CN116127118A - Method, device, electronic equipment and storage medium for searching similar images - Google Patents
Method, device, electronic equipment and storage medium for searching similar images Download PDFInfo
- Publication number
- CN116127118A CN116127118A CN202211646951.7A CN202211646951A CN116127118A CN 116127118 A CN116127118 A CN 116127118A CN 202211646951 A CN202211646951 A CN 202211646951A CN 116127118 A CN116127118 A CN 116127118A
- Authority
- CN
- China
- Prior art keywords
- image
- feature
- target image
- determining
- characteristic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 239000013598 vector Substances 0.000 claims description 11
- 238000012216 screening Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 abstract description 9
- 230000006870 function Effects 0.000 description 11
- 238000004590 computer program Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/583—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Library & Information Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Processing Or Creating Images (AREA)
Abstract
Description
技术领域technical field
本申请属于图像处理技术领域,具体涉及一种相似图像检索的方法、装置、电子设备及存储介质。The present application belongs to the technical field of image processing, and in particular relates to a similar image retrieval method, device, electronic equipment and storage medium.
背景技术Background technique
在图像处理技术领域,经常需要从大规模图像中检索出相似的图像进行分析。相关的方法是先生成目标图像的指纹f0,一般为一个定长字符串或者一个定长浮点数向量,然后计算f0与图片指纹库中所有指纹之间的距离,距离最小的指纹对应的图像即为与目标图像相似的图像,但由于图片指纹库庞大,每次检索花费的时间长,效率低。In the field of image processing technology, it is often necessary to retrieve similar images from large-scale images for analysis. The related method is to first generate the fingerprint f0 of the target image, which is generally a fixed-length string or a fixed-length floating-point number vector, and then calculate the distance between f0 and all fingerprints in the image fingerprint library, and the image corresponding to the fingerprint with the smallest distance is It is an image similar to the target image, but due to the huge image fingerprint database, each retrieval takes a long time and the efficiency is low.
发明内容Contents of the invention
本申请实施例的目的是提供一种相似图像检索的方法、装置、电子设备及存储介质,能够提高相似图像检索的效率。The purpose of the embodiments of the present application is to provide a similar image retrieval method, device, electronic device, and storage medium, which can improve the efficiency of similar image retrieval.
为了解决上述技术问题,本申请是这样实现的:In order to solve the above-mentioned technical problems, the application is implemented as follows:
第一方面,本申请实施例提供了一种相似图像检索的方法,该方法包括:确定目标图像的第一特征和所述目标图像的第二特征,所述第一特征用于描述图像的整体特征,所述第二特征用于描述图像的局部特征;从图像数据库中,确定至少一个待选图像,其中,所述待选图像的第一特征与所述目标图像的第一特征相同;根据所述目标图像的第二特征和所述至少一个待选图像的第二特征,从所述至少一个待选图像中,确定与所述目标图像相似的第二图像。In the first aspect, the embodiment of the present application provides a method for similar image retrieval, the method includes: determining the first feature of the target image and the second feature of the target image, the first feature is used to describe the overall image feature, the second feature is used to describe the local features of the image; from the image database, determine at least one candidate image, wherein the first feature of the candidate image is the same as the first feature of the target image; according to The second feature of the target image and the second feature of the at least one candidate image determine a second image similar to the target image from the at least one candidate image.
第二方面,本申请实施例提供了一种相似图像检索的装置,该装置包括:第一确定模块,用于确定目标图像的第一特征和所述目标图像的第二特征,所述第一特征用于描述图像的整体特征,所述第二特征用于描述图像的局部特征;筛选模块,用于从图像数据库中,确定至少一个待选图像,其中,所述待选图像的第一特征与所述目标图像的第一特征相同;第二确定模块,用于根据所述目标图像的第二特征和所述至少一个待选图像的第二特征,从所述至少一个待选图像中,确定与所述目标图像相似的第二图像。In the second aspect, the embodiment of the present application provides a device for similar image retrieval, the device includes: a first determination module, configured to determine the first feature of the target image and the second feature of the target image, the first The feature is used to describe the overall feature of the image, and the second feature is used to describe the local feature of the image; the screening module is used to determine at least one candidate image from the image database, wherein the first feature of the candidate image The same as the first feature of the target image; the second determination module is configured to select from the at least one candidate image according to the second feature of the target image and the second feature of the at least one candidate image, A second image similar to the target image is determined.
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的相似图像检索的方法的步骤。In the third aspect, the embodiment of the present application provides an electronic device, the electronic device includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are processed by the The steps of the method for retrieving similar images as described in the first aspect are realized when the device is executed.
第四方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的相似图像检索的方法的步骤。In a fourth aspect, an embodiment of the present application provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, similar image retrieval as described in the first aspect is realized steps of the method.
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的相似图像检索的方法。In the fifth aspect, the embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions, so as to implement the first aspect The method of similar image retrieval described above.
第六方面,本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如第一方面所述的相似图像检索的方法。In a sixth aspect, an embodiment of the present application provides a computer program product, the program product is stored in a storage medium, and the program product is executed by at least one processor to implement the similar image retrieval method as described in the first aspect.
在本申请实施例中,通过确定目标图像的第一特征和所述目标图像的第二特征,所述第一特征用于描述图像的整体特征,所述第二特征用于描述图像的局部特征;从图像数据库中,确定至少一个待选图像,其中,所述待选图像的第一特征与所述目标图像的第一特征相同;根据所述目标图像的第二特征和所述至少一个待选图像的第二特征,从所述至少一个待选图像中,确定与所述目标图像相似的第二图像,能够提高相似图像检索的效率。In the embodiment of the present application, by determining the first feature of the target image and the second feature of the target image, the first feature is used to describe the overall feature of the image, and the second feature is used to describe the local feature of the image ; From the image database, determine at least one candidate image, wherein the first feature of the candidate image is the same as the first feature of the target image; according to the second feature of the target image and the at least one candidate image The second feature of the selected image is used to determine a second image similar to the target image from the at least one candidate image, which can improve the efficiency of similar image retrieval.
