CN116097537A - 用于改进单向功率转换器的电网同步的装置和方法 - Google Patents
用于改进单向功率转换器的电网同步的装置和方法 Download PDFInfo
- Publication number
- CN116097537A CN116097537A CN202080103577.9A CN202080103577A CN116097537A CN 116097537 A CN116097537 A CN 116097537A CN 202080103577 A CN202080103577 A CN 202080103577A CN 116097537 A CN116097537 A CN 116097537A
- Authority
- CN
- China
- Prior art keywords
- upfc
- frequency component
- amplitude
- phase angle
- input current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/04—Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
- H02J3/08—Synchronising of networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0083—Converters characterised by their input or output configuration
- H02M1/0087—Converters characterised by their input or output configuration adapted for receiving as input a current source
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
Abstract
本申请提供了一种单位功率因数转换器UPFC(10),能够连接到电网。所述UPFC(10)包括一种闭环控制(50),用于根据输入电流(502)的参考变量(504)调节来自所述电网的输入电流(502)。所述UPFC(10)用于确定所述输入电流(502)的频率分量幅度(In),并依据来自所述电网的输入电压的基频分量的相位角(524,θ)和所述频率分量幅度(In),建立所述参考变量(504)的相位角(514)。因此,所述UPFC与所述电网的同步得以改进。
Description
技术领域
本公开涉及单位功率因数转换器(unity power factor converters,UPFC)到通电电网的同步。为此,本公开提供了一种能够连接到电网的UPFC,其中,所述UPFC包括一种闭环控制,用于根据输入电流的参考变量调节来自所述电网的输入电流。本公开还提供了一种将所述UPFC作为固态变压器(Solid State Transformer,SST)来操作的方法。
背景技术
在交流(alternate current,AC)高/中电压电网中,不同电压电平之间的接口通常由工频变压器(line-frequency transformers,LFT)形成。LFT具有成本效益,并且在高负载下具有高效性和可靠性。然而,它们受到一些限制,包括负载下的电压降、对谐波的敏感性、负载不平衡和直流(direct current,DC)偏移、无过载保护以及轻负载运行时的低效率。
SST代表了基于功率电子的LFT替代品。它们基于功率电子开关、传感器和智能控制,其可实现例如功率流控制、无功功率、谐波和不平衡补偿、智能保护和穿越能力等高级功能。此外,高频开关操作能够显著减小体积和重量。与经典LFT相比,这些特征中的一些特征的结合可能会使SST具有优势。
在所述AC电网的接口处,SST可以根据由多个单元组成的模块化多级(ModularMultilevel)拓扑来实现。这种拓扑结构可以实现双向或单向功率传输。
双向拓扑可基于“四象限”级联H桥(cascaded H-bridge,CHB)模块实现,其中,四个有源功率电子开关(例如,绝缘栅双极晶体管(insulated-gate bipolar transistors,IGBT)或金属氧化物半导体场效应晶体管(metal oxide semiconductor field-effecttransistors,MOSFET))的每个模块的开启/关闭操作足以连接/断开所述AC输入和所述DC输出。
单向拓扑通过用二极管替换部分所述有源功率电子开关进一步简化了双向模块。
与双向SST拓扑相比,单向单位功率因数SST面临与电网同步相关的重要挑战:即电流总谐波失真(total harmonic distortion,THDi)对所述电网电压的准确过零检测非常敏感。在这种情况下,有几个现象可能是有问题的。电压相角估计误差可能是由于a)电压谐波的存在,b)采集到的信号反映了所述电网的弱点,c)采集和控制系统中未补偿的延迟,d)死区效应,和/或e)锁相环(phase-locked loop,PLL)设计/实现/调整不当。此外,一个强大的物理约束是,电压和电流必须用单向物理系统施加的相同符号来工作,或者换句话说:电流不能在任何时刻反转所述电压。因此,当电流旨在反转时,电路不允许这样。
尤其是轻负载操作非常具有挑战性,因为它可能会导致多个电流过零。过零可能对电流波形有很大的影响,因此可能会导致非线性,从而产生失真和不稳定。
发明内容
鉴于上述问题和缺点,其一个目的是改进单向UPFC与通电AC电网的同步。
该目标通过所附的独立权利要求所定义的实施例来实现。其他实施例在从属权利要求以及以下描述和附图中阐述。
本公开的第一方面提供了一种能够连接到电网的UPFC。所述UPFC包括一种闭环控制,用于根据输入电流的参考变量调节来自所述电网的输入电流。所述UPFC用于确定所述输入电流的频率分量幅度,以及依据来自所述电网的输入电压的基频分量的相位角和所述频率分量幅度,建立所述参考变量的相位角。
因此,除了所述参考变量的相位角对来自所述电网的输入电压的基频分量的相位角的已知依赖性之外,还介绍了所述参考变量的相位角对所述频率分量幅度进一步的依赖性。
因此,所述闭环电流控制可以基于所述输入电流的非期望谐波频率分量具体地修改来自所述电网的输入电流的相位角的参考值。
因此,所述UPFC与所述电网的同步得以改进。
所述UPFC还可以用于依据所述UPFC的外部闭环控制来建立所述参考变量的幅度。
因此,从所述电网获取并由外部闭环控制调节的功率可以定义用于调节从所述电网获取的输入电流的基本幅度的目标/参考值。
所述UPFC还可以用于当PLL被锁定到所述输入电压的基频分量时,由所述UPFC的PLL建立所述输入电压的基频分量的相位角。
因此,依据由所述PLL跟踪的所述输入电压的基频分量的相位角,实现了从所述电网获取的输入电流的相位角的粗调/调节。
所述UPFC还用于通过将所述输入电压的基频分量的相位角和依据所述频率分量幅度确定的相位校正角相加来建立所述参考变量的相位角。
因此,所述目标/参考相位角除了所述输入电压的基频分量外,还通过简单的实现方式考虑了所述输入电流的谐波频率分量。
所述UPFC还可以用于依据所述输入电流的定制总谐波失真(custom totalharmonic distortion,CTHDi)来确定所述相位校正角,所述CTHDi是依据所述频率分量幅度确定的有理函数。
因此,所述闭环电流控制能够通过考虑单个数量而不是多个频率分量来响应经调节过的输入电流的任何谐波频率分量。
因此,依据所述CTHDi并进一步依据所述输入电流的频率分量幅度,实现了对从所述电网获取的输入电流的相位角的微调/调节。
所述UPFC还可以用于通过极值搜索控制(Extremum Seeking Control,ESC)来确定所述相位校正角。
因此,所述闭环电流控制本身由ESC根据所述输入电流的CTHDi,即谐波频率分量与所述相位校正角之间的确定性关系进行调节。与所述PLL仅跟踪所述输入电压的基频分量的相位角相比,这确保了对所述输入电流的相位角的更准确的调谐/调节。
所述CTHDi可以包括振荡。
所述振荡扰乱了所述闭环电流控制,因此允许对其控制行为进行梯度估计。因此,根据ESC理论,就其对扰动的确定性响应而言,系统地分析了所述闭环电流控制。
所述振荡的频率可以小于所述电网的标称频率。
所述扰动/振荡频率控制所述相位校正角的估计过程和通过包含所述扰动/振荡执行的梯度估计过程的时间尺度分离。因此,由于在不同的时间尺度/时间常数上运行,所述闭环电流控制的较快调节和ESC的较慢调节不会相互干扰。因此,实现了缓慢但高效的相位角校正,这将过零失真补偿与主控制回路(例如,功率和电流控制)解耦。这也简化了控制的开发,这在考虑多模块实现时特别重要。
所述UPFC还用于通过离散傅里叶变换DFT和/或快速傅里叶变换FFT确定所述频率分量幅度。
所述UPFC还用于实时确定所述频率分量幅度。
所述频率分量幅度可以包括实时傅立叶系数、实时傅立叶系数的平方或所述输入电流的实时傅立叶系数的加权有理组合。
因此,所述闭环电流控制能够在经调解过的输入电流的任何谐波频率分量出现时对其作出响应,而对所述闭环电流控制的主导时间常数没有显著贡献(从基本控制理论来看,该主导时间常数可以在所述电流参考的阶跃变化期间进行评估)。
所述UPFC还可以用于操纵用于所述UPFC的有源功率电子开关装置的脉宽调制(pulse-width modulation,PWM)驱动信号。
因此,所述UPFC的功率电子开关装置可以实现对所述参考变量的校正相位角的响应,而无需进一步修改其驱动装置。
本公开的第二方面提供了一种操作能够连接到电网的单位功率因数整流器UPFC的方法。所述UPFC包括一种闭环控制,用于根据输入电流的参考变量调节来自所述电网的输入电流。所述方法包括确定所述输入电流的频率分量幅度,以及依据来自所述电网的输入电压的基频分量的相位角和所述频率分量幅度,建立所述参考变量的相位角。
所述方法可以由根据第一方面或其任何实施例所述的UPFC执行。
因此,结合第一方面的UPFC的各种实施例提及的优点类似地适用于根据第二方面的方法的相应实施例。这同样适用于第三和第四方面的实施例,它们分别涉及根据第二方面的方法。
本公开的第三方面提供了一种计算机程序,包括用于执行根据本发明的第二方面或其任何实施例的方法的程序代码。
本公开的第四方面提供了一种存储可执行程序代码的非暂时性存储介质,当由处理器执行时,使得执行根据第二方面或其任何实施例的方法。
