CN116133981A - 蒸汽重整 - Google Patents

蒸汽重整 Download PDF

Info

Publication number
CN116133981A
CN116133981A CN202180059050.5A CN202180059050A CN116133981A CN 116133981 A CN116133981 A CN 116133981A CN 202180059050 A CN202180059050 A CN 202180059050A CN 116133981 A CN116133981 A CN 116133981A
Authority
CN
China
Prior art keywords
catalyst
steam reforming
particulate
reforming catalyst
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180059050.5A
Other languages
English (en)
Inventor
M·巴波维奇
M·卡尔森
D·戴维斯
C·福斯特
G·辛顿
A·E·理查德森
C·威尔金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey PLC filed Critical Johnson Matthey PLC
Publication of CN116133981A publication Critical patent/CN116133981A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/065Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/06Details of tube reactors containing solid particles
    • B01J2208/065Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • C01B2203/1017Packed bed of catalytic structures, e.g. particles, packing elements characterised by the form of the structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1023Catalysts in the form of a monolith or honeycomb
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/141At least two reforming, decomposition or partial oxidation steps in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

描述了一种对烃原料进行蒸汽重整的方法,该方法包括使烃原料和蒸汽的混合物通过催化剂床,该催化剂床包含颗粒镍蒸汽重整催化剂和结构化镍蒸汽重整催化剂,该颗粒镍蒸汽重整催化剂和结构化镍蒸汽重整催化剂置于管式蒸汽重整器中的多个外部加热管中,其中每个管具有入口、出口,烃和蒸汽的混合物被馈送到该入口,从该出口回收含有氢气、一氧化碳、二氧化碳、蒸汽和甲烷的重整气体,并且在该管的出口处的蒸汽重整催化剂为结构化蒸汽重整催化剂,其中颗粒蒸汽重整催化剂包含5重量%至30重量%的镍,以NiO表示,并且该颗粒蒸汽重整催化剂具有为多个管的内径的至多15%的最大尺寸,并且结构化蒸汽重整催化剂包含分散于作为非多孔金属或陶瓷结构上的涂层存在的多孔金属氧化物表面上的镍,其中该金属氧化物涂层中的镍含量在5重量%至50重量%的范围内,并且该涂层的厚度在5微米至150微米的范围内。