附图说明Description of drawings
图1示出本申请实施例提供的相似图像检索的方法的一种流程示意图;FIG. 1 shows a schematic flow chart of a method for similar image retrieval provided in an embodiment of the present application;
图2示出本申请实施例提供的相似图像检索的方法的另一种流程示意图;Fig. 2 shows another schematic flow chart of the similar image retrieval method provided by the embodiment of the present application;
图3示出本本申请实施例提供的相似图像检索的装置的结构示意图;FIG. 3 shows a schematic structural diagram of a device for similar image retrieval provided by an embodiment of the present application;
图4示出本申请实施例提供的电子设备的硬件结构示意图。FIG. 4 shows a schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。The following will clearly describe the technical solutions in the embodiments of the present application with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments are part of the embodiments of the present application, but not all of them. All other embodiments obtained by persons of ordinary skill in the art based on the embodiments in this application belong to the protection scope of this application.
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。The terms "first", "second" and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It should be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application can be practiced in sequences other than those illustrated or described herein, and that references to "first," "second," etc. distinguish Objects are generally of one type, and the number of objects is not limited. For example, there may be one or more first objects. In addition, "and/or" in the specification and claims means at least one of the connected objects, and the character "/" generally means that the related objects are an "or" relationship.
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的相似图像检索的方法进行详细地说明。The method for retrieving similar images provided by the embodiment of the present application will be described in detail below through specific embodiments and application scenarios with reference to the accompanying drawings.
图1是本申请实施例提供的相似图像检索的方法的一种流程示意图,如图1所示,该方法可以包括以下步骤。Fig. 1 is a schematic flowchart of a method for similar image retrieval provided by an embodiment of the present application. As shown in Fig. 1 , the method may include the following steps.
S101:确定目标图像的第一特征和所述目标图像的第二特征。S101: Determine a first feature of a target image and a second feature of the target image.
其中,所述第一特征用于描述图像的整体特征,所述第二特征用于描述图像的局部特征。具体的,所述第一特征包括但不限于图像的颜色特征、纹理特征。所述第二特征可以是图像中的轮廓特征、空间关系特征,或是图像中的一部分区域的特征,即将图像划分为多个部分区域,第二特征可以是至少一个部分区域的特征。Wherein, the first feature is used to describe the overall feature of the image, and the second feature is used to describe the local feature of the image. Specifically, the first feature includes, but is not limited to, a color feature and a texture feature of an image. The second feature may be a contour feature in the image, a spatial relationship feature, or a feature of a part of the image, that is, the image is divided into multiple partial areas, and the second feature may be a feature of at least one partial area.
可选的,所述特征可以采用如字符序列、向量、矩阵、函数表达式等至少一种表达方式。Optionally, the feature may be expressed in at least one manner such as character sequence, vector, matrix, or function expression.
S102:从图像数据库中,确定至少一个待选图像。S102: Determine at least one candidate image from the image database.
其中,所述待选图像的第一特征与所述目标图像的第一特征相同。也即,所述待选图像与所述目标图像的整体特征相同。所述图像数据库中包括与所述目标图像类别相同或相近或者来源相同的多张图像,例如,目标图像为遥感图像,图像数据库中包含属于遥感图像类或者自然风景图像类的多张图像。Wherein, the first feature of the candidate image is the same as the first feature of the target image. That is, the image to be selected has the same overall characteristics as the target image. The image database includes multiple images of the same or similar category or the same source as the target image. For example, the target image is a remote sensing image, and the image database contains multiple images belonging to the category of remote sensing images or natural landscape images.
本步骤无需进行相关的相似度距离的计算,就可以从较大的图像数据库中,确定出与目标图像的第一特征相同的少量的待选图像,缩小了检索范围,同时避免了相关相似度距离计算资源消耗大、效率低的问题,节省了计算资源,计算效率高。In this step, there is no need to calculate the relevant similarity distance, and a small number of candidate images that are the same as the first feature of the target image can be determined from a large image database, which reduces the scope of retrieval and avoids the related similarity. The problem of large consumption and low efficiency of distance computing resources saves computing resources and improves computing efficiency.
S103:根据所述目标图像的第二特征和所述至少一个待选图像的第二特征,从所述至少一个待选图像中,确定与所述目标图像相似的第二图像。S103: Determine a second image similar to the target image from the at least one candidate image according to the second feature of the target image and the second feature of the at least one candidate image.
具体的,所述目标图像的第二特征所描述的区域与所述待选图像的第二特征所述描述的区域至少在尺寸、位置上对应。例如,目标图像的一个第二特征用于描述所述目标图像中宽度为100px(pixel,像素),高度为130px的左上部分图像,对应的,待选图像的对应第二特征也用于描述所述待选图像中宽度为100px,高度为130px的左上部分图像。Specifically, the area described by the second feature of the target image corresponds to the area described by the second feature of the candidate image at least in size and position. For example, a second feature of the target image is used to describe the upper left part of the target image with a width of 100px (pixel, pixel) and a height of 130px. Correspondingly, the corresponding second feature of the image to be selected is also used to describe the selected The upper left part of the image to be selected has a width of 100px and a height of 130px.
本步骤在确定出的少量的待选图像中,根据所述目标图像的第二特征和所述至少一个待选图像的第二特征,进一步确定出与所述目标图像相似的第二图像。因为待选图像的个数比图像数据库中图像的个数小得多,实现计算及检索效率极大提高。In this step, among the determined small number of candidate images, a second image similar to the target image is further determined according to the second feature of the target image and the second feature of the at least one candidate image. Because the number of images to be selected is much smaller than the number of images in the image database, the efficiency of calculation and retrieval is greatly improved.
本申请实施例通过确定目标图像的第一特征和所述目标图像的第二特征,所述第一特征用于描述图像的整体特征,所述第二特征用于描述图像的局部特征;从图像数据库中,确定至少一个待选图像,其中,所述待选图像的第一特征与所述目标图像的第一特征相同;根据所述目标图像的第二特征和所述至少一个待选图像的第二特征,从所述至少一个待选图像中,确定与所述目标图像相似的第二图像,能够提高相似图像检索的效率。In this embodiment of the present application, by determining the first feature of the target image and the second feature of the target image, the first feature is used to describe the overall feature of the image, and the second feature is used to describe the local feature of the image; from the image In the database, at least one candidate image is determined, wherein the first feature of the candidate image is the same as the first feature of the target image; according to the second feature of the target image and the at least one candidate image The second feature is to determine a second image similar to the target image from the at least one candidate image, which can improve the efficiency of similar image retrieval.
图2是本申请实施例提供的相似图像检索的方法的另一种流程示意图,如图2所示,该方法可以包括以下步骤。Fig. 2 is another schematic flowchart of a similar image retrieval method provided in the embodiment of the present application. As shown in Fig. 2 , the method may include the following steps.
S201:根据所述目标图像的每个通道的多个像素值,确定所述目标图像的每个通道的特征;根据所述每个通道的特征,确定所述目标图像的第一特征。S201: Determine a feature of each channel of the target image according to multiple pixel values of each channel of the target image; determine a first feature of the target image according to the features of each channel.
具体的,所述通道包括但不限于红绿蓝RGB三个通道,每个通道的像素值的取值范围为0~255中的整数。或者由青、洋红和黄组成的CMY三个通道,每个通道的像素值的取值范围为0~100中的整数。所述每个通道的特征可以用向量、矩阵或表达式中的至少一种表示。Specifically, the channels include but are not limited to three channels of red, green and blue RGB, and the value range of the pixel value of each channel is an integer from 0 to 255. Or three CMY channels composed of cyan, magenta and yellow, and the value range of the pixel value of each channel is an integer from 0 to 100. The feature of each channel may be represented by at least one of vector, matrix or expression.
可选的,对所述通道的像素值的范围进行缩小,在不改变目标图像的特征的情况下,简化所述通道的特征的表示。例如,对R通道的一个像素值rij通过以下公式进行转换:Optionally, the range of pixel values of the channel is reduced, and the representation of the feature of the channel is simplified without changing the feature of the target image. For example, a pixel value r ij of the R channel is converted by the following formula:
其中,mod4表示rij对4进行取余运算,表示如果rij是4的整数倍,则不改变rij的像素值;如果rij不是4的整数倍,则减小rij,直至其为4的整数倍。通过该公式可以将邻近的像素值用一个像素值表示,即将像素值的取值范围从0~255中的整数缩小至0~252中4的整数倍。Among them, mod4 means that r ij performs a remainder operation on 4, It means that if r ij is an integer multiple of 4, the pixel value of r ij will not be changed; if r ij is not an integer multiple of 4, then reduce r ij until it is an integer multiple of 4. Through this formula, adjacent pixel values can be represented by one pixel value, that is, the value range of the pixel value is reduced from an integer in 0 to 255 to an integer multiple of 4 in 0 to 252.
通过对图像像素值的上述处理,即将像素值相差在4以内的两个像素转换为同一个像素(归为一类)使得生成的第一特征更健壮。Through the above-mentioned processing of image pixel values, that is, converting two pixels whose pixel values differ within 4 into the same pixel (classified into one category), the generated first feature is more robust.
S202:从所述目标图像中确定至少一个第一图像。S202: Determine at least one first image from the target image.
其中,所述第一图像为所述目标图像中部分的图像,不同的第一图像对应的目标图像的部分不相同。具体的,所述至少一个第一图像对应的目标图像中的部分可以为规则部分或不规则部分。例如将矩形的所述目标图像按照等高等宽均分为四个小矩形的第一图像,也可以是不等分的其他分法,可以根据实际情况设置,在此不作具体限制。Wherein, the first image is an image of a part of the target image, and different first images correspond to different parts of the target image. Specifically, the part in the target image corresponding to the at least one first image may be a regular part or an irregular part. For example, the rectangular target image is equally divided into four small rectangular first images according to equal height and width, or other division methods of unequal division, which can be set according to actual conditions, and are not specifically limited here.
可选的,所述第一图像之间也可以有重叠部分。Optionally, there may also be overlapping parts between the first images.
S203:针对每个所述第一图像,根据所述第一图像的每个通道的多个像素值,确定所述第一图像的每个通道的特征;根据所述第一图像的每个通道的特征,确定所述目标图像的与所述第一图像相对应的第二特征。S203: For each of the first images, according to a plurality of pixel values of each channel of the first image, determine the characteristics of each channel of the first image; according to each channel of the first image and determining a second feature of the target image corresponding to the first image.
本步骤可以采用本实施例步骤S201的描述,在此不再赘述。This step can adopt the description of step S201 in this embodiment, and will not be repeated here.
需要说明的是,前述确定出的第一图像越多、多个第一图像涵盖的目标图像的范围越大,提取的第二特征就越多,特征表达越丰富。It should be noted that, the more the above-mentioned determined first images and the larger the range of the target image covered by the plurality of first images, the more second features are extracted and the feature expression is richer.
S204:从图像数据库中,确定至少一个待选图像。S204: Determine at least one candidate image from the image database.
本步骤可以采用图1实施例步骤S102的描述,在此不再赘述。This step can adopt the description of step S102 in the embodiment of FIG. 1 , and will not be repeated here.
S205:针对每个所述待选图像,分别将所述目标图像的每个第二特征和所述待选图像的对应第二特征进行比较,根据多个所述比较的结果,确定所述待选图像对应的相似度值。S205: For each candidate image, respectively compare each second feature of the target image with the corresponding second feature of the candidate image, and determine the candidate image according to multiple comparison results. The similarity value corresponding to the selected image.
具体的,将目标图像的每个第二特征与待选图像的对应第二特征进行相似度比较,所述比较的结果可以是根据每个对应的第二特征的间相似度进行打分的结果,得分值可以用0到1之间的小数或百分数表示。例如,若目标图像与待选图像有4组对应的第二特征,即对应的第一图像有4个,可以采用如下公式进行打分:Specifically, each second feature of the target image is compared with the corresponding second feature of the candidate image for similarity, and the result of the comparison may be the result of scoring according to the similarity between each corresponding second feature, Score values can be expressed as decimals or percentages between 0 and 1. For example, if the target image and the candidate image have 4 sets of corresponding second features, that is, there are 4 corresponding first images, the following formula can be used for scoring:
其中,j=1,2,3,4,表示待选图像pi在第j个第二特征上的得分值,表示待选图像pi的第j个第二特征,表示目标图像p0的第j个第二特征。where j=1,2,3,4, Indicates the score value of the candidate image p i on the jth second feature, Indicates the jth second feature of the candidate image p i , Denotes the jth second feature of the target image p0 .
然后,根据多组对应第二特征比较的结果,确定待选图像与目标图像的相似度值。具体地,可以将所述多组对应第二特征比较的结果进行加和或者取均值等运算方式,获得所述待选图像与目标图像的相似度值。例如,采用如下公式对每组第二特征比较的结果求和,作为pi与p0的相似度值:Then, the similarity value between the candidate image and the target image is determined according to the comparison results of multiple groups corresponding to the second feature. Specifically, the comparison results of the plurality of groups corresponding to the second feature may be summed or averaged to obtain the similarity value between the candidate image and the target image. For example, the following formula is used to sum the results of each group of second feature comparisons as the similarity value of p i and p 0 :
可选的,为了使不同的待选图像之间相似度结果的差异化,采用如下公式增加一组第二特征(第5个)的比较,实现比较结果的精确度:Optionally, in order to differentiate the similarity results between different candidate images, the following formula is used to increase the comparison of a set of second features (the fifth) to achieve the accuracy of the comparison results:
其中,和表示目标图像p0的第二特征在三个颜色通道的特征分量,对in, and Represents the feature components of the second feature of the target image p 0 in the three color channels, for
应的,和表示待选图像pi的第二特征在三个颜色通道的特征分量。对三个颜色通道的特征分量一一对应比较,选出差异最大的特征分量,进而计算该特征分量对应颜色通道上p0和pi的相似度。should, and Represents the feature components of the second feature of the candidate image p i in the three color channels. The feature components of the three color channels are compared one by one, and the feature component with the largest difference is selected, and then the similarity between p 0 and p i on the corresponding color channel of the feature component is calculated.
需要说明的是,上述对应每个第二特征的相似度得分值设置为0.2,可以使最后得到的待选图像的相似度值在[0,1]之间,但该得分值还可以设为其他值,当得分值为其他值时,可以将最后得到的相似度值归一化到[0,1]之间。It should be noted that, the above-mentioned similarity score value corresponding to each second feature is set to 0.2, so that the similarity value of the finally obtained candidate image is between [0,1], but the score value can also be Set to other values, when the score value is other values, the final similarity value can be normalized to [0,1].
S206:将相似度值最高的待选图像确定为所述第二图像。S206: Determine the candidate image with the highest similarity value as the second image.
具体的,在本步骤之前,对每个待选图像的相似度值进行排序,确定相似度值最高的待选图像。在一种实现方式中,所述确定目标图像的第一特征,包括:将以下字符串f0确定为所述目标图像的第一特征:Specifically, before this step, the similarity values of each candidate image are sorted to determine the candidate image with the highest similarity value. In an implementation manner, the determining the first feature of the target image includes: determining the following character string f 0 as the first feature of the target image:
f0=h×w,δ1_δ2,j11_j12_…_j1m_j21_j22_…_j2m_j31_j32_…_j3m,其中,h和w分别为所述目标图像的高和宽,δ1、δ2和m为预设参数,满足δ1>δ2,m∈[2,255],ji1、ji2、…jim分别为所述目标图像的第i个通道中多个像素值中灰度占比大于等于δ1的前m个像素值,δ2用于对ji1、ji2、…jim的顺序进行调整,所述第i个通道包括红绿蓝RGB三个通道中的一者。f 0 =h×w,δ 1 _δ 2 ,j 11 _j 12 _…_j 1m _j 21 _j 22 _…_j 2m _j 31 _j 32 _…_j 3m , where h and w are the heights of the target image and width, δ 1 , δ 2 and m are preset parameters, satisfying δ 1 >δ 2 , m∈[2,255], j i1 , j i2 , ... j im are the multi- Among the pixel values, the grayscale ratio is greater than or equal to the first m pixel values of δ 1 , and δ 2 is used to adjust the order of j i1 , j i2 , ... j im , and the i-th channel includes red, green, blue, RGB one of the channels.
具体的,分别对每个通道中包含的多个像素值对应的所述灰度占比从大到小排序,截取前m个大于等于δ1的灰度占比组成特征向量,例如,δ1=1。在计算各像素值的灰度占比后,对将每个通道中像素值为j的灰度所占的比例uj从大到小排序,截取灰度占比大于等于δ1的前m个比值组成向量,即即满足条件k=1,2,...,n,如果大于等于δ1的比值uj不足m个,那么用u-1=0补足。例如,u=下标(ji1,ji2,-1,-1,-1)对应的像素值为(252,68,-1,-1,-1),对于每个通道的像素都做类似的处理,即可得到所述第一特征。Specifically, the grayscale proportions corresponding to the multiple pixel values contained in each channel are sorted from large to small, and the first m grayscale proportions greater than or equal to δ1 are intercepted to form a feature vector, for example, δ1 =1. After calculating the gray scale ratio of each pixel value, the Sort the proportion u j of the grayscale of pixel value j in each channel from large to small, and intercept the first m ratios whose grayscale proportion is greater than or equal to δ 1 to form a vector, that is That is to meet the conditions k=1,2,...,n, if there are less than m ratios u j greater than or equal to δ 1 , use u −1 =0 to make up. For example, u = The pixel value corresponding to the subscript (j i1 , j i2 , -1,-1,-1) is (252, 68, -1, -1, -1), and similar processing is done for the pixels of each channel. The first feature can be obtained.
为了使提取的特征具有更好的泛化能力,本实施例还可以对前述提取的特征向量进行调整,具体的,如果相邻的灰度占比满足二者作差的结果小于δ2,且对应的像素值高的灰度占比在对应的像素值低的灰度占比之前时,其中,δ2可设置为小于δ1的较小的数,则将像素值低的灰度占比与像素值高的灰度占比在所述特征向量中的顺序进行调换。例如,特征向量In order to make the extracted features have better generalization ability, this embodiment can also adjust the above-mentioned extracted feature vectors. Specifically, if the proportion of adjacent gray levels satisfies the result of the difference between the two is less than δ 2 , and When the grayscale ratio of the corresponding high pixel value is before the grayscale ratio of the corresponding low pixel value, where δ 2 can be set to a smaller number smaller than δ1 , then the grayscale ratio of the low pixel value The order of the grayscale ratio with the higher pixel value in the feature vector is exchanged. For example, the eigenvector
u=(7.058,6.922,5.824,4.913,4.518u=(7.058, 6.922, 5.824, 4.913, 4.518
对应的像素值为(12,16,20,24,8),取δ2=0.5进行顺序调整,得到调整后的特征向量The corresponding pixel values are (12, 16, 20, 24, 8), take δ 2 =0.5 for sequential adjustment, and get the adjusted feature vector
对应的像素值为(12,16,20,8,24)。The corresponding pixel values are (12, 16, 20, 8, 24).
例如,目标图像的特征高和宽分别为h=421和w=690,预设参数δ1=1.0,δ2=0.5,m=5,则目标图像的第一特征可表示为:For example, the feature height and width of the target image are h=421 and w=690 respectively, and the preset parameters δ 1 =1.0, δ 2 =0.5, m=5, then the first feature of the target image can be expressed as:
f0=421×690,1.0_0.5,0_4_8_12_16_0_4_8_12_16_0_4_8_12_16。f 0 =421×690,1.0_0.5,0_4_8_12_16_0_4_8_12_16_0_4_8_12_16.
另外,如果和的所有元素都是0,那么令δ1=δ1/2,然后重新计算和指纹f0是一个用逗号分割的字符串,共包含3段。当m=5时,f0=h×w,δ1_δ2,j11_j12_j13_j14_j15_j21_j22_j23_j24_j25_j31_j22_j33_j34_j35,其中×是字符,_也是字符。Additionally, if and All elements of are 0, then let δ 1 = δ 1 /2, and then recalculate and Fingerprint f 0 is a comma-separated character string consisting of 3 segments. When m=5, f 0 =h×w,δ 1 _δ 2 ,j 11 _j 12 _j 13 _j 14 _j 15 _j 21 _j 22 _j 23 _j 24 _j 25 _j 31 _j 22 _j 33 _j 34 _j 35 , where × is a character, and _ is also a character.
在一种实现方式中,所述目标图像的第二特征,包括:将以下字符串fk确定为所述目标图像的第二特征:In an implementation manner, the second feature of the target image includes: determining the following character string f k as the second feature of the target image:
fk=l11_l12_…_l1m_l21_l22_…_l2m_l31_l32_…_l3m f k =l 11 _l 12 _…_l 1m _l 21 _l 22 _…_l 2m _l 31 _l 32 _…_l 3m
其中,li1、li2、…、lim为所述第一图像的第i个通道的多个像素值中灰度占比大于等于δ1的前m个像素值,所述第i个通道包括红绿蓝RGB三个通道中的一者,所述第一图像为所述目标图像的第k部分的图像,k=1,2,…,K,K为所述目标图像中第一图像的数量,所述第一图像的高或h1=h-所述第一图像的宽或或或h和w分别为所述目标图像的高和宽。Among them, l i1 , l i2 , ..., l im are the first m pixel values whose grayscale ratio is greater than or equal to δ 1 among the plurality of pixel values of the i-th channel of the first image, and the i-th channel Including one of the three channels of red, green and blue RGB, the first image is the image of the kth part of the target image, k=1, 2,..., K, K is the first image in the target image The number of the first image of the high or h 1 =h- The width of the first image or or or h and w are the height and width of the target image, respectively.
其中,h和w分别为所述目标图像的高和宽。对所述第一图像的上述设置可以有效检索出区别只在于是否有水印的相似图像。并且,将图像的特征用字符串进行表示,通过比较两个字符串是否相同,无需进行距离计算,节省了计算资源,提高了计算效率。Wherein, h and w are the height and width of the target image respectively. The above settings for the first image can effectively retrieve similar images whose only difference lies in whether there is a watermark. Moreover, the features of the image are represented by character strings, and by comparing whether two character strings are the same, no distance calculation is required, which saves computing resources and improves computing efficiency.
可选地,还可以将各像素值的灰度占比作为目标图像的第二特征,进一步使提取的特征更丰富,提高图像检索的准确度。在一种实现方式中,所述目标图像的第二特征,还包括:将以下向量确定为所述目标图像的第二特征:Optionally, the gray ratio of each pixel value can also be used as the second feature of the target image, so as to further enrich the extracted features and improve the accuracy of image retrieval. In an implementation manner, the second feature of the target image further includes: determining the following vectors as the second feature of the target image:
其中,分别为所述目标图像的第i个通道中像素值分别为ji1、ji2、…、jim的灰度占比,为所述目标图像的第i个通道中多个像素值中像素值等于jim的个数。in, are respectively the grayscale ratios of pixel values j i1 , j i2 , ..., j im in the ith channel of the target image, is the number of pixel values equal to j im among multiple pixel values in the i-th channel of the target image.
本申请实施例通过根据所述目标图像的每个通道的多个像素值,确定所述目标图像的每个通道的特征;根据所述每个通道的特征,确定所述目标图像的第一特征;从所述目标图像中确定至少一个第一图像;针对每个所述第一图像,根据所述第一图像的每个通道的多个像素值,确定所述第一图像的每个通道的特征;根据所述第一图像的每个通道的特征,确定所述目标图像的与所述第一图像相对应的第二特征;从图像数据库中,确定至少一个待选图像;针对每个所述待选图像,分别将所述目标图像的每个第二特征和所述待选图像的对应第二特征进行比较,根据多个所述比较的结果,确定所述待选图像对应的相似度值;将相似度值最高的待选图像确定为所述第二图像,能够节省计算资源,提高相似图像检索的效率和准确率。In this embodiment of the present application, the feature of each channel of the target image is determined according to multiple pixel values of each channel of the target image; and the first feature of the target image is determined according to the feature of each channel ; Determining at least one first image from the target image; For each of the first images, according to a plurality of pixel values of each channel of the first image, determine the value of each channel of the first image feature; according to the feature of each channel of the first image, determine the second feature of the target image corresponding to the first image; from the image database, determine at least one candidate image; for each selected the image to be selected, respectively comparing each second feature of the target image with the corresponding second feature of the image to be selected, and determining the similarity corresponding to the image to be selected according to a plurality of comparison results value; determining the candidate image with the highest similarity value as the second image can save computing resources and improve the efficiency and accuracy of similar image retrieval.
图3示出本申请实施例提供的相似图像检索的装置的结构示意图,该装置300包括:第一确定模块301、筛选模块302和第二确定模块303。FIG. 3 shows a schematic structural diagram of an apparatus for similar image retrieval provided by an embodiment of the present application. The
第一确定模块301用于确定目标图像的第一特征和所述目标图像的第二特征,所述第一特征用于描述图像的整体特征,所述第二特征用于描述图像的局部特征;筛选模块302用于从图像数据库中,确定至少一个待选图像,其中,所述待选图像的第一特征与所述目标图像的第一特征相同;第二确定模块303用于根据所述目标图像的第二特征和所述至少一个待选图像的第二特征,从所述至少一个待选图像中,确定与所述目标图像相似的第二图像。The first determining
在一种实现方式中,所述第二确定模块303还用于针对每个所述待选图像,分别将所述目标图像的每个第二特征和所述待选图像的对应第二特征进行比较,根据多个所述比较的结果,确定所述待选图像对应的相似度值;将相似度值最高的待选图像确定为所述第二图像。In an implementation manner, the second determining
在一种实现方式中,所述第一确定模块301还用于根据所述目标图像的每个通道的多个像素值,确定所述目标图像的每个通道的特征;根据所述每个通道的特征,确定所述目标图像的第一特征。In an implementation manner, the first determining
在一种实现方式中,所述第一确定模块301还用于从所述目标图像中确定至少一个第一图像,所述第一图像为所述目标图像中部分的图像,不同的第一图像对应的目标图像的部分不相同;针对每个所述第一图像,根据所述第一图像的每个通道的多个像素值,确定所述第一图像的每个通道的特征;根据所述第一图像的每个通道的特征,确定所述目标图像的与所述第一图像相对应的第二特征。In an implementation manner, the first determining
在一种实现方式中,所述第一确定模块301还用于将以下字符串f0确定为所述目标图像的第一特征:In an implementation manner, the
f0=h×w,δ1_δ2,j11_j12_…_j1m_j21_j22_…_j2m_j31_j32_…_j3m f 0 =h×w,δ 1 _δ 2 ,j 11 _j 12 _…_j 1m _j 21 _j 22 _…_j 2m _j 31 _j 32 _…_j 3m
其中,h和w分别为所述目标图像的高和宽,δ1、δ2和m为预设参数,满足δ1>δ2,m∈[2,255],ji1、ji2、…、jim为所述目标图像的第i个通道的多个像素值中灰度占比大于等于δ1的前m个像素值,所述第i个通道包括红绿蓝RGB三个通道中的一者。Wherein, h and w are the height and width of the target image respectively, δ 1 , δ 2 and m are preset parameters, satisfying δ 1 >δ 2 , m∈[2,255], j i1 , j i2 ,..., j im is the first m pixel values whose grayscale ratio is greater than or equal to δ1 among the plurality of pixel values of the i-th channel of the target image, and the i-th channel includes one of the three channels of red, green, blue, RGB By.
在一种实现方式中,所述第一确定模块301还用于将以下字符串fk确定为所述目标图像的第二特征:In an implementation manner, the first determining
fk=11_12_…_l1m_21_22_…_l2m_31_32_…_l3m f k = 11 _ 12 _…_l 1m _ 21 _ 22 _…_l 2m _ 31 _ 32 _…_l 3m
其中,li1、li2、…、lim为所述第一图像的第i个通道的多个像素值中灰度占比大于等于δ1的前m个像素值,所述第i个通道包括红绿蓝RGB三个通道中的一者,所述第一图像为所述目标图像的第k部分的图像,k=1,2,…,K,K为所述目标图像中第一图像的数量,所述第一图像的高或所述第一图像的宽或或或h和w分别为所述目标图像的高和宽。Among them, l i1 , l i2 , ..., l im are the first m pixel values whose grayscale ratio is greater than or equal to δ 1 among the plurality of pixel values of the i-th channel of the first image, and the i-th channel Including one of the three channels of red, green and blue RGB, the first image is the image of the kth part of the target image, k=1, 2,..., K, K is the first image in the target image The number of the first image of the high or The width of the first image or or or h and w are the height and width of the target image, respectively.
在一种现方式中,所述第一确定模块301还用于将以下向量确定为所述目标图像的第二特征:In an existing manner, the first determining
其中,分别为所述目标图像的第i个通道中像素值分别为ji1、ji2、…、jim的灰度占比,为所述目标图像的第i个通道中多个像素值中像素值等于jim的个数。in, are respectively the grayscale ratios of pixel values j i1 , j i2 , ..., j im in the ith channel of the target image, is the number of pixel values equal to j im among multiple pixel values in the i-th channel of the target image.
本申请实施例提供的该装置300,可执行前文方法实施例中所述的各方法,并实现前文方法实施例中所述的各方法的功能和有益效果,在此不再赘述。The
图4示出执行本申请实施例提供的相似图像检索的电子设备的硬件结构示意图,参考该图,在硬件层面,电子设备包括处理器,可选地,包括内部总线、网络接口、存储器。其中,存储器可能包含内存,例如高速随机存取存储器(Random-Access Memory,RAM),也可能还包括非易失性存储器(non-volatile memory),例如至少1个磁盘存储器等。当然,该电子设备还可能包括其他业务所需要的硬件。Fig. 4 shows a schematic diagram of the hardware structure of an electronic device performing similar image retrieval provided by an embodiment of the present application. Referring to this figure, at the hardware level, the electronic device includes a processor, and optionally includes an internal bus, a network interface, and a memory. Wherein, the memory may include a memory, such as a high-speed random-access memory (Random-Access Memory, RAM), and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory. Of course, the electronic device may also include hardware required by other services.
处理器、网络接口和存储器可以通过内部总线相互连接,该内部总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(ExtendedIndustry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,该图中仅用一个双向箭头表示,但并不表示仅有一根总线或一种类型的总线。The processor, network interface, and memory can be interconnected by an internal bus, which can be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an extended industry standard Structure (Extended Industry Standard Architecture, EISA) bus, etc. The bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one double-headed arrow is used in this figure, but it does not mean that there is only one bus or one type of bus.
存储器,用于存放程序。具体地,程序可以包括程序代码,所述程序代码包括计算机操作指令。存储器可以包括内存和非易失性存储器,并向处理器提供指令和数据。Memory for storing programs. Specifically, the program may include program code, and the program code includes computer operation instructions. Storage, which can include internal memory and nonvolatile storage, provides instructions and data to the processor.
处理器从非易失性存储器中读取对应的计算机程序到内存中然后运行,在逻辑层面上形成定位目标用户的装置。处理器,执行存储器所存放的程序,并具体用于执行前文方法实施例中图1-2所述的各方法,并实现前文方法实施例中图1-2所述的各方法的功能和有益效果,在此不再赘述。The processor reads the corresponding computer program from the non-volatile memory into the memory and then runs it, forming a device for locating target users on a logical level. The processor executes the program stored in the memory, and is specifically used to execute the methods described in Figure 1-2 in the foregoing method embodiments, and realize the functions and benefits of the various methods described in Figure 1-2 in the foregoing method embodiments effect, which will not be repeated here.
上述如本申请图1-2所示实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。The above method disclosed in the embodiments shown in FIGS. 1-2 of the present application may be applied to a processor or implemented by the processor. A processor may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software. The above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, CPU), a network processor (Network Processor, NP), etc.; it can also be a digital signal processor (Digital Signal Processor, DSP), a dedicated integrated Circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components. Various methods, steps, and logic block diagrams disclosed in the embodiments of the present application may be implemented or executed. A general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like. The steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor. The software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register. The storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
该电子设备还可执行前文方法实施例中图1-2所述的各方法,并实现前文方法实施例中图1-2所述的各方法的功能和有益效果,在此不再赘述。The electronic device may also execute the methods described in FIGS. 1-2 in the foregoing method embodiments, and realize the functions and beneficial effects of the methods described in FIGS. 1-2 in the foregoing method embodiments, which will not be repeated here.
当然,除了软件实现方式之外,本申请的电子设备并不排除其他实现方式,比如逻辑器件抑或软硬件结合的方式等等,也就是说以下处理流程的执行主体并不限定于各个逻辑单元,也可以是硬件或逻辑器件。Of course, in addition to the software implementation, the electronic device of the present application does not exclude other implementations, such as logic devices or a combination of software and hardware, etc., that is to say, the execution subject of the following processing flow is not limited to each logic unit, It can also be a hardware or logic device.
本申请实施例还提出了一种计算机可读存储介质,所述计算机可读介质存储一个或多个程序,所述一个或多个程序当被包括多个应用程序的电子设备执行时,使得所述电子设备执行前文方法实施例中图1-2所述的各方法,并实现前文方法实施例中图1-2所述的各方法的功能和有益效果,在此不再赘述。The embodiment of the present application also provides a computer-readable storage medium, the computer-readable medium stores one or more programs, and when the one or more programs are executed by an electronic device including multiple application programs, the The electronic device executes the methods described in FIGS. 1-2 in the foregoing method embodiments, and realizes the functions and beneficial effects of the methods described in FIGS. 1-2 in the foregoing method embodiments, and details are not repeated here.
其中,所述的计算机可读存储介质包括只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。Wherein, the computer-readable storage medium includes a read-only memory (Read-Only Memory, ROM for short), a random access memory (Random Access Memory, RAM for short), a magnetic disk or an optical disk, and the like.
进一步地,本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,实现前文方法实施例中图1-2所述的各方法的功能和有益效果,在此不再赘述。Further, the embodiment of the present application also provides a computer program product, the computer program product includes a computer program stored on a non-transitory computer-readable storage medium, the computer program includes program instructions, when the program instructions When executed by a computer, the functions and beneficial effects of the methods described in Figs. 1-2 in the foregoing method embodiments are realized, and details are not repeated here.
总之,以上所述仅为本申请的较佳实施例,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。In a word, the above descriptions are only preferred embodiments of the present application, and are not intended to limit the protection scope of the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included within the protection scope of this application.
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。The systems, devices, modules, or units described in the above embodiments can be specifically implemented by computer chips or entities, or by products with certain functions. A typical implementing device is a computer. Specifically, the computer may be, for example, a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or Combinations of any of these devices.
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。Computer-readable media, including both permanent and non-permanent, removable and non-removable media, can be implemented by any method or technology for storage of information. Information may be computer readable instructions, data structures, modules of a program, or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridge, tape magnetic disk storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device. As defined herein, computer-readable media excludes transitory computer-readable media, such as modulated data signals and carrier waves.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。It should be noted that, in this document, the term "comprising", "comprising" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element. In addition, it should be pointed out that the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。Through the description of the above embodiments, those skilled in the art can clearly understand that the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation. Based on such an understanding, the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , optical disc), including several instructions to enable a terminal (which may be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of the present application.
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。The embodiments of the present application have been described above in conjunction with the accompanying drawings, but the present application is not limited to the above-mentioned specific implementations. The above-mentioned specific implementations are only illustrative and not restrictive. Those of ordinary skill in the art will Under the inspiration of this application, without departing from the purpose of this application and the scope of protection of the claims, many forms can also be made, all of which belong to the protection of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211646951.7A CN116127118A (en) | 2022-12-21 | 2022-12-21 | Method, device, electronic equipment and storage medium for searching similar images |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211646951.7A CN116127118A (en) | 2022-12-21 | 2022-12-21 | Method, device, electronic equipment and storage medium for searching similar images |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116127118A true CN116127118A (en) | 2023-05-16 |
Family
ID=86296574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211646951.7A Pending CN116127118A (en) | 2022-12-21 | 2022-12-21 | Method, device, electronic equipment and storage medium for searching similar images |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116127118A (en) |
-
2022
- 2022-12-21 CN CN202211646951.7A patent/CN116127118A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5797789B2 (en) | Method and system for quasi-duplicate image retrieval | |
US11132392B2 (en) | Image retrieval method, image retrieval apparatus, image retrieval device and medium | |
CN112651438A (en) | Multi-class image classification method and device, terminal equipment and storage medium | |
AU2012202352A1 (en) | Method, system and apparatus for determining a hash code representing a portion of an image | |
CN111666442B (en) | Image retrieval method and device and computer equipment | |
CN110188217A (en) | Image duplicate checking method, apparatus, equipment and computer-readable storage media | |
CN116595208B (en) | Classification methods, devices and electronic equipment for hyperspectral images | |
WO2022100133A1 (en) | Scene recognition method and apparatus, intelligent device, storage medium and computer program | |
CN116108393B (en) | Power sensitive data classification and classification method and device, storage medium and electronic equipment | |
CN114745532A (en) | White balance processing method and device for mixed color temperature scene, storage medium and terminal | |
CN102592129B (en) | Scenario-driven image characteristic point selection method for smart phone | |
US9424484B2 (en) | Feature interpolation | |
CN116630630A (en) | Semantic segmentation method, semantic segmentation device, computer equipment and computer readable storage medium | |
CN110197213A (en) | Image matching method, device and equipment neural network based | |
CN107316063A (en) | Multiple labeling sorting technique, device, medium and computing device | |
CN110428473A (en) | A kind of confrontation based on auxiliary variable generates the color image gray processing method of network | |
CN116127118A (en) | Method, device, electronic equipment and storage medium for searching similar images | |
KR20100104844A (en) | Method for searching images | |
CN111553442A (en) | A method and system for optimizing classifier chain label sequence | |
JP6121030B1 (en) | Image search device, image search method, image search program, index data generation device, index data generation method, and index data generation program | |
CN115937574A (en) | Sensitive picture detection method and device, storage medium and terminal | |
AU2021240190A1 (en) | Object sequence recognition method, network training method, apparatuses, device, and medium | |
CN106778811B (en) | Image dictionary generation method, image processing method and device | |
Murugan et al. | Content based image retrieval using color and texture feature extraction in Android | |
CN111918137B (en) | A video feature-based push method, device, storage medium and terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |