CN116137593A - 一种数字孪生辅助动态资源需求预测的虚拟网络功能迁移方法 - Google Patents
一种数字孪生辅助动态资源需求预测的虚拟网络功能迁移方法 Download PDFInfo
- Publication number
- CN116137593A CN116137593A CN202310138615.XA CN202310138615A CN116137593A CN 116137593 A CN116137593 A CN 116137593A CN 202310138615 A CN202310138615 A CN 202310138615A CN 116137593 A CN116137593 A CN 116137593A
- Authority
- CN
- China
- Prior art keywords
- vnf
- resource
- network
- migration
- twin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013508 migration Methods 0.000 title claims abstract description 86
- 230000005012 migration Effects 0.000 title claims abstract description 86
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000006870 function Effects 0.000 claims abstract description 30
- 238000005265 energy consumption Methods 0.000 claims abstract description 19
- 238000005457 optimization Methods 0.000 claims abstract description 4
- 230000001360 synchronised effect Effects 0.000 claims abstract description 4
- 238000012549 training Methods 0.000 claims description 32
- 238000004808 supercritical fluid chromatography Methods 0.000 claims description 25
- 230000009471 action Effects 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 10
- 238000013507 mapping Methods 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000010276 construction Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 claims description 2
- 238000013526 transfer learning Methods 0.000 claims description 2
- 238000010295 mobile communication Methods 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0893—Assignment of logical groups to network elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/08—Configuration management of networks or network elements
- H04L41/0896—Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/147—Network analysis or design for predicting network behaviour
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/16—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using machine learning or artificial intelligence
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310138615.XA CN116137593B (zh) | 2023-02-20 | 2023-02-20 | 数字孪生辅助动态资源需求预测的虚拟网络功能迁移方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310138615.XA CN116137593B (zh) | 2023-02-20 | 2023-02-20 | 数字孪生辅助动态资源需求预测的虚拟网络功能迁移方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116137593A true CN116137593A (zh) | 2023-05-19 |
CN116137593B CN116137593B (zh) | 2024-10-18 |
Family
ID=86326839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310138615.XA Active CN116137593B (zh) | 2023-02-20 | 2023-02-20 | 数字孪生辅助动态资源需求预测的虚拟网络功能迁移方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116137593B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116340007A (zh) * | 2023-05-30 | 2023-06-27 | 中国人民解放军军事科学院系统工程研究院 | 一种资源协同优化的智能无人集群任务分配方法与系统 |
CN116506352A (zh) * | 2023-06-26 | 2023-07-28 | 安世亚太科技股份有限公司 | 一种基于集中式强化学习的网络数据接续转发选择方法 |
CN116932174A (zh) * | 2023-09-19 | 2023-10-24 | 浙江大学 | Eda仿真任务动态资源调度方法、装置、终端及介质 |
CN117873690A (zh) * | 2024-03-11 | 2024-04-12 | 广东琴智科技研究院有限公司 | 运算器芯片功耗管理方法、计算子系统以及智能计算平台 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108900358A (zh) * | 2018-08-01 | 2018-11-27 | 重庆邮电大学 | 基于深度信念网络资源需求预测的虚拟网络功能动态迁移方法 |
CN112118601A (zh) * | 2020-08-18 | 2020-12-22 | 西北工业大学 | 一种减少6g数字孪生边缘计算网络任务卸载延迟的方法 |
CN113490254A (zh) * | 2021-08-11 | 2021-10-08 | 重庆邮电大学 | 一种基于联邦学习双向gru资源需求预测的vnf迁移方法 |
CN114200901A (zh) * | 2021-12-07 | 2022-03-18 | 国网福建省电力有限公司经济技术研究院 | 面向数字孪生的虚拟电厂通信故障监测与控制增强方法 |
CN114201920A (zh) * | 2021-12-15 | 2022-03-18 | 苏州华光智控电子科技有限公司 | 一种基于数字孪生和深度迁移学习的激光切割数控系统故障诊断方法 |
CN114745666A (zh) * | 2022-06-09 | 2022-07-12 | 南京信息工程大学 | 一种用于拥挤场馆中无人机辅助边缘计算方法 |
CN114792045A (zh) * | 2022-03-28 | 2022-07-26 | 北京邮电大学 | 一种边缘计算的数字孪生方法和系统 |
WO2022234807A1 (en) * | 2021-05-07 | 2022-11-10 | Nec Corporation | Communication system |
-
2023
- 2023-02-20 CN CN202310138615.XA patent/CN116137593B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108900358A (zh) * | 2018-08-01 | 2018-11-27 | 重庆邮电大学 | 基于深度信念网络资源需求预测的虚拟网络功能动态迁移方法 |
CN112118601A (zh) * | 2020-08-18 | 2020-12-22 | 西北工业大学 | 一种减少6g数字孪生边缘计算网络任务卸载延迟的方法 |
WO2022234807A1 (en) * | 2021-05-07 | 2022-11-10 | Nec Corporation | Communication system |
CN113490254A (zh) * | 2021-08-11 | 2021-10-08 | 重庆邮电大学 | 一种基于联邦学习双向gru资源需求预测的vnf迁移方法 |
CN114200901A (zh) * | 2021-12-07 | 2022-03-18 | 国网福建省电力有限公司经济技术研究院 | 面向数字孪生的虚拟电厂通信故障监测与控制增强方法 |
CN114201920A (zh) * | 2021-12-15 | 2022-03-18 | 苏州华光智控电子科技有限公司 | 一种基于数字孪生和深度迁移学习的激光切割数控系统故障诊断方法 |
CN114792045A (zh) * | 2022-03-28 | 2022-07-26 | 北京邮电大学 | 一种边缘计算的数字孪生方法和系统 |
CN114745666A (zh) * | 2022-06-09 | 2022-07-12 | 南京信息工程大学 | 一种用于拥挤场馆中无人机辅助边缘计算方法 |
Non-Patent Citations (2)
Title |
---|
QINGHAI LIU等: "Deep Reinforcement Learning for Resource Demand Prediction and Virtual Function Network Migration in Digital Twin Network", 《 IEEE INTERNET OF THINGS JOURNAL 》, 1 July 2023 (2023-07-01) * |
陈前斌等: "基于迁移深度强化学习的低轨卫星跳波束资源分配方案", 《电子与信息学报》, 9 February 2023 (2023-02-09) * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116340007A (zh) * | 2023-05-30 | 2023-06-27 | 中国人民解放军军事科学院系统工程研究院 | 一种资源协同优化的智能无人集群任务分配方法与系统 |
CN116340007B (zh) * | 2023-05-30 | 2023-08-08 | 中国人民解放军军事科学院系统工程研究院 | 一种资源协同优化的智能无人集群任务分配方法与系统 |
CN116506352A (zh) * | 2023-06-26 | 2023-07-28 | 安世亚太科技股份有限公司 | 一种基于集中式强化学习的网络数据接续转发选择方法 |
CN116506352B (zh) * | 2023-06-26 | 2023-08-29 | 安世亚太科技股份有限公司 | 一种基于集中式强化学习的网络数据接续转发选择方法 |
CN116932174A (zh) * | 2023-09-19 | 2023-10-24 | 浙江大学 | Eda仿真任务动态资源调度方法、装置、终端及介质 |
CN116932174B (zh) * | 2023-09-19 | 2023-12-08 | 浙江大学 | Eda仿真任务动态资源调度方法、装置、终端及介质 |
CN117873690A (zh) * | 2024-03-11 | 2024-04-12 | 广东琴智科技研究院有限公司 | 运算器芯片功耗管理方法、计算子系统以及智能计算平台 |
CN117873690B (zh) * | 2024-03-11 | 2024-05-14 | 广东琴智科技研究院有限公司 | 运算器芯片功耗管理方法、计算子系统以及智能计算平台 |
Also Published As
Publication number | Publication date |
---|---|
CN116137593B (zh) | 2024-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116137593B (zh) | 数字孪生辅助动态资源需求预测的虚拟网络功能迁移方法 | |
CN110275758B (zh) | 一种虚拟网络功能智能迁移方法 | |
CN110505099B (zh) | 一种基于迁移a-c学习的服务功能链部署方法 | |
CN110557732B (zh) | 一种车辆边缘计算网络任务卸载负载均衡系统及均衡方法 | |
CN113098714A (zh) | 一种基于深度强化学习的低时延网络切片的方法 | |
CN111556572A (zh) | 一种基于强化学习的频谱资源和计算资源联合分配方法 | |
Dalgkitsis et al. | Dynamic resource aware VNF placement with deep reinforcement learning for 5G networks | |
Yang et al. | Deep reinforcement learning based wireless network optimization: A comparative study | |
CN114938381B (zh) | 一种基于深度强化学习的d2d-mec卸载方法 | |
CN111740925A (zh) | 一种基于深度强化学习的Coflow调度方法 | |
CN115033359A (zh) | 一种基于时延控制的物联代理多任务调度方法和系统 | |
Hu et al. | Dynamic task offloading in MEC-enabled IoT networks: A hybrid DDPG-D3QN approach | |
CN116418808A (zh) | 一种mec的联合计算卸载和资源分配方法及装置 | |
Ren et al. | End-to-end network SLA quality assurance for C-RAN: a closed-loop management method based on digital twin network | |
Xiao et al. | A sub-action aided deep reinforcement learning framework for latency-sensitive network slicing | |
CN117749796A (zh) | 一种云边算力网络系统计算卸载方法及系统 | |
CN114205300B (zh) | 一种能够在流量信息不完整情况下保证coflow传输截止期限的流量调度方法 | |
CN115225512B (zh) | 基于节点负载预测的多域服务链主动重构机制 | |
CN116156565A (zh) | 一种基于多智能体近端策略优化的sfc可靠部署方法 | |
CN116095757A (zh) | 基于分支d3qn的工业5g网络智能动态资源分配方法 | |
Cui et al. | Resource-Efficient DNN Training and Inference for Heterogeneous Edge Intelligence in 6G | |
CN113656494B (zh) | 参数服务器的同步方法、系统及可读存储介质 | |
CN114186416A (zh) | 一种边缘网络数据年龄优化方法及系统 | |
Tao et al. | Digital twin assisted deep reinforcement learning for online optimization of network slicing admission control | |
Majumdar et al. | Distributed Intelligence for Dynamic Task Migration in the 6G User Plane using Deep Reinforcement Learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240909 Address after: F7-M65, 5th Floor, Jinxing Building, No.1 Hanjing Road, Tianhe District, Guangzhou City, Guangdong Province (Office only) Applicant after: Guangzhou Zhiyuan Intellectual Property Operation Co.,Ltd. Country or region after: China Address before: 400065 Chongqing Nan'an District huangjuezhen pass Chongwen Road No. 2 Applicant before: CHONGQING University OF POSTS AND TELECOMMUNICATIONS Country or region before: China |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240919 Address after: No. 214, 2nd Floor, Building 23, Courtyard A1, Guanghua Road, Tongzhou District, Beijing 100026 Applicant after: Beijing Heima Shutwin Technology Service Co.,Ltd. Country or region after: China Address before: F7-M65, 5th Floor, Jinxing Building, No.1 Hanjing Road, Tianhe District, Guangzhou City, Guangdong Province (Office only) Applicant before: Guangzhou Zhiyuan Intellectual Property Operation Co.,Ltd. Country or region before: China |
|
GR01 | Patent grant |