Description

蒸汽重整
本发明涉及一种烃蒸汽重整以产生合成气的方法和用于实施该方法的装置。
合成气包括氢气和碳氧化物(一氧化碳和二氧化碳),并且可含有氮气和其它气体,例如氩气和低含量的甲烷。合成气可含有较多或较少量的氢气和碳氧化物,以适于特定最终用途,诸如用于精炼厂或燃料电池的制氢、氨合成、甲醇合成、二甲醚合成,或液烃合成的费托方法。合成气通常通过蒸汽重整方法产生。
在蒸汽重整方法中,烃原料和蒸汽以及在一些情况下还有二氧化碳的混合物在高压下通过颗粒催化剂填充管,该管借助于合适的加热介质(通常为热气混合物)进行外部加热。颗粒催化剂通常为成型单元的形式,例如具有多个通孔的圆柱体,并且通常由耐火载体材料诸如α-氧化铝、铝酸钙或铝酸镁并使用合适的具有催化活性的金属诸如镍浸渍形成。
WO2015132555公开了一种用于烃的蒸汽重整的装置,该装置包括含有多个外部加热垂直管的蒸汽重整器,每个管具有入口和出口,该入口用于包含烃和蒸汽的进料气体混合物,该出口用于重整的气体混合物,其中该管含有邻近出口的颗粒蒸汽重整催化剂和邻近入口的结构化蒸汽重整催化剂。还描述了使用所述装置对烃进行蒸汽重整的方法。
我们已经发现,与WO2015132555中的布置形成对照,邻近入口的颗粒催化剂和邻近出口的结构化催化剂的组合可提供压降和抗积碳的最佳平衡,碳形成倾向于在管式蒸汽重整器中的管的入口部分附近发生。此外,在颗粒催化剂由结构化催化剂负载的布置中使用颗粒催化剂消除了在颗粒催化剂和结构化催化剂之间形成间隙的不必要风险。
相应地,本发明提供了一种对烃原料进行蒸汽重整的方法,该方法包括使烃原料和蒸汽的混合物通过催化剂床,该催化剂床包含颗粒镍蒸汽重整催化剂和结构化镍蒸汽重整催化剂,该颗粒镍蒸汽重整催化剂和结构化镍蒸汽重整催化剂置于管式蒸汽重整器中的多个外部加热管中,其中每个管具有入口、出口,烃和蒸汽的混合物被馈送到该入口,从该出口回收含有氢气、一氧化碳、二氧化碳、蒸汽和甲烷的重整气体,并且在该管的出口处的蒸汽重整催化剂为结构化蒸汽重整催化剂,其中颗粒蒸汽重整催化剂包含5重量%至30重量%的镍,以NiO表示,并且该颗粒蒸汽重整催化剂具有为多个管的内径的至多15%的最大尺寸,并且结构化蒸汽重整催化剂包含分散于作为非多孔金属或陶瓷结构上的涂层存在的多孔金属氧化物表面上的镍,其中该金属氧化物涂层中的镍含量在5重量%至50重量%的范围内,并且该涂层的厚度在5微米至150微米的范围内。
该方法中馈送的含烃原料可包括任何气态或低沸点烃原料,诸如天然气、伴生气、LPG、石油馏分、柴油、石脑油或它们的混合物,或来自化学工艺的废气,诸如精炼厂废气或预重整气体。优选地,烃原料包括甲烷,并且可为预重整气体、伴生气或天然气。天然气是特别优选的原料。该原料可被压缩至在10巴至100巴绝对压力范围内的压力。该烃原料的压力可有效地控制整个方法中的压力。优选地,操作压力在15巴至80巴的绝对压力范围内,更优选地在20巴至50巴的绝对压力范围内,因为这使该方法的性能得到增强。
如果烃原料在压缩之前或优选地在压缩之后含有硫化合物,则可以对原料进行脱硫。脱硫可包括使用CoMo或NiMo催化剂的加氢脱硫和使用合适的硫化氢吸附剂如氧化锌吸附剂的硫化氢吸收。超纯化吸附剂可有效地用于硫化氢吸附剂的下游,以进一步保护蒸汽重整催化剂。合适的超纯化吸附剂可包括铜-氧化锌/氧化铝材料和铜-镍-氧化锌/氧化铝材料。为了有利于加氢脱硫和/或降低重整方法中碳沉积的风险,可将氢气添加到压缩烃原料中。所得混合气体流中氢气的量可在1体积%至20体积%的范围内,但优选地在1体积%至10体积%的范围内,更优选地在1体积%至5%体积的范围内。
如果烃原料含有其它污染物,诸如氯化物或重金属污染物,则可在重整之前,在任何脱硫的上游或下游,使用常规吸附剂去除这些污染物。适用于氯化物去除的吸附剂是已知的并且包括碱化的氧化铝材料。类似地,用于重金属诸如汞或砷的吸附剂是已知的并且包括硫化铜材料。
在含烃原料为含甲烷的预重整气体的情况下,这可通过使烃/蒸汽混合物经受绝热低温蒸汽重整步骤而形成。烃可以为富烃的天然气、石脑油或其它烃含量高于甲烷含量的含烃原料。预重整方法是已知的。在此类方法中,烃/蒸汽混合物经过加热,通常加热至400℃至650℃的范围内的温度,然后绝热通过合适的颗粒蒸汽重整催化剂固定床,该催化剂通常为具有高镍含量(例如高于40重量%,以NiO表示)沉淀催化剂。在这类绝热低温预重整步骤期间,任何含量高过甲烷的烃与蒸汽进行反应,得到含有甲烷、碳氧化物和氢气混合物的预重整气体。使用这种通常被称为预重整的绝热重整步骤期望地确保进入管式蒸汽重整器的进料所含的烃不高于甲烷并且还包含大量的氢气。对于使下游管式蒸汽重整器中催化剂上碳形成的风险最小化而言,这是理想的。