须注意,本申请中描述的所有设备、元件、装置和方法可以以软件或硬件元件或其任何类型的组合来实现。本申请中描述的由各种实体执行的所有步骤以及所描述的由各种实体执行的功能旨在表明各个实体适于或用于执行各个步骤和功能。即使在以下对具体实施例的描述中,由外部实体执行的特定功能或步骤未反映在执行该特定步骤或功能的该实体的特定详细元素的描述中,本领域技术人员应该清楚这些方法和功能可以在各自的软件或硬件元件或其任何种类的组合中实现。
附图说明
结合附图在以下各种实施例的描述中对上述方面进行说明,其中,
图1示出了示例性SST拓扑;
图2示出了UPFC的示例性闭环电流控制;
图3、4示出了图2所示的闭环控制在电网同步方面的缺陷;
图5示出了根据第一方面的实施例所述的UPFC的闭环电流控制;
图6、7示出了图5的闭环控制相对于示例性解决方案的的改进;以及
图8示出了根据第一方面的实施例所述的操作UPFC的方法。
具体实施方式
现在将参照附图所示的各种实施例来描述上述方面。
除非另有说明,否则这些实施例的特征可以相互组合。
附图应被视为示意性表示,并且附图中所示的元件不必按比例显示。相反,各种元件被表示为使得它们的功能和一般目的对于本领域技术人员来说变得显而易见。
图1示出了示例性固态变压器SST 1拓扑。
尽管图1的示例性SST 1拓扑被设计用于由单个AC相位供电,但是本领域技术人员将理解,直接复制所描绘的拓扑用于附加AC相位是有可能的。
如本文所用的SST可以包括开关式AC/AC转换器,开关式AC/AC转换器在高于标称电网频率的频率下执行开关操作,并可涉及整流器(AC/DC)、转换器(DC/DC)和逆变器(DC/AC)级。
图1的示例性SST 1从其在图1左侧的输入端口汲取AC功率,向DC母线提供DC功率,并且可选地向其右侧的输出端口提供变换的AC功率。
在输入和输出端口之间,图1的SST 1实现包括整流器10和DC/DC转换器12级。一个可选的逆变器14级也用虚线表示。本领域技术人员将理解,也可以设想不同的SST实现。
AC/DC转换10级根据模块化多级(Modular Multilevel)拓扑形成,其中,每个相位提供多个模块化单元10、12,使得变换中的功率跨越多个单元传播。
在图1的特定示例中,整流器10的多个模块化单元10、12和DC/DC转换器12级根据输入串行/输出并行(input serial/output paralles,ISOP)拓扑互连。换言之,整流模块10的输入端口串联连接,DC/DC转换器模块12的输出端口并联连接至DC母线。可选的逆变器14可以被视为连接到公共DC总线的DC负载。
SST 1的整流器模块10直接与通电的AC电网连接。整流器模块10因此受制于关于功率因数校正(power factor correction,PFC)的法定和/或合同要求。整流器模块10可以具有PFC功能性,并且如果特别高的功率因数为(或非常接近)1,则它们被称为单位功率因数校正整流器(unity power correction rectifiers,UPFR)或更广泛的UPFC。
此处使用的功率因数是指实际功率与视在功率(基波分量)的比率。小于1的功率因数表示电压和电流不同相。
图2示出了UPFC10的示例性闭环电流控制20。
如本文所用的闭环控制是指一种装置,其中,过程/系统由具有必要的校正行为的控制器调节。反馈回路确保控制器施加控制动作以将过程变量操纵为与参考变量相同。
如本文所用的的闭环电流控制是指电流控制过程的闭环控制。
闭环电流控制20包括控制器206和电流控制过程210。在控制器206的输入,通过从参考变量(参考电流)204中减去过程变量(实际/测量电流)202来形成控制误差,并将控制误差转化为操纵变量208,操纵变量208可以是UPFC 10的有源功率电子开关(例如,IGBT或功率MOSFET)的PWM驱动信号的占空比208。有源功率电子开关因此是电流控制过程210的一部分,其连续产生根据操纵变量(占空比)208产生的过程变量(实际电流)202以进一步最小化控制误差。
如本文所用的PWM指的是涉及开启/关闭操作的有源功率电子开关的特定驱动模式,在这种情况下以实现PFC功能。
IGBT是一种适用于高电压、大电流和高开关频率操作的功率半导体器件。
功率MOSFET是一种适用于低压、中等电流和极高开关频率操作的功率半导体器件。
根据图2,参考变量204包括幅度(或量级)212和相位角214分量。换言之,参考变量204可以被视为具有幅度(或量级)和相位(或相位角)分量的复数。
如图2所示,UPFC 10用于依据UPFC 10的外部闭环控制216来建立参考变量204的幅度212。
继续参考图2,UPFC 10用于依据来自电网的输入电压的基频分量的相位角θ(表示为224)来建立参考变量204的相位角214。相反,UPFC10还可以用于当PLL218被锁定到输入电压的基频分量时,由UPFC10的PLL218建立输入电压的基频分量的相位角224。
如本文所用的基频分量(或基频)是指周期性波形的最低频率。就正弦波的叠加而言,基频是总和中频率最低的正弦波。基频分量是谐波之一。
如本文所用的谐波频率分量(或谐波)是指周期波形的频率,周期波形的频率为基频的正整数倍(即,其为谐波系列的成员)。在功率系统中,谐波是由非线性负载,如整流器或饱和磁性设备引起的系统的基频倍数的电压或电流。
图3、4示出了图2的示例闭环控制20在电网同步方面的缺陷。
图3示出了具有单向拓扑的整流器模块10的电流波形,其中,电流波形因电压过零附近的次优操作而受损。图3的水平轴和垂直轴分别表示以秒为单位的时间和以安培为单位的电流。
在这样的拓扑中,电流不能在任何瞬间反转电压。因此,不准确的相位角检测可能导致电压和电流波形的发散,并且当电流旨在反转时,电路可能不允许这样。
图4示出了图3的电流波形在时间点1,62s处围绕电压过零的电流过零的放大。该图展示了在电压过零附近的不连续导通模式(discontinuous conduction mode,DCM)操作,直到电压和电流必须用物理系统施加的相同符号来工作。当输入电流旨在变为正,但不能反转负输入电压时,DCM操作在输入电压负周期的时间点1,619s开始(即,在时间点1,62s电压过零的左侧),并一直持续到时间点1,62s的电压过零启动输入电压的正周期。
这种影响反映为电流失真的增加,并且可以通过低阶奇次谐波的幅度来量化。
图5示出了根据本公开实施例的UPFC 10的闭环电流控制50。
UPFC 10能够连接到电网。UPFC 10的闭环控制50用于根据输入电流502的参考变量504调节来自电网的输入电流502。
闭环电流控制50的元件502-516在设计、功能和/或目的上分别对应于图2的示例性闭环电流控制20的相应元件202-216。
根据图5,参考变量504包括幅度(或量级)512和相位角514分量,使得其可以被视为复数。
因此,闭环电流控制50可以基于输入电流502的非期望谐波频率分量具体地修改来自电网的输入电流502的相位角的参考值。
一方面,UPFC 10可以用于依据UPFC 10的外部闭环控制516来建立参考变量504的幅度512。
因此,从电网获取并由外部闭环控制516调节的功率可以定义用于调节从电网获取的输入电流502的幅度的目标/参考值。
另一方面,UPFC 10可以用于确定输入电流502的频率分量幅度In,并依据来自电网的输入电压的基频分量的相位角θ(表示为524)和频率分量幅度In,建立参考变量504的相位角514。
因此,除了参考变量504的相位角514对来自电网的输入电压的基频分量的相位角524的已知依赖性之外,还介绍了参考变量504的相位角514对频率分量幅度In进一步的依赖性。这是发现相位角误差越高,电流谐波失真越大的结果。
根据已知的依赖性,UPFC 10可以用于当PLL 518被锁定到输入电压的基频分量时,由UPFC 10的PLL 518建立输入电压的基频分量的相位角524。
因此,依据由PLL 518跟踪的输入电压的基频分量的相位角524,定义了用于粗调/调节从电网获取的输入电流502的相位角的目标/参考值。
如本文所用的PLL指的是产生振荡输出信号的控制装置,控制装置具有与振荡输入信号的相位角相关的相位角。换言之,输入和输出信号的相位被锁定。
进一步的依赖性由图5的闭环控制50的进一步反馈分支反映,反馈分支开始于过程变量502并终止于UPFC 10的PLL 518。沿着这个反馈分支的信号处理工作如下:
第一控制块532可以被提供在进一步的反馈分支中,其可以用于执行时频变换。基于该功能性,UPFC 10还可以用于通过DFT,和/或FFT确定频率分量幅度In,和/或实时确定频率分量幅度In。这样,频率分量幅度In可以包括实时傅立叶系数、实时傅立叶系数的平方或输入电流502的实时傅立叶系数的加权有理组合。
因此,闭环电流控制50能够在经调节过的输入电流502的任何谐波频率分量出现时对其作出响应,而对闭环电流控制50的时间常数没有显著贡献。
作为示例,可以基于具有100Hz窗口,即每1/100s(秒)的信号处理来获得实时傅立叶系数。
第一控制块532还可以用于执行总谐波失真计算。基于该功能性,UPFC 10还可以用于依据频率分量幅度In确定输入电流502的定制总谐波失真CTHDi 530为有理函数。
因此,闭环电流控制50能够通过考虑单个数量而不是多个频率分量来响应经调节过的输入电流502的任何谐波频率分量。
因此,CTHDi 530量化了电流谐波失真。
具体而言,CTHDi 530可以被定义为低阶谐波频率分量(的幅度)的任意有理函数,定义为In(t),其中,n是谐波的阶数(1、2、3等)。CTHDi 530的简单定义的一个示例是:
THD是振荡纯度的品质因数,并且如本文所用,指的是所有谐波频率分量的(平方)有效/RMS幅度之和与基频分量的(平方)有效/RMS幅度之比。
如本文所用的电流总谐波失真THDi指的是电流的THD,其可以定义为依据电流的频率分量的有效/RMS幅度In的有理函数。
如本文所用的电流定制总谐波失真CTHDi指的是THDi,其可遵循一种有利的定制定义,例如依据电流的频率分量中有限数量的有效/RMS幅度In,这可能有利于实时时频变换。
本领域技术人员将理解,第一控制块532的上述功能可以平等地分成单独的元件。
继第一控制块532之后,第二控制块528可以被提供在进一步的反馈分支中,其可以用于执行相位校正角计算。基于该功能性,UPFC 10还可以用于依据由第一控制块532提供的输入电流502的CTHDi 530来确定相位校正角Δθ(表示为526)。
因此,依据CTHDi530并进一步依据输入电流502的频率分量幅度In,定义了用于微调/调节从电网获取的输入电流502的相位角的目标/参考值。
第二控制块528以及因此UPFC 10可以进一步用于通过ESC 528来确定相位校正角526。
如本文所用的ESC指的是一种无模型实时优化技术,其旨在寻找系统输入,使得受控系统的系统输出(即,稳态性能)保持在极值点。ESC不需要系统模型,而是依赖于系统是确定性的,这样一个特定的系统输入就会产生一个特定的系统输出。通过使用通常选择为正弦的慢周期信号(振荡、抖动)对系统输入进行扰动,可以估计系统的导数,据此可以将系统输入引导到极值方向。
由于已经发现CTHDi 530(系统输出)是参考变量504的相位角514的确定性函数,或者更具体地说,是对相位角514有贡献的相位校正角526,因此可以假设存在使CTHDi530最小化的相位校正角526,并且ESC技术也可用于此。
从可能的ESC实施例的角度来看,CTHDi 530和相位校正角526可以分别被视为受控系统的系统输出和系统输入。换言之,ESC受控系统包括从第二控制块528的输出开始并终止于其输入的整个闭环控制50。因此,ESC用于找到最小化电流失真的相位校正角526(即,CTHDi 530)。
因此,闭环电流控制50本身由ESC根据CTHDi503,即,输入电流502的谐波频率分量与相位校正角526之间的确定性关系进行调节。与PLL 518仅跟踪输入电压基频分量的相位角524相比,这确保了对输入电流502相位角的更准确的调谐/调节。
根据上述系统输入的扰动,CTHDi 530可以包括振荡。振荡扰乱了闭环电流控制50,因此允许对其控制行为进行梯度估计。
因此,根据ESC理论,就其对扰动的确定性响应而言,系统地分析了闭环电流控制。
可以选择振荡幅度以产生给定的初始CTHDi,但这取决于许多因素,例如来自PLL518的初始误差、系统延迟、负载、电路参数值等。
此外,可以选择振荡频率小于电网的标称频率(即,次同步)。例如,可以选择所选频率为小于10Hz,例如5Hz,其远小于电网的标称频率50Hz。振荡的频率是一个调谐参数,其应该小于系统时间常数的倒数,但高于稳定时间常数的倒数。
扰动/振荡频率控制相位校正角526的估计过程和通过包含扰动/振荡执行的梯度估计过程的时间尺度分离。因此,由于在不同的时间尺度/时间常数上运行,闭环电流控制50的更快调节和ESC的较慢调节不会相互干扰。因此,可以实现缓慢但高效的相位角校正,这将过零失真补偿与主控制回路(例如,功率和电流控制)解耦。这也简化了控制的开发,这在考虑多模块实现时特别重要。
根据ESC理论,如何从CTHDi 530中生成相位校正角526的示例可以在z域中定义如下。
首先,将具有截止频率ωh的数字高通滤波器H1(Z)应用于CTHDi(kTs)信号,其中,k=0,1,…分别是样本数,Ts是控制采样周期,产生称为u1(kTs)的变量。适当选择截止频率ωh可确保CTHDi 530的DC分量被拒绝。
变量u1(kTs)乘以上述具有恒定增益a、振荡频率ω>ωh和任意恒定相位角的次同步振荡/扰动asin(ωkTs+ω0),从而产生变量u2(kTs)。增益a是一个设计参数:大增益会增加收敛速度和极值处的残差,小增益会增加卡在局部极值处的概率但会减小残差。
数字积分滤波器H2(z)应用于变量u2(kTs),产生u3(kTs)。
ESC操作随后尝试将CTHDi 530最小化到最小值,同时将相位校正角526最小化到最小值。在瞬态期间,CTHDi 530和相位校正角526都显示出低于电网标称频率的上述振荡。当达到稳态时,该振荡从CTHDi 530中消失,并针对相位校正角526最小化。一些稳态自持振荡保持在相位校正角526中。总之,这种行为证明了ESC受控系统的系统输入和系统输出之间的因果关系,即确定性关系。
因此,UPFC 10可以用于通过将输入电压的基频分量的相位角524和依据频率分量幅度In确定的相位校正角526相加来建立参考变量504的相位角514。根据图5,该校正可以在例如PLL 518内完成,该PLL 518通常包括压控振荡器VCO。
因此,目标/参考相位角514除了输入电压的基频分量外,还通过简单的实现方式考虑了输入电流502的谐波频率分量。
UPFC10还可以用于操纵UPFC10的有源功率电子开关装置的PWM驱动信号。更具体地,通过从参考变量(参考电流)504中减去过程变量(实际/测量电流)502,在控制器506的输入形成控制误差,并将控制误差转化为操纵变量508,其可以是UPFC 10的有源功率电子开关(例如,IGBT或MOSFET)的PWM驱动信号的占空比208。有源功率电子开关因此是电流控制过程510的一部分,其连续产生根据操纵变量(占空比)508产生的过程变量(实际电流)502以进一步最小化控制误差。
因此,UPFC 10的功率电子开关可以实现对参考变量的校正相位角514的响应,而无需进一步修改其驱动装置。
图6、7示出了图5的闭环控制50相对于图2-4所示的示例性解决方案的改进。
每个负载变化导致闭环控制50经历瞬态阶段,其中,CTHDi 530和相位校正角526都显示出低于电网标称频率的上述振荡。当达到稳态时,该振荡从CTHDi 530中消失,并针对相位校正角526最小化。在瞬态阶段之后,获得CTHDi 530和相位校正角526的固定常数值。
图6示出了具有单向拓扑的整流器模块10的电流波形,其中,电流波形在瞬态相位衰减后由闭环控制50调节。图6的横轴和纵轴分别表示以秒为单位的时间和以安培为单位的电流。
关于图2的闭环控制20,如结合图5所解释的,相位角检测得到显著改进,使得电压和电流波形没有明显发散并且电流过零基本上是线性的。
图7示出了图6的电流波形在时刻13,42s处围绕电压过零的电流过零的放大。该图描述了在电压过零附近的连续导通模式(CCM)操作,因为电压和电流基本以相同的符号来工作,符合系统的强物理约束。
这种影响反映为电流失真的降低,进而反映为功率因数的相应增加。
图8示出了根据第一方面的实施例的操作单位功率因数整流器UPFC 10的方法80。
UPFC 10能够连接到电网,包括一种闭环控制50,用于根据输入电流502的参考变量504调节来自电网的输入电流502。
方法80包括确定802输入电流502的频率分量幅度的步骤。
方法80还包括依据来自电网的输入电压的基频分量的相位角524和频率分量幅度,建立804参考变量504的相位角514的步骤。
方法80可以由根据第一方面或其任何实施例的UPFC 10执行。
因此,结合第一方面的UPFC 10的各种实施例提及的优点类似地适用于根据第二方面的方法80的相应实施例。
计算机程序(未显示)包括程序代码,当在UPFC 10的处理器(或处理电路)上实现时,该程序代码用于根据第二方面或其任何实施例执行方法80。
UPFC 10的处理器或处理电路可以包括硬件和/或可由软件控制的处理电路。硬件可以包括模拟电路或数字电路,或包括模拟电路和数字电路两者。数字电路可以包括例如专用集成电路(application-specific integrated circuits,ASIC),现场可编程阵列(field-programmable arrays,FPGA),数字信号处理器(digital signal processor,DSP)或多功能处理器等组件。
UPFC 10还可以包括存储器电路,该存储电路存储一个或多个指令,一个或多个指令可以由处理器或由处理电路执行,特别是在软件的控制下。例如,存储器电路可以包括存储可执行程序代码的非暂时性存储介质(未示出),当该可执行代码由处理器或处理电路执行时,使得根据第二方面或其任何实施例的方法80得以执行。
本发明已经结合各种实施例作为示例以及实施方式进行描述。然而,在研究附图、本公开和独立权利要求之后,本领域技术人员可通过实践本发明理解并实现其他变例。在权利要求以及说明书中,词语“包括”不排除其他元件或步骤。单个元件或其他单元可以实现权利要求中记载的若干实体或项目的功能。在相互不同的从属权利要求中记载某些措施这一事实并不表示这些措施的组合不能用于有利的实施方式中。
Claims (15)
1.一种单位功率因数转换器UPFC(10),能够连接到电网,
所述UPFC(10)包括一种闭环控制(50),用于根据输入电流(502)的参考变量(504)调节来自所述电网的输入电流(502);
其中,所述UPFC(10)用于:
确定所述输入电流(502)的频率分量幅度(In),以及
依据来自所述电网的输入电压的基频分量的相位角(524,θ)和所述频率分量幅度(In),建立所述参考变量(504)的相位角(514)。
2.根据权利要求1所述的UPFC(10),还用于:
依据所述UPFC(10)的外部闭环控制(516)建立所述参考变量(504)的幅度(512)。
3.根据权利要求1或2所述的UPFC(10),还用于:
当PLL(518)锁定在所述输入电压的基频分量上时,通过所述UPFC(10)的锁相环PLL(518)建立所述输入电压的基频分量的相位角(524,θ)。
4.根据权利要求1-3任意一项所述的UPFC(10),还用于:
通过将所述输入电压的基频分量的相位角(524,θ)和依据所述频率分量幅度(In)确定的相位校正角(526,Δθ)相加来建立所述参考变量(504)的相位角(514)。
5.根据权利要求4所述的UPFC(10),还用于:
依据所述输入电流(502)的定制总谐波失真CTHDi(530),确定所述相位校正角(526,Δθ),所述CTHDi(530)是依据所述频率分量幅度(In)确定的有理函数。
6.根据权利要求5所述的UPFC(10),还用于:
通过极值搜索控制ESC(528)确定所述相位校正角(526,Δθ)。
7.根据权利要求5或6所述的UPFC(10),
其中,所述CTHDi(530)包括振荡。
8.根据权利要求7所述的UPFC(10),
其中,所述振荡的频率小于所述电网的标称频率。
9.根据前述权利要求中任意一项所述的UPFC(10),还用于
通过离散傅里叶变换DFT和/或快速傅里叶变换FFT确定所述频率分量幅度(In)。
10.根据权利要求9所述的UPFC(10),还用于
实时确定所述频率分量幅度(In)。
11.根据权利要求9或10所述的UPFC(10),
其中,所述频率分量幅度(In)包括实时傅立叶系数、实时傅立叶系数的平方,或所述输入电流(502)的实时傅立叶系数的加权有理组合。
12.根据前述权利要求中任意一项所述的UPFC(10),还用于
操纵所述UPFC(10)的有源功率电子开关装置的PWM驱动信号。
13.一种操作单位功率因数转换器UPFC(10)的方法(80),所述UPFC(10)能够连接到电网,
所述UPFC(10)包括一种闭环控制(50),用于根据输入电流(502)的参考变量(504)调节来自所述电网的输入电流(502);
所述方法(80)包括:
确定(802)所述输入电流(502)的频率分量幅度(In),以及
依据来自所述电网的输入电压的基频分量的相位角(524,θ)和所述频率分量幅度(In),建立(804)所述参考变量(504)的相位角(514)。
14.根据权利要求13所述的方法(80),
由权利要求2-12中任意一项所述的UPFC(10)执行。
15.一种计算机程序,当在所述UPFC(10)的处理器上实现时,包括用于执行根据权利要求13或14所述的方法(80)的程序代码。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2020/074740 WO2022048764A1 (en) | 2020-09-04 | 2020-09-04 | Devices and methods for improving a grid synchronization of unidirectional power converters |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116097537A true CN116097537A (zh) | 2023-05-09 |
Family
ID=72381091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080103577.9A Pending CN116097537A (zh) | 2020-09-04 | 2020-09-04 | 用于改进单向功率转换器的电网同步的装置和方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230208137A1 (zh) |
EP (1) | EP4183035A1 (zh) |
CN (1) | CN116097537A (zh) |
WO (1) | WO2022048764A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117394369B (zh) * | 2023-12-11 | 2024-02-13 | 四川迪思源科技有限公司 | 一种基于多维数据的不停电转供电调控系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8803361B2 (en) * | 2011-01-19 | 2014-08-12 | Schneider Electric It Corporation | Apparatus and method for providing uninterruptible power |
-
2020
- 2020-09-04 WO PCT/EP2020/074740 patent/WO2022048764A1/en unknown
- 2020-09-04 EP EP20767788.1A patent/EP4183035A1/en active Pending
- 2020-09-04 CN CN202080103577.9A patent/CN116097537A/zh active Pending
-
2023
- 2023-03-03 US US18/177,975 patent/US20230208137A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20230208137A1 (en) | 2023-06-29 |
WO2022048764A1 (en) | 2022-03-10 |
EP4183035A1 (en) | 2023-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | New control scheme for AC-DC-AC converter without DC link electrolytic capacitor | |
Bode et al. | An improved robust predictive current regulation algorithm | |
Song et al. | Predictive current control of three-phase grid-connected converters with constant switching frequency for wind energy systems | |
Li et al. | Multiple-loop digital control method for a 400-Hz inverter system based on phase feedback | |
US20140362622A1 (en) | Controlling Operation of a Converter Having a Plurality of Semiconductor Switches for Converting High Power Electric Signals from DC to AC or from AC to DC | |
Hung et al. | Analysis and implementation of a delay-compensated deadbeat current controller for solar inverters | |
Rahoui et al. | Virtual flux estimation for sensorless predictive control of PWM rectifiers under unbalanced and distorted grid conditions | |
Benzaquen et al. | Ultrafast rectifier for variable-frequency applications | |
Isen et al. | Highly efficient three-phase grid-connected parallel inverter system | |
Zhou et al. | Time delay compensation-based fast current controller for active power filters | |
Chen et al. | Multiple PR current regulator based dead-time effects compensation for grid-forming single-phase inverter | |
Bechouche et al. | Adaptive AC filter parameters identification for voltage-oriented control of three-phase voltage-source rectifiers | |
US20230208137A1 (en) | Devices and methods for improving a grid synchronization of unidirectional power converters | |
Yongchang et al. | Comparative study of model predictive current control and voltage oriented control for PWM rectifiers | |
Hu et al. | Predictive current control of grid-connected voltage source converters during network unbalance | |
Yanfeng et al. | The comparative analysis of PI controller with PR controller for the single-phase 4-quadrant rectifier | |
Kaszewski et al. | State-space current control for four-leg grid-connected PWM rectifiers with active power filtering function | |
JPWO2019097835A1 (ja) | 電力変換装置 | |
Mallik et al. | DC link voltage sensorless control of a three-phase boost power factor correction rectifier | |
Pratomo et al. | Design and Implementation of One-Leg and PI Control Single-Phase H-Bridge Current Regulated Inverter | |
Knapczyk et al. | Analysis of pulse width modulation techniques for AC/DC line-side converters | |
Yepes et al. | Performance enhancement for digital implementations of resonant controllers | |
Jukić et al. | Sensorless synchronization method for a grid-side converter with an lcl filter based on a sliding mode observer and discontinuous operating mode | |
Rodríguez et al. | Tuning of resonant controllers applied to the current control of voltage-source converters | |
Kong et al. | Enhanced three phase ac stationary frame PI current regulators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |