CN116103042A - A preparation method of fluorescent carbon quantum dots using castor seeds as carbon source - Google Patents
A preparation method of fluorescent carbon quantum dots using castor seeds as carbon source Download PDFInfo
- Publication number
- CN116103042A CN116103042A CN202310062865.XA CN202310062865A CN116103042A CN 116103042 A CN116103042 A CN 116103042A CN 202310062865 A CN202310062865 A CN 202310062865A CN 116103042 A CN116103042 A CN 116103042A
- Authority
- CN
- China
- Prior art keywords
- carbon quantum
- quantum dots
- castor
- castor seeds
- carbon source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 74
- 235000004443 Ricinus communis Nutrition 0.000 title claims abstract description 53
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 239000000843 powder Substances 0.000 claims abstract description 31
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000008367 deionised water Substances 0.000 claims abstract description 21
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 21
- 239000007864 aqueous solution Substances 0.000 claims abstract description 16
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 239000000741 silica gel Substances 0.000 claims abstract description 9
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 9
- 239000006228 supernatant Substances 0.000 claims abstract description 9
- 238000003756 stirring Methods 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- 238000002390 rotary evaporation Methods 0.000 claims abstract description 7
- 238000001035 drying Methods 0.000 claims abstract description 5
- 239000000047 product Substances 0.000 claims abstract description 3
- 230000035484 reaction time Effects 0.000 claims description 6
- 238000004440 column chromatography Methods 0.000 claims description 5
- 238000004108 freeze drying Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 238000005119 centrifugation Methods 0.000 claims description 2
- -1 polytetrafluoroethylene Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims 2
- 238000007873 sieving Methods 0.000 claims 2
- 238000001914 filtration Methods 0.000 claims 1
- 239000012530 fluid Substances 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 4
- 238000012984 biological imaging Methods 0.000 abstract description 2
- 238000004020 luminiscence type Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 238000004811 liquid chromatography Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 8
- 230000005284 excitation Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000009102 absorption Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 240000000528 Ricinus communis Species 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 230000000214 effect on organisms Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/65—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明提供了一种以蓖麻种子为碳源的荧光碳量子点的制备方法,该方法包括以下步骤:将去皮的蓖麻种子粉分散至去离子水中,搅拌均匀,放入水热釜中在干燥箱里进行水热反应;反应结束后取出产物过滤、离心,取出上清液旋蒸浓缩;浓缩后的水溶液加入到硅胶粉填充的液相色谱柱中,先用二氯甲烷洗掉杂质,再用去离子水提取出蓖麻种子碳量子点,最后冷冻干燥成粉末。本方法制备的碳量子点表面无粘连的有机杂质,晶格条纹清晰可见。另外,本制备方法成本低廉,施行简单,制备出来的碳量子点发光强、分散性好,在不同pH环境中可稳定发光,有望广泛应用于化学探测以及生物成像。
The invention provides a method for preparing fluorescent carbon quantum dots using castor seeds as a carbon source. The method comprises the following steps: dispersing peeled castor seed powder into deionized water, stirring evenly, and putting it into a hydrothermal kettle The hydrothermal reaction is carried out in a drying oven; after the reaction, the product is taken out, filtered, centrifuged, and the supernatant is taken out and concentrated by rotary evaporation; the concentrated aqueous solution is added to a liquid chromatography column filled with silica gel powder, and washed off with dichloromethane Impurities, and then use deionized water to extract carbon quantum dots from castor seeds, and finally freeze-dry them into powder. The surface of the carbon quantum dot prepared by the method has no cohesive organic impurities, and lattice fringes are clearly visible. In addition, the preparation method has low cost and simple implementation, and the prepared carbon quantum dots have strong luminescence and good dispersibility, can emit light stably in different pH environments, and are expected to be widely used in chemical detection and biological imaging.
Description
技术领域technical field
本发明涉及一种碳量子点的制备方法,具体地说是一种以蓖麻种子为碳源的荧光碳量子点的制备方法。The invention relates to a method for preparing carbon quantum dots, in particular to a method for preparing fluorescent carbon quantum dots using castor seeds as carbon sources.
背景技术Background technique
由于纳米荧光材料具有荧光高效、性能稳定以及可调协性强等优点,其在光电器件以及传感探测方面有着巨大的应用前景。而传统的无机半导体量子点(如CdTe、CdSe)以及无机钙钛矿量子点(如CsPbI3、CsPbBr3)虽然发光性能优异,但由于其中所含有的重金属对生物体以及环境存在较大的负面作用,且普遍制备较为复杂、原料较为昂贵。近年来,许多高性能、易调控的碳量子点被国内外的研究人员竞相报道。作为一种新型的荧光纳米材料,碳量子点具有低毒或者无毒性,良好的生物相容性以及水溶性,且制备原料廉价易得。在发光器件、传感探测、生物医学等方面都有着非常广阔的应用空间。Due to the advantages of high-efficiency fluorescence, stable performance, and strong adjustability, nano-fluorescent materials have great application prospects in optoelectronic devices and sensing and detection. Although the traditional inorganic semiconductor quantum dots (such as CdTe, CdSe) and inorganic perovskite quantum dots (such as CsPbI 3 , CsPbBr 3 ) have excellent luminous performance, they have relatively negative effects on organisms and the environment due to the heavy metals contained in them. The effect, and the general preparation is more complicated, and the raw materials are more expensive. In recent years, many high-performance and easily regulated carbon quantum dots have been reported by researchers at home and abroad. As a new type of fluorescent nanomaterial, carbon quantum dots have low or no toxicity, good biocompatibility and water solubility, and the preparation raw materials are cheap and easy to obtain. It has a very broad application space in light-emitting devices, sensing detection, biomedicine, etc.
碳源的选择对原位合成碳量子点来说至关重要,其作用在杂原子掺杂以及表面基团调控的研究中尤为明显。生物质碳源在自然界中的储量丰富,且常常含有氮、磷等元素,因此有着制备优良碳点的巨大潜力。但是目前由生物碳源制备的碳点,常常不够纯净,且荧光大都不具有pH稳定性,换言之,使用一种廉价易得的生物碳源制备出在不同pH环境中发光稳定的洁净碳点具有重大意义。The choice of carbon source is crucial for the in situ synthesis of carbon quantum dots, especially in the study of heteroatom doping and surface group regulation. Biomass carbon sources are abundant in nature and often contain elements such as nitrogen and phosphorus, so they have great potential for preparing excellent carbon dots. However, the carbon dots prepared from biological carbon sources are often not pure enough, and most of the fluorescence is not pH stable. Great significance.
发明内容Contents of the invention
本发明的目的就是提供一种以蓖麻种子为碳源的荧光碳量子点的制备方法,以得到在不同pH环境中发光稳定的碳量子点。The purpose of the present invention is to provide a method for preparing fluorescent carbon quantum dots using castor seeds as a carbon source, so as to obtain carbon quantum dots that emit light stably in different pH environments.
本发明是这样实现的:一种以蓖麻种子为碳源的荧光碳量子点的制备方法,包括以下步骤:The present invention is achieved in that a kind of preparation method of the fluorescent carbon quantum dot that takes castor bean seeds as carbon source comprises the following steps:
a、将去皮的蓖麻种子粉分散至去离子水中,搅拌均匀,放入水热釜中在干燥箱里进行水热反应;a, disperse the peeled castor seed powder into deionized water, stir evenly, put into a hydrothermal kettle and carry out hydrothermal reaction in a drying box;
b、反应结束后取出产物过滤、离心,取出上清液旋蒸浓缩;b. After the reaction is finished, the product is taken out, filtered, centrifuged, and the supernatant is taken out and concentrated by rotary evaporation;
c、浓缩后的水溶液加入到硅胶粉填充的色谱柱中,先用二氯甲烷洗掉杂质,再用去离子水提取出蓖麻种子碳量子点,最后冷冻干燥成粉末。c. Add the concentrated aqueous solution to a chromatographic column filled with silica gel powder, wash off impurities with dichloromethane, then extract castor seed carbon quantum dots with deionized water, and finally freeze-dry them into powder.
优选的,在步骤a中蓖麻种子粉与去离子水的用量比是2~5g:50ml。Preferably, in step a, the consumption ratio of castor seed powder and deionized water is 2 ~ 5g: 50ml.
优选的,步骤a中的去皮的蓖麻种子粉通过以下步骤制得:将蓖麻种子在去离子水中浸泡5~10h后去皮,研磨过筛后于60~80℃烘干15~30min。Preferably, the peeled castor seed powder in step a is prepared by the following steps: soak the castor seeds in deionized water for 5-10 hours, peel off the skin, grind and sieve, and dry at 60-80°C for 15-30min .
优选的,蓖麻种子研磨后的过筛孔径为100~200目。Preferably, the sieve aperture after the castor seeds are ground is 100-200 mesh.
优选的,步骤a中的水热釜以聚四氟乙烯为内胆。Preferably, the hydrothermal kettle in step a uses polytetrafluoroethylene as the liner.
优选的,在步骤a中,水热反应的温度为150~180℃,反应时间为4~8h。Preferably, in step a, the temperature of the hydrothermal reaction is 150-180° C., and the reaction time is 4-8 hours.
优选的,在步骤b中过滤头的孔径为0.22µm或0.45µm,离心机转速为6000~8000rpm,离心时间为10~15min,上清液的旋蒸温度为65~80℃,旋蒸浓度至30~40mg/ml。Preferably, in step b, the pore size of the filter head is 0.22µm or 0.45µm, the centrifuge speed is 6000~8000rpm, the centrifugation time is 10~15min, the rotary evaporation temperature of the supernatant is 65~80°C, and the rotary evaporation concentration is up to 30~40mg/ml.
优选的,在步骤c中硅胶粉的粒径为100~200目,二氯甲烷纯度≥99.0%,冷冻干燥机腔内的压强为30-100pa,冻干时间为24~30h。Preferably, in step c, the particle size of the silica gel powder is 100-200 mesh, the purity of dichloromethane is ≥99.0%, the pressure in the chamber of the freeze dryer is 30-100 Pa, and the freeze-drying time is 24-30 hours.
本发明的有益效果:Beneficial effects of the present invention:
(1)使用天然碳源蓖麻种子作为单一碳源,得到了pH稳定的荧光碳量子点。本制备方法成本低廉,施行简单,制备出来的碳量子点纯度高、发光强、分散性好,在不同pH环境中可稳定发光,有望广泛应用于化学探测以及生物成像。(1) Using natural carbon source castor seeds as a single carbon source, fluorescent carbon quantum dots with stable pH were obtained. The preparation method has low cost and simple implementation, and the prepared carbon quantum dots have high purity, strong luminescence and good dispersibility, can emit light stably in different pH environments, and are expected to be widely used in chemical detection and biological imaging.
(2)不同于传统制备生物碳源碳量子点常用的透析法,本发明采用一步水热法-柱层析法-冷冻干燥组合的制备-提纯体系,得到碳量子点的表面无有机杂质粘连,晶格条纹清晰可见,为生物碳源碳量子点的制备提供了新的思路。(2) Unlike the traditional dialysis method commonly used in the preparation of biological carbon source carbon quantum dots, the present invention adopts a one-step hydrothermal method-column chromatography-freeze-drying combination preparation-purification system to obtain carbon quantum dots without organic impurities on the surface , the lattice fringes are clearly visible, which provides a new idea for the preparation of biological carbon source carbon quantum dots.
附图说明Description of drawings
图1是实施例2制备的蓖麻种子碳量子点的透射电子显微镜图像。Fig. 1 is the transmission electron microscope image of the castor seed carbon quantum dot prepared in
图2是实施例2制备的蓖麻种子碳量子点的透射电子显微镜高分辨图像。Fig. 2 is the transmission electron microscope high-resolution image of the castor seed carbon quantum dot prepared in
图3是实施例2制备的蓖麻种子碳量子点的X光电子能谱仪光谱图。Fig. 3 is the X-ray photoelectron spectrometer spectrogram of the castor seed carbon quantum dot prepared in
图4是实施例2制备的蓖麻种子碳量子点的红外吸收光谱图。Fig. 4 is the infrared absorption spectrogram of the castor seed carbon quantum dot prepared in
图5是实施例2制备的蓖麻种子碳量子点的紫外-可见吸收光谱图。Fig. 5 is the ultraviolet-visible absorption spectrogram of castor seed carbon quantum dot prepared in
图6是实施例2制备的蓖麻种子碳量子点的荧光激发发射光图。Fig. 6 is the fluorescence excitation and emission light diagram of castor seed carbon quantum dots prepared in Example 2.
图7是实施例2制备的蓖麻种子碳量子点在不同激发光激发下的发射光谱图。Fig. 7 is the emission spectrum diagram of castor seed carbon quantum dots prepared in Example 2 under different excitation light excitation.
图8是实施例2制备的蓖麻种子碳量子点的荧光寿命图。Fig. 8 is the fluorescence lifetime diagram of castor seed carbon quantum dots prepared in Example 2.
图9是实施例2制备的蓖麻种子碳量子点在不同pH下测得荧光强度变化图。Fig. 9 is a graph showing the changes in fluorescence intensity of castor seed carbon quantum dots prepared in Example 2 measured at different pHs.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步的阐述,下述实施例仅作为说明,并不以任何方式限制本发明的保护范围。The present invention will be further elaborated below in conjunction with the examples, and the following examples are only for illustration and do not limit the protection scope of the present invention in any way.
在下述实施例中未详细描述的过程和方法是本领域公知的常规方法,实施例中所用试剂均为分析纯或化学纯,且均可市购或通过本领域普通技术人员熟知的方法制备。The processes and methods not described in detail in the following examples are conventional methods well known in the art, and the reagents used in the examples are all analytically pure or chemically pure, and all of them are commercially available or prepared by methods well known to those of ordinary skill in the art.
实施例1 制备蓖麻种子粉
将蓖麻种子浸泡在去离子水6h,取出后去皮,研磨10min后过200目筛,在70℃的烘干箱中烘干20min,得到蓖麻种子粉。Soak castor seeds in deionized water for 6 hours, take them out, peel them, grind them for 10 minutes, pass through a 200-mesh sieve, and dry them in a drying oven at 70°C for 20 minutes to obtain castor seeds powder.
实施例2 制备以蓖麻种子为碳源的荧光碳量子点(方法1)Example 2 Preparation of fluorescent carbon quantum dots with castor seeds as carbon source (method 1)
取2g实施例1中制备的蓖麻种子粉分散到50ml去离子水中,搅拌10min,放入以四氟乙烯为内胆的水热釜中进行水热反应,水热反应的温度为150℃,反应时间为5h;反应结束后使用0.45µm的过滤头过滤,再放入离心机中进行7000rpm的离心10min,取上清液置于70℃旋蒸仪中旋蒸浓缩至30 mg/ml;将浓缩后的水溶液加入到200目硅胶粉填充的柱色谱中,先用纯度≥99.0%二氯甲烷洗去杂质,后用去离子水淋洗得到纯净碳量子点溶液,最后将纯净碳量子点溶液置于冷冻干燥机中,50pa干燥24h得到白色蓖麻种子碳量子点粉末。Get the castor seed powder prepared in
取1g碳量子点粉末分散到20ml去离子水中,搅拌均匀得到碳量子点水溶液,测定该碳量子点水溶液的TEM粒径分布,测得结果如图1,从图1中可以看出,碳量子点的平均粒径为15nm。测定碳量子点水溶液的高分辨图像,测得结果如图2,从图2中可以看出,碳量子点的晶格条纹清晰可见。测定制得的碳量子点水溶液的XPS元素分析数据,结果如图3所示。另外,测定制得的碳量子点水溶液的红外吸收、紫外-可见、激发发射、不同激发光、荧光寿命光谱,测得结果依次如图4~图8所示。从图3和图4图中可以看出碳量子点表面含有丰富的氮、氧相关的官能团。从图5中可以看出蓖麻种子碳量子点中存在π-π*(282nm处)以及n-π*(328nm处)的光子能量吸收,即产生了共轭π域的反键轨道;从图6中可以看出紫外光的激发下碳量子点水溶液荧光为蓝色;从图7中可以看出本实施例得到的碳量子点存在激发依赖现象;从图8可以看出本实施例得到的碳量子点的荧光寿命为纳米级。Get 1g of carbon quantum dot powder and disperse it into 20ml deionized water, stir to obtain carbon quantum dot aqueous solution, measure the TEM particle size distribution of this carbon quantum dot aqueous solution, the measured results are shown in Figure 1, as can be seen from Figure 1, carbon quantum dots The average particle size of the dots was 15 nm. The high-resolution image of the carbon quantum dot aqueous solution was measured, and the measured results are shown in Figure 2. It can be seen from Figure 2 that the lattice fringes of the carbon quantum dots are clearly visible. The XPS elemental analysis data of the prepared carbon quantum dot aqueous solution were measured, and the results are shown in FIG. 3 . In addition, the infrared absorption, ultraviolet-visible, excitation emission, different excitation light, and fluorescence lifetime spectra of the prepared carbon quantum dot aqueous solution were measured, and the measured results are shown in Figures 4 to 8 in sequence. It can be seen from Fig. 3 and Fig. 4 that the surface of carbon quantum dots contains abundant functional groups related to nitrogen and oxygen. It can be seen from Figure 5 that there are photon energy absorptions of π-π * (at 282nm) and n-π * (at 328nm) in castor seed carbon quantum dots, that is, antibonding orbitals of conjugated π domains are generated; from As can be seen from Figure 6, the fluorescence of the carbon quantum dot aqueous solution under the excitation of ultraviolet light is blue; as can be seen from Figure 7, there is an excitation-dependent phenomenon in the carbon quantum dots obtained in this embodiment; as can be seen from Figure 8, this embodiment obtains The fluorescence lifetime of carbon quantum dots is nanoscale.
另外,用浓盐酸、氢氧化钠固体及去离子水配置pH分别为2~12的11个样品各10ml,向11个样品内分别加入0.1g本实施例制得的碳量子点粉末,测得的荧光强度变化如图9所示,从图9可以看出,在不同pH值下本实施例制得的碳量子点的荧光强度变化不大。In addition, concentrated hydrochloric acid, solid sodium hydroxide and deionized water were used to prepare 10 ml of 11 samples each with a pH of 2 to 12, and 0.1 g of the carbon quantum dot powder prepared in this example was added to the 11 samples to measure The variation of the fluorescence intensity of the carbon quantum dots is shown in Figure 9. It can be seen from Figure 9 that the fluorescence intensity of the carbon quantum dots prepared in this embodiment does not change much at different pH values.
实施例3 制备以蓖麻种子为碳源的荧光碳量子点(方法2)Example 3 Preparation of fluorescent carbon quantum dots with castor seeds as carbon source (method 2)
取3g实施例1中制备的蓖麻种子粉分散到50ml去离子水中,搅拌15min,放入以四氟乙烯为内胆的水热釜中进行水热反应,水热反应的温度为150℃,反应时间为7h;反应结束后使用0.45µm的过滤头过滤,再放入离心机中进行7000rpm的离心15min,取上清液置于70℃旋蒸仪中旋蒸浓缩至35 mg/ml;将浓缩后的水溶液加入到200目硅胶粉填充的柱色谱中,先用纯度≥99.0%二氯甲烷洗去杂质,后用去离子水淋洗得到纯净碳量子点溶液,最后将纯净碳量子点溶液置于冷冻干燥机中,40pa干燥24h得到白色蓖麻种子碳量子点粉末。本实施例制得的碳量子点的水溶液和在不同pH下的表征同实施例2。Get the castor seed powder prepared in
实施例4 制备以蓖麻种子为碳源的荧光碳量子点(方法3)Example 4 Preparation of fluorescent carbon quantum dots using castor seeds as carbon source (method 3)
取4g实施例1中制备的蓖麻种子粉分散到50ml去离子水中,搅拌20min,放入以四氟乙烯为内胆的水热釜中进行水热反应,水热反应的温度为160℃,反应时间为6h;反应结束后使用0.22µm的过滤头过滤,再放入离心机中进行8000rpm的离心10min,取上清液置于75℃旋蒸仪中旋蒸浓缩至30 mg/ml;将浓缩后的水溶液加入到200目硅胶粉填充的柱色谱中,先用纯度≥99.0%二氯甲烷洗去杂质,后用去离子水淋洗得到纯净碳量子点溶液,最后将纯净碳量子点溶液置于冷冻干燥机中,30pa干燥30h得到白色蓖麻种子碳量子点粉末。本实施例制得的碳量子点的水溶液和在不同pH下的表征同实施例2。Get the castor seed powder prepared in
实施例5制备以蓖麻种子为碳源的荧光碳量子点(方法4)Example 5 Preparation of fluorescent carbon quantum dots with castor seeds as carbon source (method 4)
取5g实施例1中制备的蓖麻种子粉分散到50ml去离子水中,搅拌20min,放入以四氟乙烯为内胆的水热釜中进行水热反应,水热反应的温度为170℃,反应时间为8h;反应结束后使用0.22µm的过滤头过滤,再放入离心机中进行8000rpm的离心20min,取上清液置于80℃旋蒸仪中旋蒸浓缩至40 mg/ml;将浓缩后的水溶液加入到100目硅胶粉填充的柱色谱中,先用纯度≥99.0%二氯甲烷洗去杂质,后用去离子水淋洗得到纯净碳量子点溶液,最后将纯净碳量子点溶液置于冷冻干燥机中,30pa干燥28h得到白色蓖麻种子碳量子点粉末。本实施例制得的碳量子点的水溶液和在不同pH下的表征同实施例2。Get the castor seed powder prepared in
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310062865.XA CN116103042A (en) | 2023-01-16 | 2023-01-16 | A preparation method of fluorescent carbon quantum dots using castor seeds as carbon source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310062865.XA CN116103042A (en) | 2023-01-16 | 2023-01-16 | A preparation method of fluorescent carbon quantum dots using castor seeds as carbon source |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116103042A true CN116103042A (en) | 2023-05-12 |
Family
ID=86253770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310062865.XA Pending CN116103042A (en) | 2023-01-16 | 2023-01-16 | A preparation method of fluorescent carbon quantum dots using castor seeds as carbon source |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116103042A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110217721A1 (en) * | 2010-03-08 | 2011-09-08 | Afreen Allam | Water soluble fluorescent quantum carbon dots |
CN106829917A (en) * | 2015-12-04 | 2017-06-13 | 中国科学院大连化学物理研究所 | A kind of carbon quantum dot and its application |
CN106916590A (en) * | 2015-12-28 | 2017-07-04 | 江南大学 | A kind of method that fluorescent carbon point is prepared by waste material pumpkin seeds shell |
CN109110747A (en) * | 2018-11-06 | 2019-01-01 | 湖南农业大学 | It is a kind of using extract oil residue as raw material prepare fluorescent carbon point method and its manufactured fluorescent carbon point |
CN110697681A (en) * | 2019-10-12 | 2020-01-17 | 青海大学 | Method for preparing carbon dots from broad bean, carbon dots and application thereof |
CN113025318A (en) * | 2021-02-02 | 2021-06-25 | 南京师范大学 | Carbon quantum dot using pepper as carbon source and preparation method and application thereof |
-
2023
- 2023-01-16 CN CN202310062865.XA patent/CN116103042A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110217721A1 (en) * | 2010-03-08 | 2011-09-08 | Afreen Allam | Water soluble fluorescent quantum carbon dots |
CN106829917A (en) * | 2015-12-04 | 2017-06-13 | 中国科学院大连化学物理研究所 | A kind of carbon quantum dot and its application |
CN106916590A (en) * | 2015-12-28 | 2017-07-04 | 江南大学 | A kind of method that fluorescent carbon point is prepared by waste material pumpkin seeds shell |
CN109110747A (en) * | 2018-11-06 | 2019-01-01 | 湖南农业大学 | It is a kind of using extract oil residue as raw material prepare fluorescent carbon point method and its manufactured fluorescent carbon point |
CN110697681A (en) * | 2019-10-12 | 2020-01-17 | 青海大学 | Method for preparing carbon dots from broad bean, carbon dots and application thereof |
CN113025318A (en) * | 2021-02-02 | 2021-06-25 | 南京师范大学 | Carbon quantum dot using pepper as carbon source and preparation method and application thereof |
Non-Patent Citations (1)
Title |
---|
武文波等: "碳量子点/曙红Y比率型荧光探针测定L-抗坏血酸", 《发光学报》, vol. 41, pages 331 - 338 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Al-Alwani et al. | Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications | |
Li et al. | Oxidation-induced quenching mechanism of ultrabright red carbon dots and application in antioxidant RCDs/PVA film | |
CN106047343B (en) | The method for using bulk kelp to prepare fluorescent carbon nano dot for carbon source one-step method hydrothermal carbonization | |
Sharma et al. | Green, sustainable, and economical synthesis of fluorescent nitrogen-doped carbon quantum dots for applications in optical displays and light-emitting diodes | |
CN110205121B (en) | Room-temperature phosphorescent carbon dot material and preparation method and application thereof | |
Ananth et al. | Performance of Caesalpinia sappan heartwood extract as photo sensitizer for dye sensitized solar cells | |
Zhang et al. | A synergistic effect of NaYF4: Yb, Er@ NaGdF4: Nd@ SiO2 upconversion nanoparticles and TiO2 hollow spheres to enhance photovoltaic performance of dye-sensitized solar cells | |
CN109135738B (en) | A kind of nitrogen-doped carbon dots based on waste tobacco stems and its synthesis method and application | |
CN109777401B (en) | A kind of preparation method of water-soluble blue fluorescent silicon quantum dots, and its application | |
Akila et al. | Enhanced performance of natural dye sensitised solar cells fabricated using rutile TIO2 nanorods | |
Wang et al. | Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis | |
CN107475745B (en) | A kind of phosphorus doping nitridation carbon composite modified titanic oxide optoelectronic pole, preparation method and the application of gold modification | |
CN113652228B (en) | Preparation method of color-adjustable fluorescent MOF-dye composite material | |
Meena et al. | Effect of decorated photoanode of TiO2 nanorods/nanoparticles in dye-sensitized solar cell | |
CN107603612B (en) | A kind of preparation method and application of hollow orange fluorescent carbon nanoparticles | |
CN108929684A (en) | A kind of coconut palm monofilament is the preparation method of carbon source dysprosium doped carbon quantum dot composite material | |
US8748738B2 (en) | Process for obtaining stable extract of sensitizing betalaionic dye | |
CN103450701A (en) | Natural dyestuff sensitizer on plateau for dye-sensitized solar cell | |
CN116103042A (en) | A preparation method of fluorescent carbon quantum dots using castor seeds as carbon source | |
Ghadari et al. | Nitrogen and chlorine co-doped carbon dots to enhance the efficiency of dye-sensitized solar cells | |
CN111662713A (en) | Preparation method of double-carbon-source double-nitrogen-source multicolor fluorescent carbon dots | |
CN111747398B (en) | A kind of red carbon dot material and its preparation method and application | |
CN111977632A (en) | Green preparation method of spinach-based multicolor luminescent carbon quantum dots | |
CN110316718A (en) | A kind of pair of transmitting red fluorescence carbon quantum dot and preparation method thereof | |
CN104445104B (en) | A kind of GeSe2 nanocrystal and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230512 |