可将该原料进行预热。其可方便地在压缩后和脱硫前使用合适的热源诸如火焰加热器进行预热。
将该烃原料与蒸汽进行混合以形成重整进料气体。蒸汽引入可通过直接注入蒸汽和/或通过使原料与加热水流进行接触使原料饱和来进行。在一些实施方案中,该烃原料在馈送了热水的饱和器中进行饱和以形成饱和气体混合物。如果需要,可通过直接添加蒸汽来增加饱和气体混合物的蒸汽含量。优选地,水包括从重整气体回收的冷凝液流、从饱和器底部回收的水和在该过程中产生的其它冷凝液中的一者或多者。理想地,引入的蒸汽量足以使原料中的蒸汽与碳的比率至少为1.8:1,即每克烃碳原子含有至少1.8摩尔的蒸汽。优选地,蒸汽与碳的比率在1.8:1至5:1的范围内,更优选地在2.5:1至3.5:1的范围内,尤其是2.8:1至3.2:1的范围内,因为这会使氢气产量和效率达到最佳平衡。
然后,理想地,在重整之前对重整进料气体混合物进行预热。在优选的实施方案中,通过使其通过火焰加热器来加热烃/蒸汽混合物。理想地,将混合流加热至在300℃至650℃或450℃至650℃,优选地在450℃至600℃,更优选地在450℃至550℃范围内的入口温度。在没有预重整器的情况下,300℃至550℃范围内的入口温度尤为合适,而在有预重整器的情况下,550℃至650℃范围内的更高入口温度尤为合适。
在重整方法中,甲烷与蒸汽进行反应,产生氢气、一氧化碳和二氧化碳。存在的任何含有两个或更多个碳原子的烃被转化为甲烷,从而经过蒸汽重整。此外发生可逆的水煤气转化反应。总之,这是一个吸热过程,需要加热管和催化剂,以维持反应并达到期望的转化率。通常,输入到蒸汽重整器的热量会使得管出口处的产物气体流的温度高于入口温度,通常比入口温度高100℃至350℃。
管式蒸汽重整器包含通常为垂直排列的多个管,气体混合物可通过这些管,并且通过使热气围绕这些管的外表面流动将热量传递给管。热气体可包括燃烧气体或合成气。管入口通常位于顶端,从而使得进料气体混合物通常被馈送至蒸汽重整器的顶部并向下流过管。
因此,管式蒸汽重整器可具有用于重整进料气体的入口、用于重整气体混合物的出口和与入口连通的多个垂直管,气体混合物可通过该多个垂直管,并且通过在热交换区中使热气围绕管流动将热量传递给该多个垂直管,其中每个管含有作为管内层提供的蒸汽重整催化剂,其中至少邻近出口的蒸汽重整催化剂层是结构化镍蒸汽重整催化剂。
在该方法中,邻近管出口的催化剂是结构化蒸汽重整催化剂。所谓“结构化蒸汽重整催化剂”指涂覆在非多孔结构(通常为金属或陶瓷结构)上的蒸汽重整催化剂。该结构化催化剂中的镍分散于多孔金属氧化物的表面上,该多孔金属氧化物作为表面涂层负载在非多孔结构上。
金属或陶瓷结构基本上是非多孔的,因此具有基本上由其形状限定的较小表面积。为了提供足够的活性,结构化催化剂中的镍分散在涂覆在非多孔金属或陶瓷载体上的多孔金属氧化物上。在非多孔结构上的含有镍的多孔金属氧化物涂层的厚度在5μm至150μm,优选地在10μm至100μm的范围内,更优选地在10μm至80μm的范围内,最优选地在10μm至50μm的范围内。上述优选的范围使得催化剂具有最佳活性、粘附性和内聚性。
通过已知的载体涂覆(wash-coating)方法可将镍施加到结构上,由此金属氧化物的浆料(其可包括作为成分的镍氧化物)通过浸渍或喷涂施加到金属或陶瓷结构上,然后,对其进行干燥和热处理以将金属氧化物结合到载体上。还可以通过使用可溶镍化合物的浸渍技术将镍施加到金属氧化物涂覆的载体上,然后对其进行干燥和煅烧以将镍化合物转化成镍氧化物。可以使用这些技术的组合,包括将溶液中的镍与金属氧化物载体浆料组合施用。
结构上的蒸汽重整催化剂包含镍。金属氧化物涂层的镍含量在5重量%至50重量%,优选地10重量%至30重量%,更优选地10重量%至20重量%范围内。任选地,选自铂、铑、钌或钯或它们的混合物的铂族金属可被包含在该涂层中。如果包含,铂族金属促进剂能够以0.05重量%至1重量%范围内的量存在于涂层中。涂层能够以10g/m2至150g/m2,优选地10g/m2至80g/m2、更优选地30g/m2至60g/m2范围内的量施加到非多孔载体结构上。
镍分散于其上的多孔金属氧化物可以为任何合适的耐火氧化物,其包括氧化铝、二氧化钛、氧化锆、锌氧化物、氧化镁、二氧化铈、镨氧化物、氧化钇和氧化镧。优选的多孔金属氧化物包括氧化铝、氧化锆、二氧化铈、氧化镧以及它们中的两种或更多种的混合物。
结构化催化剂可包括具有多个通道的金属或陶瓷结构,工艺流体能够以有序而非随机的方向通过该多个通道。这与其中工艺流体的流动基本上是无序的或随机的颗粒催化剂相反。与颗粒催化剂相比,结构化催化剂提供降低的压降和改善的传热。结构化催化剂可适当地包括具有与管互补的直径的圆柱形单元,该圆柱形单元放置在该管内,该圆柱形单元包括多个通道,工艺流体能够以有序而非随机的方向通过该多个通道。所谓术语“互补”指该圆柱形单元的直径可比放置该单元的管的内径小1mm至20mm,从而使其整齐地放置于管内。该圆柱形单元可包括穿孔和/或内部结构,该穿孔和/或内部结构使工艺流体通过单元时轴向和径向流动。优选地,该圆柱形单元可堆叠,从而使得其可轻松装载于彼此之上,并在管内形成自支撑。对于具有工艺流体能够以有序而非随机的方向通过的多个通道的涂层圆柱形结构,涂层的量能够为每立方米管约4kg至7kg的Ni(以NiO计)。
优选地,使用可商购获得的不锈钢金属箔制备的结构化催化剂。
US2012/0195801A1中描述了优选的结构化催化剂。这些结构化催化剂包括布置于中心杆上的波浪形金属盘形式的扇形装置。该扇形装置具有由折叠的金属箔形成的径向流体管道,其沿径向引导流体与管内壁流动接触;该扇形装置具有上表面、下表面和外径面,使得径向流体管道沿着该扇形装置的外径面终止,以形成面向管的内壁的流体管道开口。该扇形装置还具有与该扇形装置的上表面或下表面接触的平面或波浪形金属垫圈,其中该垫圈可以为具有内径和外径的环形,该垫圈与该扇形装置的上表面或下表面接触,使得该垫圈的外径从该扇形装置的外径面沿径向向外延伸。该垫圈还可具有从该垫圈的外径向外延伸的分隔突出片,该分隔突出片将该垫圈与管内壁分隔开,使得该垫圈在该扇形装置的外径面与反应器管之间产生间隔。
在本发明中,管包括在结构化催化剂的正上游的非结构化颗粒蒸汽重整催化剂。蒸汽重整催化剂的相对量的厚度可发生变化,以达到期望的转化率。结构化催化剂层可占床体积的95%至5%,或可占床体积的80%至20%,或可占床体积的75%至25%,或可占床体积的70%至50%。不同的布置提供不同的优点。其中结构化催化剂在床体积的70%至50%范围内的布置会提供最佳活性和压降范围以及控制碳沉积。
颗粒蒸汽重整催化剂可以是其中镍分布在整个粒子中的常规颗粒蒸汽重整催化剂或其中镍层仅存在于粒子表面的蛋壳型镍催化剂。在WO2010/125369A1中描述了合适的蛋壳型镍蒸汽重整催化剂。
合适的颗粒催化剂包含镍和任选的氧化钾,其被负载在包含氧化铝的耐火氧化物载体或碱土金属铝酸盐诸如铝酸钙和/或铝酸镁上。此类颗粒催化剂可商购获得。
颗粒催化剂的镍含量(以NiO表示)在5重量%至30重量%,优选地10重量%至30重量%的范围内。
在颗粒催化剂中包括碱金属氧化物(诸如氧化钾)对于减少碳形成是特别优选的。碱金属氧化物(诸如氧化钾)能够以0.5重量%至7.0重量%范围内的量存在于颗粒催化剂上。
颗粒催化剂的粒度可根据管的尺寸而变化。颗粒催化剂作为随机填充床进行装载,这意味着它们能够以任何取向位于多个管中。本组合中的颗粒催化剂可在物理上小于通常使用的颗粒催化剂,因为这导致的增加的压降将被颗粒催化剂下游的低压降结构化催化剂抵消。较小的粒子是有用的,因为与较大粒子相比,它们可提供更高的几何表面积以及因此更高的活性/m3
颗粒催化剂粒子的最大尺寸为放置颗粒催化剂粒子的多个管的内径的至多15%。所谓的“最大尺寸”是指粒子的最大宽度或直径、长度、幅度或高度。颗粒催化剂的粒子的最大尺寸可适当地在多个管的内径的3%至15%的范围内。低于约3%时,压降可能高得无法接受,而高于15%时,催化剂的性能可能降低。
颗粒催化剂可以是球体、椭球体或圆柱体形式,包括凸角形状或凹槽形状。颗粒催化剂可通过造粒或挤出或通过其它成形方法形成,包括添加剂层制造或3D打印。颗粒蒸汽重整催化剂合适地是粒状催化剂,因为粒状催化剂的物理特性的平衡通常优于通过其它成形方法获得的物理特性的平衡。
颗粒催化剂粒子可以是圆柱形的,可以是凸角的或沟槽的,并且含有一个或多个通孔以增强几何表面积和降低压降。
颗粒催化剂优选地是圆柱形的,其中直径在3mm至10mm或5mm至25mm的范围内,并且长度在2mm至15mm或5mm至25mm的范围内。长径比(即直径/长度)可在1:0.5至2:1的范围内。圆柱体的端部可以是平坦的或穹顶形的。
颗粒蒸汽重整催化剂可包括3至10个通孔以及任选的围绕粒料外周的3至12个凹槽或凸角。通孔以及凸角或凹槽会有利地增加几何表面积并通过颗粒催化剂降低压降。
对于长径比在0.75至1.0范围内的圆柱形催化剂粒子,管的内径与催化剂粒子的直径之比(Dt/dp)优选地在5:1至50:1,优选地8:1至50:1的范围内。
合适的颗粒催化剂的示例包括3.3mm直径×3.4mm高的圆柱体、8mm宽×7mm高的4孔三叶草形状,以及10mm直径×13mm高的4孔4槽圆柱体。后者可作为QUADRALOBETM催化剂从Johnson Matthey PLC公司获得。
颗粒催化剂的大小也可依据当量球径(或ESD)表示。不规则形状物体的ESD可被表示为等效体积球体的直径(ESDv)。颗粒催化剂的ESDv可在3mm至15mm的范围内。另选地,不规则形状物体的ESD可被表示为具有相同比表面积(即相同表面积与体积比(ESDa))的球体。这种方法可能更适合于催化剂粒子的几何表面积为主要参数的复杂形状。颗粒催化剂的ESDa可在3mm至5mm的范围内。
颗粒催化剂可具有范围为200m2/m3至2000m2/m3或500m2/m3至2000m2/m3的外部几何表面积。这可通过例如使用直径为3mm至4.5mm且高度为2mm至6mm的圆柱体、直径为5mm至9mm且高度为3mm至6mm且孔直径为1mm至2mm的3至7孔圆柱体来获得。从常见催化剂形状可容易地实现其它变型。
在该方法中,催化剂床可由两层或三层或更多层的蒸汽重整催化剂组成,其中在每种情况下,邻近管出口的蒸汽重整催化剂层为结构化催化剂。
催化剂管可包括两层镍蒸汽重整催化剂或由两层镍蒸汽重整催化剂组成,其中邻近管出口的催化剂层为结构化镍蒸汽重整催化剂,并且邻近管入口的催化剂层为颗粒镍蒸汽重整催化剂。
使用催化剂组合来提高重整器对碳形成的耐受性和在不损失压降的情况下提高重整器性能,存在多种益处。通过在较冷温度下在重整器的“入口”区域中使用颗粒催化剂(特别是小颗粒),能够使活性最大化。同时在重整器的较热出口区域使用结构化催化剂,能够使催化剂装料的总压降最小化。
在一些实施方案中,催化剂管可由三层镍蒸汽重整催化剂、在管入口处的结构化催化剂层、在管的中间或第二区域处的颗粒催化剂层和在管出口处的结构化催化剂层组成。这可允许同时实现低温下的高活性、增加的总体传热,其中在管中在碳形成的风险最高的点处提供颗粒催化剂。在该布置中,颗粒催化剂可被包含在位于结构化催化剂层之间的一个或多个透气性容器内。
通常,催化剂以氧化形式提供到管式蒸汽重整器的管中,并通过镍氧化物还原进行活化,以原位形成元素镍。例如,氧化形式的催化剂可置于管中,并且用还原剂诸如含氢气体还原镍氧化物。已知的还原技术可用于产生用于蒸汽重整的活性催化剂。
另选地,可将催化剂中的镍氧化物非原位还原,然后使用含氧气体诸如空气或氮气稀释的空气使得元素金属涂覆有薄的氧化物钝化层。也可使用氧气和二氧化碳(任选地与氮气)的混合物。以这种方式,还原的催化剂可被安全地运输给使用者,并且生成活性催化剂的时间和在后续活化期间使用的氢气的量减少。
可使用各种管式蒸汽重整器布置。管式蒸汽重整器可以为常规的顶烧蒸汽重整器或侧烧蒸汽重整器。在此类重整器中,通过使用置于管顶端或沿着管长度方向的多个燃烧器燃烧燃料气体来提供热气。或者,该蒸汽重整器可以为气体加热重整器(GHR),其中热气可由来自燃烧过程的烟道气提供,或者可以为通过烃的催化或非催化部分氧化或通过烃和/或重整气体混合物的自热重整产生的合成气。此外,热气可与已经通过上述多个管的重整气体进行混合。
管式蒸汽重整器中的多个管可具有圆形横截面并且可具有5m至15m的长度和5cm至30cm或5cm至15cm范围内的内径。每个管的内径优选地大致相同。
在使用中,管沿着其长度以温度梯度进行操作,其中管的入口端通过吸热蒸汽重整反应冷却。管和入口处反应气体的温度可在300℃至650℃或450℃至650℃,优选地在450℃至600℃,更优选地在450℃至550℃的范围内。在用以形成合成气的转化基本完成的管出口端处,管的温度更高。管和出口处反应气体的温度可在600℃至950℃的范围内。能够将管中催化剂的温度表示为床温度,该床温度为一个或多个管中催化剂床的入口和出口之间催化剂的平均温度。理想地,床温度可在625℃至775℃或640℃至760℃的范围内。
从管出口回收重整气体或粗制合成气。该重整气体含有氢气、一氧化碳、二氧化碳、蒸汽、氨和甲烷。由于该方法具有平衡缺陷,该重整气体含有一些甲烷。来自管式重整器的甲烷含量或“甲烷泄漏”指示该工艺的效率。此外,甲烷可在使用重整气体的下游工艺中累积,这是不理想的。相应地,低量甲烷泄漏更为理想。使用结构化蒸汽重整催化剂和上述反应条件,该方法能够提供低量甲烷泄漏,例如基于干气体低于15体积%。在随后粗制合成气不进行二次或自热重整的情况下,优选地,甲烷泄漏基于干气体低于10体积%,并且尤其是基于干气体小于5体积%。术语“基于干气体”指不考虑重整气体的蒸汽含量,并且用于允许与具有不同蒸汽量的其它重整气体进行比较。
与仅使用结构化催化剂相比,在重整器的冷却区域中使用颗粒催化剂会允许活性增加,同时维持结构化催化剂的一些益处,诸如降低的压降。此外,使用碱化的(例如含氧化钾的)颗粒催化剂意味着可对结构化催化剂布置提供额外的碳保护。为此使用颗粒催化剂而不是将钾配制到结构化催化剂涂层中,与将钾单独添加到结构化催化剂上的涂层中可能实现的情况相比,允许在重整器中有更大的钾储存。
还能够在管的特定部分中的结构化催化剂之间使用颗粒催化剂,其中否则条件将有利于碳形成。该布置优化了结构化催化剂的性能和其在蒸汽重整应用中带来的益处(增加的传热、降低的压降、更接近平衡和更高的氢气产量),否则在蒸汽重整应用中,由于碳形成的风险,这可能是不可能的。
因此,本发明还提供了如本文所述的非结构化颗粒蒸汽重整催化剂和结构化蒸汽重整催化剂的组合的用途,该非结构化颗粒蒸汽重整催化剂包含5重量%至30重量%的镍,以NiO表示,该非结构化颗粒蒸汽重整催化剂具有为多个管的直径的至多15%的最大尺寸,该结构化蒸汽重整催化剂包含分散于多孔金属氧化物的表面上的镍,该多孔金属氧化物作为涂层存在于非多孔金属或陶瓷结构上,其中金属氧化物涂层的镍含量在5重量%至50重量%的范围内并且涂层的厚度在5微米至150微米的范围内,以在对烃原料的催化蒸汽重整期间抑制催化剂上的碳形成。
本发明所述的方法可用作制造氢、甲醇、二甲基醚、烯烃、氨、尿素或通过费托合成法获得的液烃诸如柴油燃料的方法的一部分。因此,重整气体可经过进一步处理,包括:将其冷却至低于蒸汽露点、冷凝液分离、氢分离、二氧化碳分离、甲醇合成、二甲基醚合成、烯烃合成、氨合成或烃液体合成的一个或多个步骤。已知的方法可用于完成这些步骤。
参考以下实施例和图1至图3进一步描述本发明,其中:
图1是针对不同催化剂布置的R因子与管长度的比较;
图2是针对不同催化剂布置的压降与管长度的比较;并且
图3是针对不同催化剂布置的相对管壁温度裕度与管长度的比较。
实施例
使用蒸汽重整器建模软件来检查各种催化剂配置之间的差异,以便量化在蒸汽重整器中使用可商购获得的粒状蒸汽重整催化剂与CATACEL SSRTM结构化蒸汽重整催化剂相比的益处,该蒸汽重整器包括多个管,每个管具有127mm的内径。颗粒催化剂的特性如下:
Figure BDA0004113628140000101
Figure BDA0004113628140000111
模拟了以下布置:
Figure BDA0004113628140000112
在每种情况下,在可能形成碳的操作条件下,该模型都以固定的甲烷泄漏和固定的出口压力运行。
在下表中示出了在该评估中使用的关键性能指标。R因子表示碳气化速率和碳形成速率之间的比率。R因子大于1.0表明在重整器中有形成碳的趋势。管壁温度裕度是设计管温度和操作温度之间的差,并且如果该裕度小于25℃,则表明有管故障的可能性。压降表示流过重整器中的管的阻力。
Figure BDA0004113628140000113
比较例1代表常规粒状催化剂使用。较大粒料的压降是适度的,但R因子表明在反应条件下有可能形成碳。
比较例2用较小的钾掺杂的粒状催化剂代替一部分粒状催化剂。R因子较低并且管壁温度裕度较大,但压降高得多。
比较例3仅使用结构化催化剂。压降非常低,并且最小管壁温度裕度更高,但R因子与比较例2相比增加。
实施例4使用最大尺寸为结构化催化剂上游的多个管的内径的约10%的小粒料,该实施例表明,在相同条件下,碳形成减少至低于比较例2的碳形成,但压降有所提高。与比较例3相比,R因子也更低,这表明在重整器中由要求保护的组合形成碳的趋势降低,并且管壁温度裕度相对高。
图1至图3描绘了R因子、压降和最小管壁温度裕度的比较。这些结果表明,使用颗粒催化剂与结构化催化剂的混合配置在可靠的设备操作和提高的设备效率方面提供了最佳解决方案,因为:
(i)增加的碳裕度使得能够在较低的蒸汽与碳比率下操作,这意味着可靠性提高并且对蒸汽流量波动的敏感性降低。这还提高了原料灵活性,由此可处理具有增加的高级烃含量的气体;
(ii)较低的管壁温度(TWT)通过降低管故障的可能性和减少燃料使用而使得熔炉操作更安全、更可靠和更有效;并且
(iii)降低的压降减少了对压缩功率的需求,并且允许在相同压降下增加设备生产量,而没有额外的功率需求。

Claims (19)

1.一种对烃原料进行蒸汽重整的方法,所述方法包括使所述烃原料和蒸汽的混合物通过催化剂床,所述催化剂床包含颗粒镍蒸汽重整催化剂和结构化镍蒸汽重整催化剂,所述颗粒镍蒸汽重整催化剂和结构化镍蒸汽重整催化剂置于管式蒸汽重整器中的多个外部加热管中,其中每个管具有入口、出口,烃和蒸汽的所述混合物被馈送到所述入口,从所述出口回收含有氢气、一氧化碳、二氧化碳、蒸汽和甲烷的重整气体,并且在所述管的所述出口处的所述蒸汽重整催化剂为所述结构化蒸汽重整催化剂,其中所述颗粒蒸汽重整催化剂包含5重量%至30重量%的镍,以NiO表示,并且所述颗粒蒸汽重整催化剂具有为所述多个管的内径的至多15%的最大尺寸,并且所述结构化蒸汽重整催化剂包含分散于作为非多孔金属或陶瓷结构上的涂层存在的多孔金属氧化物表面上的镍,其中所述金属氧化物涂层中的镍含量在5重量%至50重量%的范围内,并且所述涂层的厚度在5微米至150微米的范围内。
2.根据权利要求1所述的方法,其中所述烃原料包含甲烷并且优选地为预重整气体、伴生气或天然气,更优选地为天然气。
3.根据权利要求1或权利要求2所述的方法,其中所述管式蒸汽重整器含有多个管,所述烃原料和蒸汽的所述混合物通过所述多个管,并且通过使包含燃烧气体或合成气的热气围绕所述管流动将热量传递给所述多个管。
4.根据权利要求1至3中任一项所述的方法,其中所述结构化蒸汽重整催化剂包括具有多个通道的金属或陶瓷结构,工艺流体能够以有序而非随机的方向通过所述多个通道。
5.根据权利要求1至4中任一项所述的方法,其中所述结构化蒸汽重整催化剂包括具有与所述管互补的直径的圆柱形单元,所述圆柱形单元放置在所述管内,所述圆柱形单元包括多个通道,工艺流体能够以有序而非随机的方向通过所述多个通道。
6.根据权利要求1至5中任一项所述的方法,其中所述颗粒蒸汽重整催化剂包含碱金属氧化物,优选地为氧化钾,其量在所述颗粒催化剂的0.5重量%至7.0重量%的范围内。
7.根据权利要求1至6中任一项所述的方法,其中所述颗粒催化剂的所述最大尺寸在放置所述颗粒催化剂的所述多个管的所述内径的3%至15%的范围内。
8.根据权利要求1至7中任一项所述的方法,其中所述颗粒蒸汽重整催化剂为粒状蒸汽重整催化剂。
9.根据权利要求1至8中任一项所述的方法,其中所述颗粒蒸汽重整催化剂是圆柱形的,其中直径在3mm至10mm或5mm至25mm的范围内,并且长度在2mm至15mm或5mm至25mm的范围内,并且长径比在1:0.5至2:1的范围内。
10.根据权利要求1至9中任一项所述的方法,其中所述颗粒蒸汽重整催化剂包括3至10个通孔以及任选的围绕粒料外周的3至12个凹槽或凸角。
11.根据权利要求9或权利要求10所述的方法,其中所述颗粒催化剂是圆柱形的,其中长径比在0.75至1.0的范围内,并且所述多个管的所述内径与所述催化剂粒子的直径之比(Dt/dp)在5:1至50:1,优选地8:1至50:1的范围内。
12.根据权利要求1至11中任一项所述的方法,其中所述颗粒催化剂具有在3mm至5mm范围内的当量球径,以相同比表面积的球体表示。
13.根据权利要求1至12中任一项所述的方法,其中所述颗粒催化剂具有在200m2/m3至2000m2/m3,优选地500m2/m3至2000m2/m3范围内的外部几何表面积。
14.根据权利要求1至13中任一项所述的方法,其中所述催化剂床由两层、三层或更多层的蒸汽重整催化剂组成,其中在每种情况下,邻近所述管出口的所述蒸汽重整催化剂层为所述结构化催化剂。
15.根据权利要求1至14中任一项所述的方法,其中所述催化剂管由两层镍蒸汽重整催化剂组成,其中邻近所述管出口的所述催化剂层为所述结构化镍蒸汽重整催化剂,并且邻近所述管入口的所述催化剂层为颗粒镍蒸汽重整催化剂。
16.根据权利要求1至14中任一项所述的方法,其中所述催化剂管由三层镍蒸汽重整催化剂、在所述管入口处的结构化催化剂层、在所述管的中间或第二区域处的颗粒催化剂层和在所述管出口处的结构化催化剂层组成。
17.根据权利要求16所述的方法,其中所述颗粒催化剂被包含在位于所述结构化催化剂层之间的一个或多个透气性容器内。
18.根据权利要求14至17中任一项所述的方法,其中在所述管内存在两层或更多层的蒸汽重整催化剂,并且所述结构化催化剂层占所述床体积的95%至5%,优选地占所述床体积的80%至20%,更优选地占所述床体积的75%至25%。
19.非结构化颗粒蒸汽重整催化剂和结构化蒸汽重整催化剂的组合的用途,所述非结构化颗粒蒸汽重整催化剂包含5重量%至30重量%的镍,以NiO表示,所述非结构化颗粒蒸汽重整催化剂具有为所述多个管的所述内径的至多15%的最大尺寸,所述结构化蒸汽重整催化剂包含分散于多孔金属氧化物的表面上的镍,所述多孔金属氧化物作为涂层存在于非多孔金属或陶瓷结构上,其中所述金属氧化物涂层的镍含量在5重量%至50重量%的范围内并且所述涂层的厚度在5微米至150微米的范围内,以在对烃原料的催化蒸汽重整期间抑制所述催化剂上的碳形成。
CN202180059050.5A 2020-08-13 2021-07-22 蒸汽重整 Pending CN116133981A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB2012616.5 2020-08-13
GBGB2012616.5A GB202012616D0 (en) 2020-08-13 2020-08-13 Steam reforming
PCT/GB2021/051893 WO2022034285A1 (en) 2020-08-13 2021-07-22 Steam reforming

Publications (1)

Publication Number Publication Date
CN116133981A true CN116133981A (zh) 2023-05-16

Family

ID=72615344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180059050.5A Pending CN116133981A (zh) 2020-08-13 2021-07-22 蒸汽重整

Country Status (10)

Country Link
US (1) US20230242398A1 (zh)
EP (1) EP4196434A1 (zh)
JP (1) JP2023537196A (zh)
KR (1) KR20230050314A (zh)
CN (1) CN116133981A (zh)
AU (1) AU2021326022A1 (zh)
BR (1) BR112023000847A2 (zh)
CA (1) CA3184118A1 (zh)
GB (2) GB202012616D0 (zh)
WO (1) WO2022034285A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3538746A1 (en) 2016-11-09 2019-09-18 8 Rivers Capital, LLC Systems and methods for power production with integrated production of hydrogen
AU2018364702B2 (en) 2017-11-09 2024-01-11 8 Rivers Capital, Llc Systems and methods for production and separation of hydrogen and carbon dioxide
KR20220020842A (ko) 2019-06-13 2022-02-21 8 리버스 캐피탈, 엘엘씨 추가 생성물들의 공동 발생을 구비하는 동력 생산
US11691874B2 (en) 2021-11-18 2023-07-04 8 Rivers Capital, Llc Apparatuses and methods for hydrogen production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100068130A1 (en) * 2008-09-17 2010-03-18 Frederick Carl Wilhelm Process for the Production of Hydrogen Gas Employing a Thermally Stable Catalyst
GB0907539D0 (en) 2009-05-01 2009-06-10 Johnson Matthey Plc Catalyst preparation method
SG191898A1 (en) 2011-01-28 2013-08-30 Catacel Corp Improved stackable structural reactors
GB201403788D0 (en) * 2014-03-04 2014-04-16 Johnson Matthey Plc Catalyst arrangement
GB201403787D0 (en) * 2014-03-04 2014-04-16 Johnson Matthey Plc Steam reforming
US9938146B2 (en) * 2015-12-28 2018-04-10 Praxair Technology, Inc. High aspect ratio catalytic reactor and catalyst inserts therefor

Also Published As

Publication number Publication date
GB202110523D0 (en) 2021-09-08
GB2598206B (en) 2022-11-09
GB2598206A (en) 2022-02-23
US20230242398A1 (en) 2023-08-03
EP4196434A1 (en) 2023-06-21
KR20230050314A (ko) 2023-04-14
CA3184118A1 (en) 2022-02-17
JP2023537196A (ja) 2023-08-31
AU2021326022A1 (en) 2023-02-02
BR112023000847A2 (pt) 2023-03-14
WO2022034285A1 (en) 2022-02-17
GB202012616D0 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
CN116133981A (zh) 蒸汽重整
JP6498689B2 (ja) 水蒸気改質
US4844837A (en) Catalytic partial oxidation process
CA2497201C (en) Article for carbon monoxide removal
CA2657485C (en) Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
US7776113B2 (en) Catalysts, reactors and methods of producing hydrogen via the water-gas shift reaction
EP2675561B1 (en) Hydrocarbon catalytic steam reforming
US7045114B2 (en) Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
US20230242397A1 (en) Steam reforming
US20220212928A1 (en) Combination of structured catalyst elements and pellets
DK163294B (da) Fremgangsmaade til fremstilling af en hydrogenrig gas ved autotermal reformering
CN116490456B (zh) 蒸汽重整
CA2413388A1 (en) Improved system for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
GB2119276A (en) Steam reforming utilizing iron oxide catalyst
JP5135605B2 (ja) 定置型水素製造用改質装置
WO2023139258A1 (en) Conversion of co2 and h2 to syngas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination