid membrane contactor system, wherein an absorption liquid pump is arranged on the hydrophilic side of the hydrophilic/hydrophobic double-layer membrane, and the gas to be absorbed is conveyed to the hydrophobic side of the hydrophilic/hydrophobic double-layer membrane under pressure.
Preferably, in the first step, the prepared high-activity catalyst can degrade H 2 O 2 And produce O 2 The nanometer microbubbles comprise at least one of metal nanometer particles, metal oxides and derivatives thereof, and catalase.
Preferably, in the second step, the organic solvent used for preparing the homogeneous casting solution includes at least one of N-methylpyrrolidone (NMP), N-dimethylformamide, dimethylacetamide and dimethylsulfoxide.
Preferably, in the second step, the additive is at least one of polyethylene glycol, polyvinyl alcohol and polyvinylpyrrolidone.
Preferably, in the second step, the PVDF content is 12-20%, the organic solvent content is 60-88%, the high activity catalyst addition amount is 0.1-2%, and the additive addition amount is 0-10%.
Preferably, in the third step, certain technical means include at least one of electrostatic spinning, wet spinning, hydrophilic modification of a hydrophobic film, plasma treatment, physical deposition and chemical deposition.
Preferably, in the fourth step, the organic amine is CO 2 The absorption liquid comprises at least one of monoethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, diisopropanolamine and diglycolamine.
Preferably, in the fourth step, the membrane contactor includes at least one of membrane distillation, membrane extraction, membrane absorption, membrane adsorption, membrane stripping and osmotic extraction.
Preferably, in the fourth step, the gas to be absorbed includes CO 2 、H 2 S,NO 2 、SO 2 、NH 3 At least one of them.
The method for strengthening mass transfer of the membrane contactor based on the hydrophilic/hydrophobic double-layer membrane is applied to the technical field of membrane contactors.
Compared with the prior art, the invention has the beneficial effects that:
1. hydrophilic/hydrophobic bilayer membrane contactor prepared by electrospinning means by degradation of CO 2 H in absorption liquid 2 O 2 Generates a large amount of O 2 Nanometer micro-bubble, in-situ bubbling obviously reduces mass transfer resistance and CO 2 The absorption flux is increased by 118%.
2. Hydrophilic/hydrophobic bilayer membrane contactor prepared by wet spinning means by degradation of CO 2 H in absorption liquid 2 O 2 Generates a large amount of O 2 Nanometer micro-bubble, in-situ bubbling obviously reduces mass transfer resistance and CO 2 The absorption flux is increased by 43%.
3. Hydrophilic/hydrophobic bilayer membrane contactor prepared by hydrophobic membrane hydrophilic modification means by degradation of CO 2 H in absorption liquid 2 O 2 Generates a large amount of O 2 Nanometer micro-bubble, in-situ bubbling obviously reduces mass transfer resistance and CO 2 The absorption flux is improved by 61%.
Drawings
FIG. 1 is a schematic diagram of in situ bubbling to reduce interfacial mass transfer resistance;
FIG. 2 is CO 2 Absorption flux data summary graph;
FIG. 3 is an SEM image of a hydrophilic/hydrophobic bilayer membrane contactor prepared by electrospinning in example 1, wherein FIG. 3 (a) is a hydrophilic side SEM image and FIG. 3 (b) is a hydrophobic side SEM image;
FIG. 4 is a vertical sectional view of a spinneret in the wet spinning process in example 2;
FIG. 5 is an SEM image of the surface of a membrane after hydrophilic modification of the hydrophobic membrane in example 3.
In fig. 4, 11-first spin pot channel; 12-a second spin pot channel, 13-a core liquid pot channel.
Detailed Description
The drawings are for illustrative purposes only; it is to be understood that the following examples are given solely for the purpose of illustration and are not to be construed as limitations of the present invention.
The principles and features of the present invention are described below in connection with the following examples, which are provided to illustrate the invention and are not intended to limit the scope of the invention. The specific conditions are not noted in the examples and are carried out according to conventional conditions or conditions recommended by the manufacturer. The reagents or apparatus used were conventional products commercially available without the manufacturer's attention. Different carbon dioxide isotope gases are all purchased standard products, and other technical methods which are not described adopt the prior art.
The present invention relates to the english abbreviations for some chemicals:
polyvinylidene fluoride: PVDF;
n-methylpyrrolidone: NMP;
n, N-dimethylformamide: DMF;
dimethylacetamide: DMAc;
dimethyl sulfoxide: DMSO;
polyethylene glycol: PEG;
polyvinylpyrrolidone: PVP;
polyvinyl alcohol: PVA;
monoethanolamine: an MEA;
diethanolamine: DEA.
The present invention will be specifically described with reference to the drawings and examples.
Example 1
The method for strengthening mass transfer of the membrane contactor based on the hydrophilic/hydrophobic double-layer membrane provided by the invention is adopted to prepare the hydrophilic/hydrophobic double-layer membrane contactor by an electrostatic spinning means, and specifically comprises the following steps:
step 1, preparing MnO 2 High activity catalysisAgent
50mL of distilled water and 14mL of nitric acid (2M/L) were added to a round bottom flask, designated as solution A, and 2mM glycine and 20mM KMnO were weighed 4 Dissolving in 25mL distilled water, stirring, adding dropwise into solution A slowly, reacting in water bath at 70deg.C for 1 hr to obtain brown suspension, centrifuging at 8000rpm, freezing the obtained powder in liquid nitrogen, and freeze drying for 24 hr to obtain MnO 2 A high activity catalyst.
Step 2, preparing casting film liquid
7g PVDF was dissolved in 39.5g DMF and mechanically stirred at 60℃for 12h to form a homogeneous casting solution, which was defoamed in vacuo for 24h, to give 0.5g MnO prepared in step 1 2 Adding high-activity catalyst and 3g PEG into the casting solution, mechanically stirring at 60 ℃ for 12h, and performing ultrasonic treatment for 3h to form a homogeneous casting solution, wherein the homogeneous casting solution is denoted as casting solution 1, and the casting solution 1 is a hydrophilic side casting solution; 10g of PVDF was dissolved in 40g of DMF and mechanically stirred at 60℃for 12 hours to form a homogeneous casting solution, which was then defoamed in vacuo for 24 hours and designated as casting solution 2, and casting solution 2 was a hydrophobic side casting solution.
Step 3, preparing and preparing a hydrophilic/hydrophobic double-layer membrane contactor
The casting solution 1 is injected into an injector, a 25-gauge needle is arranged on the injector, the casting solution is injected into a booster of the electrostatic spinning equipment by the injector, the advancing speed of the booster is adjusted to be 0.08mm/min, the distance between the needle and a receiver is adjusted to be 8cm, a layer of tinfoil paper is covered on the receiver of the electrostatic spinning equipment, and the rotating speed of the receiver is set to be 80r/min. Connecting the positive high voltage of a high-voltage power supply with a syringe needle, adjusting the voltage to 14.0kV, adjusting the negative voltage of the high-voltage power supply to-1.3 kV, starting a syringe, and spinning for 6 hours by using electrostatic spinning equipment under the conditions that the temperature is 30 ℃ and the relative humidity is 50%; and spinning the membrane casting solution 2 for 6 hours according to the same parameters, taking off the PVDF nanofiber membrane from a rotating wheel receiver of the electrostatic spinning equipment after spinning, and drying at 60 ℃ for 24 hours to obtain the hydrophilic/hydrophobic double-layer membrane contactor. The SEM image of the hydrophilic/hydrophobic bilayer is shown in fig. 3, wherein fig. 3 (a) is a SEM image of the hydrophilic side and fig. 3 (b) is a SEM image of the hydrophobic side. As can be seen from FIG. 3 (a), mnO 2 The high activity catalyst is uniformly scoredDispersed into the inside and the surface of the hydrophilic side membrane matrix, when the absorption liquid contacts MnO in the hydrophilic side membrane 2 In the case of a high activity catalyst, H in the absorption liquid 2 O 2 Is degraded to produce a large amount of O 2 The nano micro-bubbles can effectively reduce mass transfer resistance and improve mass transfer efficiency by in-situ bubbling disturbance of a solid-liquid interface. As can be seen from fig. 3 (b), the hydrophobic side is mainly PVDF polymer fiber.
Step 4, preparing absorption liquid and constructing a membrane contactor system
Preparation of Monoethanolamine (MEA) CO at 30% by mass concentration 2 Absorbing liquid, adding 0.5% H by mass concentration 2 O 2 Solution, build membrane absorption system, CO 2 The absorption liquid was pumped to the hydrophilic side of the hydrophilic/hydrophobic double membrane contactor at a feed rate of 50mL/min, simulating flue gas (N 2 /CO 2 =85/15) was pressed to the hydrophobic side of a hydrophilic/hydrophobic double-layer membrane contactor under a relative pressure of 20kpa to perform CO 2 Absorption Performance test, CO was measured 2 Absorption flux of 1.88×10 -3 (mol·m -2 ·s -1 ) The summary diagram is shown in fig. 2.
The mechanism of the invention is as follows:
the mass transfer resistance of the membrane contactor system comprises in-membrane diffusion Resistance (RM), liquid boundary layer diffusion Resistance (RL) and gas boundary layer diffusion Resistance (RG), the diffusion resistance is mainly concentrated in two boundary layers, and the eddy current diffusion mass transfer efficiency is higher than that of molecular diffusion under the normal condition, so that the mass transfer resistance can be obviously reduced by improving the turbulence degree of the fluid boundary layer, and the mass transfer efficiency is improved. Based on the analysis, a method for strengthening the turbulence degree of boundary layer fluid based on the mass transfer of a hydrophilic/hydrophobic double-layer membrane strengthening membrane contactor is proposed, as shown in fig. 1, mass transfer resistance is mainly concentrated at a gas-liquid interface, and example 1 prepares a hydrophilic/hydrophobic double-layer membrane by an electrostatic spinning technology, when H is contained 2 O 2 CO of (c) 2 The absorption liquid contacts with MnO on the hydrophilic side of the membrane 2 In the case of high-activity catalysts, H 2 O 2 Is degraded to produce O 2 The nano micro-bubbles disturb the gas-liquid interface through in-situ bubbling, and the diffusion mode is changed from molecular diffusion to vortex diffusion, so that the mass transfer resistance is effectively reduced, and the mass transfer efficiency is improved.
Example 2
The method for strengthening mass transfer of the membrane contactor based on the hydrophilic/hydrophobic double-layer membrane provided by the invention is adopted to prepare the hydrophilic/hydrophobic double-layer membrane contactor by a wet spinning method, and specifically comprises the following steps:
step 1, preparing MnO 2 High activity catalyst
50mL of distilled water and 14mL of nitric acid (2M/L) were added to a round bottom flask, designated as solution C, and 2mM glycine and 20mM KMnO were weighed 4 Dissolving in 25mL distilled water, stirring, adding dropwise into C solution slowly, reacting in water bath at 70deg.C for 1 hr to obtain brown suspension, centrifuging at 8000rpm, freezing the obtained powder in liquid nitrogen, and freeze drying for 24 hr to obtain MnO 2 A high activity catalyst.
Step 2, preparing a homogeneous casting solution
Dissolving 6g PVDF in 39.5g NMP organic solvent to obtain casting solution, mechanically stirring at 60deg.C for 24h, and adding 0.5g MnO prepared in step 1 2 Adding a high-activity catalyst and 4g of PVA into the casting solution, mechanically stirring at 60 ℃ for 12 hours to form a homogeneous casting solution, carrying out ultrasonic treatment for 3 hours, and carrying out vacuum defoaming for 24 hours, wherein the homogeneous casting solution is denoted as casting solution 3, and the casting solution 3 is a hydrophilic side casting solution; 10g of PVDF was dissolved in 40g of NMP organic solvent to prepare a casting solution, and the casting solution was mechanically stirred at 60℃for 24 hours, and was designated as casting solution 4, and casting solution 4 was a hydrophobic side casting solution.
Step 3, preparing a hydrophilic/hydrophobic double-layer membrane contactor
Adding 20mL of water into 30mL of NMP solution, stirring uniformly to prepare core liquid, pumping the core liquid into a core liquid tank channel 13 of a spinning head at a feeding speed of 2mL/min by adopting a wet spinning technology in the prior art as shown in figure 4, and maintaining the temperature of the core liquid tank at 30 ℃; placing the casting solution 3 prepared in the step 2 into a spinning tank, and pumping the casting solution 3 to a first spinning tank channel 11 of a spinning head at a feeding speed of 3mL/min, wherein the temperature of the spinning tank is maintained at 45 ℃; and (3) placing the casting solution 4 prepared in the step (2) in another spinning tank, pumping the casting solution 4 into a second spinning tank channel 12 of a spinning head at a feeding speed of 3mL/min, maintaining the temperature of the spinning tank at 45 ℃, introducing the extruded hollow fiber membrane into a coagulation bath at 25 ℃ for phase conversion, soaking the prepared hollow fiber membrane in deionized water for 3 days, soaking the hollow fiber membrane in 30% glycerol solution at 25 ℃ for 12 hours, taking out membrane filaments, naturally airing the membrane filaments in a constant temperature and humidity laboratory, and assembling the hollow fiber membrane contactor.
Step 4, preparing absorption liquid and constructing a membrane contactor system
Formulation of 30% mass concentration MEA CO 2 Absorbing liquid, adding 0.5% H by mass concentration 2 O 2 And (5) solution, and constructing a membrane absorption system. CO 2 The absorption liquid was pumped to the hydrophilic side of the hydrophilic/hydrophobic double membrane contactor at a feed rate of 50mL/min, simulating flue gas (N 2 /CO 2 =85/15) was pressed to the hydrophobic side of a hydrophilic/hydrophobic double-layer membrane contactor under a relative pressure of 20kpa to perform CO 2 Absorption Performance test, CO was measured 2 Absorption flux of 7.99X10 -4 (mol·m -2 ·s -1 ) The summary diagram is shown in fig. 2.
Example 3
The method for strengthening mass transfer of the membrane contactor based on the hydrophilic/hydrophobic double-layer membrane provided by the invention is adopted, and the hydrophilic/hydrophobic double-layer membrane contactor is prepared by a hydrophobic membrane hydrophilic modification means, and specifically comprises the following steps:
step 1, preparing a beta-FeO-OH high-activity catalyst
70mM ferric chloride powder is added into 100mL of deionized water, 50mL of hydrochloric acid solution with pH=2 is added, stirring is carried out until ferric chloride is completely dissolved, the mixture is placed in a water bath kettle at 60 ℃ for hydrothermal reaction for 24 hours to prepare a tan suspension, the suspension is centrifuged at 8000rpm, the obtained powder is frozen in liquid nitrogen, and freeze drying is carried out for 24 hours to prepare the beta-FeO-OH high activity catalyst.
Step 2, preparing a homogeneous casting solution
10g of PVDF was dissolved in 40g of DMF and mechanically stirred at 60℃for 12 hours to form a homogeneous casting solution, which was then defoamed in vacuo for 24 hours and designated as casting solution 5, and casting solution 5 was a hydrophobic side casting solution.
Step 3, preparing and preparing a hydrophilic/hydrophobic double-layer membrane contactor
Pouring the casting solution 5 onto a non-woven fabric, and scraping the film by setting the height of a scraper of a film scraping machine to 200 mu mAnd immersing the film prepared by blade coating in deionized water coagulation bath for phase inversion, and immersing the film after phase inversion in deionized water for 24 hours to prepare the PVDF hydrophobic film. Fixing hydrophobic membrane in polytetrafluoroethylene plate frame, pre-wetting with ethanol, pouring 2g/L tannic acid on the surface of PVDF hydrophobic membrane, pouring out the solution after 5min, and adding 2g/L FeCl 3 ·6H 2 Pouring the O solution on the surface of the PVDF hydrophobic membrane, modifying for 5min, pouring the solution, and soaking the modified membrane in deionized water for 24h to obtain the PVDF membrane with single-sided hydrophilic modification. Adding 70mM ferric chloride powder into 100mL of deionized water, adding 50mL of hydrochloric acid solution with pH=2, stirring until ferric chloride is completely dissolved, placing in a water bath kettle with the temperature of 60 ℃ for standby, immersing a single-sided hydrophilic modified PVDF membrane into the solution, carrying out hydrothermal reaction for 24h, and immersing the modified membrane in the deionized water for 24h to obtain the hydrophilic/hydrophobic double-layer membrane contactor. As shown in the SEM image of the membrane surface after hydrophilic modification of the hydrophobic membrane as shown in figure 5, spindle-shaped beta-FeO-OH high-activity catalyst grows on the membrane surface, the size range is 100-200nm, when the absorption liquid contacts the beta-FeO-OH high-activity catalyst in the hydrophilic side membrane, H in the absorption liquid 2 O 2 Is degraded to produce a large amount of O 2 The nano micro-bubbles can effectively reduce mass transfer resistance and improve mass transfer efficiency by in-situ bubbling disturbance of a solid-liquid interface.
Step 4, preparing absorption liquid and constructing a membrane contactor system
Preparation of Monoethanolamine (MEA) CO at 30% by mass concentration 2 Absorbing liquid, adding 0.5% H by mass concentration 2 O 2 Solution, build membrane absorption system, CO 2 The absorption liquid was pumped to the hydrophilic side of the hydrophilic/hydrophobic double membrane contactor at a feed rate of 50mL/min, simulating flue gas (N 2 /CO 2 =85/15) was pressed to the hydrophobic side of a hydrophilic/hydrophobic double-layer membrane contactor under a relative pressure of 20kpa to perform CO 2 Absorption Performance test, CO was measured 2 Absorption flux of 9.90×10 -4 (mol·m -2 ·s -1 ) The summary diagram is shown in fig. 2.
Comparative example 1
Step 1, step 1 is the same as in example 1.
Step 2, the same as step 2 of example 1.
Step 3, the same as step 3 of example 1.
Step 4, preparing absorption liquid and constructing a membrane contactor system
Formulation of 30% mass concentration MEA CO 2 Absorption liquid, build membrane absorption system, CO 2 The absorption liquid was pumped to the hydrophilic side of the hydrophilic/hydrophobic double membrane contactor at a feed rate of 50mL/min, simulating flue gas (N 2 /CO 2 =85/15) was sent under pressure to the hydrophobic side of a hydrophilic/hydrophobic bilayer membrane contactor at a pressure of 20kpa for CO 2 Absorption Performance test, CO was measured 2 Absorption flux of 8.63×10 -4 (mol·m -2 ·s -1 ) The summary diagram is shown in fig. 2.
Comparative example 2
Step 1, as in example 2, step 1.
Step 2, step 2 is the same as in example 2.
Step 3, the same as step 3 of example 2.
Step 4, preparing absorption liquid and constructing a membrane contactor system
Formulation of 30% mass concentration MEA CO 2 Absorption liquid, build membrane absorption system, CO 2 The absorption liquid was pumped to the hydrophilic side of the hydrophilic/hydrophobic double membrane contactor at a feed rate of 50mL/min, simulating flue gas (N 2 /CO 2 =85/15) was pressed to the hydrophobic side of a hydrophilic/hydrophobic double-layer membrane contactor under a relative pressure of 20kpa to perform CO 2 Absorption Performance test, CO was measured 2 Absorption flux was 5.59X10 -4 (mol·m -2 ·s -1 ) The summary diagram is shown in fig. 2.
Comparative example 3
Step 1, step 1 is the same as in example 3.
Step 2, step 2 is the same as in example 3.
Step 3, step 3 is the same as example 3.
Step 4, preparing absorption liquid and constructing a membrane contactor system
Formulation of 30% mass concentration MEA CO 2 Absorption liquid, build membrane absorption system, CO 2 The absorption liquid was pumped to the hydrophilic side of the hydrophilic/hydrophobic double membrane contactor at a feed rate of 50mL/min, simulating flue gas(N 2 /CO 2 =85/15) was sent under pressure to the hydrophobic side of a hydrophilic/hydrophobic bilayer membrane contactor at a pressure of 20kpa for CO 2 Absorption Performance test, CO was measured 2 Absorption flux of 6.15X10 -4 (mol·m -2 ·s -1 ) The summary diagram is shown in fig. 2.
As shown in FIG. 2, the CO measured in examples 1-3 and comparative examples 1-3 2 The absorption flux is subjected to summary comparison analysis, and the hydrophilic/hydrophobic double-layer membrane contactor prepared by the electrostatic spinning method can be known to degrade CO 2 H in absorption liquid 2 O 2 Generates a large amount of O 2 Nanometer micro-bubble, in-situ bubbling obviously reduces mass transfer resistance and CO 2 The absorption flux is improved by 118%; hydrophilic/hydrophobic double-layer membrane contactor prepared by wet spinning method, CO 2 The absorption flux is improved by 43%; hydrophilic/hydrophobic double-layer membrane contactor prepared by hydrophilic modification means of hydrophobic membrane, CO 2 The absorption flux is improved by 61%. The idea of reducing interface mass transfer resistance by in-situ bubbling is applied to three different film forming technologies, namely CO 2 The absorption flux is improved, and the method for strengthening the mass transfer of the membrane contactor by adopting the hydrophilic/hydrophobic double-layer membrane has universal adaptability.
The method for strengthening mass transfer of the membrane contactor based on the hydrophilic/hydrophobic double-layer membrane can be applied to the technical field of membrane contactors, and the method can decompose H 2 O 2 Dispersing the high-activity catalyst into polyvinylidene fluoride casting film liquid, preparing a hydrophilic/hydrophobic double-layer film by electrostatic spinning, wet spinning, hydrophilic modification of a hydrophobic film, plasma treatment, physical deposition, chemical deposition and other technical means, constructing a film contactor system to enable the hydrophilic side of the double-layer film to be in direct contact with absorption liquid, and adding a certain concentration of H into the absorption liquid 2 O 2 . During operation of the membrane contactor, the catalyst in the hydrophilic side of the membrane catalyzes H in the absorption liquid 2 O 2 Production of O 2 The nano micro-bubbles in-situ bubbling improves the turbulence degree of a fluid boundary layer, obviously reduces the interface mass transfer resistance of the membrane contactor and improves the mass transfer efficiency.
It should be understood that the above description is not intended to limit the invention to the particular embodiments disclosed, but to limit the invention to the particular embodiments disclosed, and that the invention is not limited to the particular embodiments disclosed, but is intended to cover modifications, adaptations, additions and alternatives falling within the spirit and scope of the invention.

Claims (10)

1. A method for strengthening mass transfer of a membrane contactor based on a hydrophilic/hydrophobic double-layer membrane is characterized by utilizing a reaction of the hydrophilic/hydrophobic double-layer membrane at an interface of the membrane contactor, and reducing interface mass transfer resistance by in-situ bubbling, and specifically comprises the following steps:
step one, preparing a high-activity catalyst: preparation of degradable H 2 O 2 Production of O 2 Is a high activity catalyst of (a);
step two, preparing a casting film liquid: dissolving PVDF in an organic solvent, mechanically stirring at 60 ℃ for 24 hours, adding the high-activity catalyst and the additive prepared in the step 1 into the organic solvent, mechanically stirring at 60 ℃ for 12 hours, ultrasonically stirring for 3 hours, and vacuum defoaming for 24 hours to prepare hydrophilic side casting film liquid; dissolving PVDF in an organic solvent, mechanically stirring at 60 ℃ for 24 hours, and vacuum defoaming for 24 hours to prepare a hydrophobic side casting film solution;
step three, preparing a hydrophilic/hydrophobic double-layer film: preparing the casting solution in the second step into a hydrophilic/hydrophobic double-layer membrane with a hydrophilic side loaded with a high-activity catalyst by a certain technical means;
preparing absorption liquid and constructing a membrane contactor system: adding a certain concentration of H into the absorption liquid 2 O 2 And (3) building a gas-liquid membrane contactor system, wherein an absorption liquid pump is arranged on the hydrophilic side of the hydrophilic/hydrophobic double-layer membrane, and the gas to be absorbed is conveyed to the hydrophobic side of the hydrophilic/hydrophobic double-layer membrane under pressure.
2. The method for strengthening mass transfer of membrane contactor based on hydrophilic/hydrophobic bilayer membrane according to claim 1, wherein in the first step, the prepared high activity catalyst can degrade H 2 O 2 And produce O 2 The nanometer microbubbles comprise at least one of metal nanometer particles, metal oxides and derivatives thereof, and catalase.
3. The method for strengthening mass transfer of membrane contactor based on hydrophilic/hydrophobic bilayer membrane according to claim 1, wherein in the second step, the organic solvent used for preparing the homogeneous casting solution comprises at least one of N-methylpyrrolidone (NMP), N-dimethylformamide, dimethylacetamide, and dimethylsulfoxide.
4. The method for strengthening mass transfer of a membrane contactor based on a hydrophilic/hydrophobic bilayer membrane according to claim 1, wherein in the second step, the additive is at least one of polyethylene glycol, polyvinyl alcohol, and polyvinylpyrrolidone.
5. The method for strengthening mass transfer of membrane contactor based on hydrophilic/hydrophobic bilayer membrane according to claim 1, wherein in the second step, PVDF content is 12-20%, organic solvent content is 60-88%, high activity catalyst addition amount is 0.1-2%, and additive addition amount is 0-10%.
6. The method for strengthening mass transfer of a membrane contactor based on a hydrophilic/hydrophobic bilayer membrane according to claim 1, wherein in the third step, a certain technical means comprises at least one of electrospinning, wet spinning, hydrophilic modification of a hydrophobic membrane, plasma treatment, physical deposition, and chemical deposition.
7. The method for strengthening mass transfer of membrane contactor based on hydrophilic/hydrophobic bilayer membrane according to claim 1, wherein in the fourth step, organic amine CO 2 The absorption liquid comprises at least one of monoethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, diisopropanolamine and diglycolamine.
8. The method of claim 1, wherein in step four, the membrane contactor comprises at least one of membrane distillation, membrane extraction, membrane absorption, membrane adsorption, membrane stripping, and osmotic extraction.
9. The method for strengthening mass transfer of a membrane contactor based on a hydrophilic/hydrophobic bilayer membrane according to claim 1, wherein in the fourth step, the gas to be absorbed comprises CO 2 、H 2 S,NO 2 、SO 2 、NH 3 At least one of them.
10. A method for strengthening mass transfer of a membrane contactor based on a hydrophilic/hydrophobic double-layer membrane is applied to the technical field of membrane contactors.
CN202211560915.9A 2022-12-07 2022-12-07 Mass transfer method for strengthening membrane contactor based on hydrophilic/hydrophobic double-layer membrane Active CN116139697B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211560915.9A CN116139697B (en) 2022-12-07 2022-12-07 Mass transfer method for strengthening membrane contactor based on hydrophilic/hydrophobic double-layer membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211560915.9A CN116139697B (en) 2022-12-07 2022-12-07 Mass transfer method for strengthening membrane contactor based on hydrophilic/hydrophobic double-layer membrane

Publications (2)

Publication Number Publication Date
CN116139697A true CN116139697A (en) 2023-05-23
CN116139697B CN116139697B (en) 2024-04-19

Family

ID=86372616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211560915.9A Active CN116139697B (en) 2022-12-07 2022-12-07 Mass transfer method for strengthening membrane contactor based on hydrophilic/hydrophobic double-layer membrane

Country Status (1)

Country Link
CN (1) CN116139697B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105854627A (en) * 2016-05-04 2016-08-17 上海交通大学 Multifunctional nano-composite sewage purification film and preparation method and application thereof
CN109621746A (en) * 2019-01-09 2019-04-16 宁波大学 A kind of preparation method of hydrophobe bilayer polyvinylidene fluoride film
CN111514894A (en) * 2020-05-06 2020-08-11 青岛理工大学 Catalysis H2O2Ferric oxide nano catalytic film for degrading organic pollutants and preparation method thereof
DE102019120040A1 (en) * 2019-07-24 2021-01-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. System and method for generating at least two highly reactive oxidizing agents
CN112337324A (en) * 2020-09-21 2021-02-09 南京工业大学 Double-layer membrane with controllable hydrophilicity and hydrophobicity, preparation method and application of double-layer membrane in filtering of non-polar solvent system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105854627A (en) * 2016-05-04 2016-08-17 上海交通大学 Multifunctional nano-composite sewage purification film and preparation method and application thereof
CN109621746A (en) * 2019-01-09 2019-04-16 宁波大学 A kind of preparation method of hydrophobe bilayer polyvinylidene fluoride film
DE102019120040A1 (en) * 2019-07-24 2021-01-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. System and method for generating at least two highly reactive oxidizing agents
CN111514894A (en) * 2020-05-06 2020-08-11 青岛理工大学 Catalysis H2O2Ferric oxide nano catalytic film for degrading organic pollutants and preparation method thereof
CN112337324A (en) * 2020-09-21 2021-02-09 南京工业大学 Double-layer membrane with controllable hydrophilicity and hydrophobicity, preparation method and application of double-layer membrane in filtering of non-polar solvent system

Also Published As

Publication number Publication date
CN116139697B (en) 2024-04-19

Similar Documents

Publication Publication Date Title
US8480930B2 (en) Carbon aerogels for supercapacitors and method of manufacturing the same
CN111244513B (en) High-temperature fuel cell proton exchange membrane and preparation method and application thereof
KR101607796B1 (en) Process for recycling components of a pem fuel cell membrane electrode assembly
Alent’ev et al. Membrane technologies for decarbonization
EP3812035A1 (en) Composite hollow fiber membrane, manufacturing method therefor, hollow fiber membrane cartridge including same, and fuel cell membrane humidifier
CN101757893B (en) Polymer material for selective adsorption of heavy metal ions based on sulphonic acid resin and preparation method thereof
CN102512991B (en) Polymer catalytic membrane containing palladium metal activity functional layer and preparation method thereof
CN102179244B (en) Preparation method of catalyst of proton exchange membrane fuel cell
CN101276919A (en) Preparation technique for membrane electrode of proton exchange film fuel cell
CN106111130B (en) A kind of porous superhigh specific surface area IrO2Oxygen-separating catalyst and preparation method thereof
CN105107539A (en) Graphene-iron-nitrogen codoped porous carbon composite catalyst for fuel cell and preparation method for graphene-iron-nitrogen codoped porous carbon composite catalyst
CN104726891A (en) Proton exchange membrane water-electrolyzer with internal hydrogen removing function and producing method thereof
CN105085913A (en) Preparation method of sulfonated polyimide (SPI) proton conducting membrane containing branched structure
CN117181025A (en) Defect MOFs-based self-cleaning ultrafiltration membrane material and preparation method and application thereof
CN116139697B (en) Mass transfer method for strengthening membrane contactor based on hydrophilic/hydrophobic double-layer membrane
KR101366183B1 (en) Redox fuel cell using by ferric-edta(ehylenediaminetetraacetic acid) and nitrogen oxide(no) separation using the same
CN103296296B (en) A kind of hydrogen-chlorine fuel cell perforated membrane and Synthesis and applications thereof
CN102716769A (en) Preparation method of perfluorosulfonic acid nano composite fiber catalyst for esterification reaction
CN107670504B (en) A method of the organic tubular nanofiltration membrane of solvent resistant is prepared using bidirectional circulating perfusion
CN101804294A (en) Method and device for treating pollutant and dust in gas
KR100424863B1 (en) A method for separation of carbon dioxide using a polyvinylidene difluoride hollow fiber membrane contactor
CN107546399B (en) Ion exchange membrane with main chain separated from ion exchange group and preparation and application thereof
CN105032213B (en) A kind of milipore filter, its preparation method and membrane separation plant
CN104425789A (en) All-vanadium redox flow battery diaphragm and preparation method thereof
CN109585857A (en) A kind of preparation method of fuel cell nitrogen-doped carbon carried platinum-based catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant