CN116088184A - 用于现实场景遮挡的光学结构、ar装置以及工作方法 - Google Patents

用于现实场景遮挡的光学结构、ar装置以及工作方法 Download PDF

Info

Publication number
CN116088184A
CN116088184A CN202310196530.7A CN202310196530A CN116088184A CN 116088184 A CN116088184 A CN 116088184A CN 202310196530 A CN202310196530 A CN 202310196530A CN 116088184 A CN116088184 A CN 116088184A
Authority
CN
China
Prior art keywords
light beam
image
passes
polarized light
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310196530.7A
Other languages
English (en)
Inventor
张言
杨旭波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202310196530.7A priority Critical patent/CN116088184A/zh
Publication of CN116088184A publication Critical patent/CN116088184A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Abstract

本发明提供了一种用于现实场景遮挡的光学结构、AR装置以及工作方法,包括第一偏振分光器、第二偏振分光器、第一平面反射镜、第二平面反射镜、第三平面反射镜,第一四分之一波片、第二四分之一波片、第三四分之一波片、第一凸透镜、第二凸透镜,线偏振片以及空间光调制器。通过主相机渲染得到第一虚拟图像,掩模相机渲染得到第二虚拟图像,再通过第二虚拟图像生成初步掩模图像,初步掩模图像被传输至遮挡设备,并通过校准程序完成与虚拟图像在用户视野中的校准,生成最终掩模图像,现实图像被最终掩模图像遮挡后,与第一虚拟图像结合生成用户所见的有遮挡AR图像,实现对AR场景中的现实图像实现像素级的遮挡,有助于提高使用者的视觉效果。

Description

用于现实场景遮挡的光学结构、AR装置以及工作方法
技术领域
本发明涉及,具体地,涉及一种用于现实场景遮挡的光学结构、AR装置以及工作方法。
背景技术
增强现实是一种将数字信息与现实世界相结合,并允许用户实时交互的技术,近年来受到了广泛的关注。光学透视增强现实头戴显示器是承载AR的主要平台之一。光学透视增强现实头戴显示器将包含数字信息的虚拟物体注册到现实场景构建AR场景,并根据用户在AR场景中的位置信息动态生成用户所见的虚拟图像。虚拟图像通过光学透视增强现实头戴显示器的成像系统直接投影到用户眼中,允许用户在保有自然的现实视野的同时看到叠加在现实背景上的虚拟图像。
基于上述情况用户所见的AR场景中每一个像素均由光学透视增强现实头戴显示器投影的虚拟图像像素和恒定存在的现实图像像素叠加而成,虚拟图像呈现半透明的形态,AR场景的表现缺乏真实感。此外,现实背景光照导致虚拟图像出现色差和对比度降低,在室外的强光照环境中,光学透视增强现实头戴显示器所显示的虚拟图像几乎不可见,光学透视增强现实头戴显示器的应用受到极大制约。
具有现实场景遮挡功能的光学透视增强现实头戴显示器可以解决上述问题,通过构建特殊的光学系统,将现实图像的像素投射向用户瞳孔的光束聚焦,使用空间光调制器控制聚焦位置的光强透射率。根据AR场景中虚拟物体和现实场景的深度信息生成掩模图像,空间光调制器基于掩模图像精确对现实图像的像素进行遮挡操作,使得用户在掩模图像区域所见的虚拟图像不再受到现实背景光照的影响。AR场景的真实感,虚拟图像的色彩保真度与对比度都得到极大的提高。
现有公开号为CN106526859A的中国专利申请文献,其公开了一种VR虚拟现实和AR增强现实兼容的头戴显示设备,由外景方向沿光轴依次设有凹透镜、半透半反镜和凸透镜,像源垂直于半透半反镜的反射光轴上;CPU数据处理器的输出连接凹透镜和GPU图像处理器,GPU图像处理器的输出连接像源;本发明通过控制凹透镜的透过率和GPU的显示画面,配合半透半反镜和凸透镜进行光路调整,从而实现VR/AR显示切换。
现有技术中的设备无法实现对AR场景中的现实图像实现像素级的遮挡操作,视觉效果差,存在待改进之处。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种用于现实场景遮挡的光学结构、AR装置以及工作方法。
根据本发明提供的一种用于现实场景遮挡的光学结构,包括入射光经第一偏振分光器形成第一S偏振方向光束;所述第一S偏振方向光束穿过第一四分之一波片,经第一平面反射镜反射,再次穿过第一四分之一波片形成第一P偏振方向光束;所述第一P偏振方向光束穿过第一偏振分光器,再穿过第一凸透镜,之后再穿过第二偏振分光器形成第二P偏振方向光束;所述第二P偏振方向光束经过空间光调制器生成第二S偏振方向光束;所述第二S偏振方向光束经过第二偏振分光器形成第三S偏振方向光束,第三S偏振方向光束通过第二凸透镜形成第四S偏振方向光束;所述第四S偏振方向光束穿过第二四分之一波片,经第二平面反射镜反射,再次穿过第二四分之一波片形成第三P偏振方向光束;所述第三P偏振方向光束穿过第二凸透镜,再穿过第二偏振分光器形成第四P偏振方向光束;第四P偏振方向光束穿过第三四分之一波片,经第三平面反射镜反射,再次穿过第三四分之一波片形成第五S偏振方向光束;第五S偏振方向光束经过第二偏振分光器形成第六S偏振方向光束,第六S偏振方向光束通过第一凸透镜形成第七S偏振方向光束;第七S偏振方向光束经过第一偏振分光器,再通过线偏振片形成第八S偏振方向光束作为出射光输出。
优选地,所述入射光与第一偏振分光器的锐角夹角包括四十五度,所述出射光与第一偏振分光器的锐角夹角包括四十五度,且所述入射光与出射光共轭。
优选地,所述第一平面反射镜与空间光调制器呈相对设置,所述第二平面反射镜与第三平面反射镜呈相对设置;所述第一平面反射镜和空间光调制器二者之间最短的连线,与所述第二平面反射镜和第三平面反射镜二者之间最短的连线相互垂直。
优选地,所述第一偏振分光器和第二偏振分光器二者相互平行;所述第一凸透镜所在平面与第二凸透镜所在平面相互垂直。
优选地,所述入射光的偏振方向在初始方向和垂直方向间复数次切换形成出射光。
优选地,所述第一偏振分光器和第二偏振分光器二者均包括金属线栅偏振片。
优选地,所述第一四分之一波片、第二四分之一波片以及第三四分之一波片三者均包括消色差波片;所述第一凸透镜和第二凸透镜二者均包括消色差非球面透镜。
优选地,所述线偏振片包括高对比度线性偏振膜,所述高对比度线性偏振膜对400–700nm波长范围的传输光束具有最高9000:1的消光比。
根据本发明提供的一种AR装置,还包括第一遮挡设备、第二遮挡设备以及光学透视增强现实头戴显示器,所述第一遮挡设备和第二遮挡设备二者均安装在光学透视增强现实头戴显示器的前方;第一遮挡设备和第二遮挡设备内均集成有光学结构,且所述第一遮挡设备的出瞳位置与光学透视增强现实头戴显示器的其一出瞳位置重合,所述第二遮挡设备的出瞳位置与光学透视增强现实头戴显示器的另一出瞳位置重合。
根据本发明提供的一种AR装置的工作方法,工作方法包括:光学透视增强现实头戴显示器内的主相机渲染得到第一虚拟图像,光学透视增强现实头戴显示器内的掩模相机的相机角度和坐标与主相机同步,掩模相机渲染得到第二虚拟图像,再通过第二虚拟图像生成初步掩模图像,初步掩模图像被传输至遮挡设备,并通过校准程序完成与虚拟图像在用户视野中的校准,生成最终掩模图像;现实图像被最终掩模图像遮挡后,与第一虚拟图像结合生成用户所见的有遮挡AR图像。
与现有技术相比,本发明具有如下的有益效果:
1、本发明通过主相机渲染得到第一虚拟图像,掩模相机的相机角度和坐标与主相机同步,掩模相机渲染得到第二虚拟图像,再通过第二虚拟图像生成初步掩模图像,初步掩模图像被传输至遮挡设备,并通过校准程序完成与虚拟图像在用户视野中的校准,生成最终掩模图像,现实图像被最终掩模图像遮挡后,与第一虚拟图像结合生成用户所见的有遮挡AR图像,实现对AR场景中的现实图像实现像素级的遮挡,有助于提高使用者的视觉效果。
2、本发明通过将反射镜放置在中继透镜组两片透镜中点,已通过前两片透镜的光束被其反射180°,反射光束再次通过相同的两片透镜,则可用双透镜系统等效四透镜系统完成现实图像的遮挡;偏振分光器透射与其偏振方向相同的光束,反射与其偏振方向垂直的光束;将偏振分光器置于压缩得到的双透镜系统的两片透镜中间,使用光学元件将经其透射或反射后的光束反射180°并进行偏振状态调制,反射光可在同一偏振分光器表面反射或透射,实现了对偏振分光器和其所占据的空间的重复利用,进一步压缩设备体积和重量,能够实现在AR应用场景中的广泛使用,且能够实现对AR场景中的现实图像实现像素级的遮挡操作。
3、本发明通过将遮挡装置置于普通光学透视增强现实头戴显示器的前方,并使得二者的光学系统出瞳位置重合。使用时光学透视增强现实头戴显示器正常显示虚拟图像,遮挡装置则根据虚拟物体和现实场景的深度信息对现实图像中不应被用户看见的部分进行遮挡;如此,该AR显示系统同时具有光学透视增强现实头戴显示器平台来自遮挡功能的高真实感AR场景、高色彩保真度以及高图像对比度和通常光学透视增强现实头戴显示器平台来自各类AR显示技术的高性能虚拟图像显示。
4、本发明通过使用遮挡设备时其瞳孔位于光学系统的出瞳处,出瞳的位置决定了用户裸眼状态下的视点;入瞳为光学系统的“瞳孔”位置,决定了遮挡设备所显示的现实图像对应的视点;通过将入瞳与出瞳光学共轭,用户透过遮挡设备所见现实图像对应的视点于此时用户裸眼状态下的视点无空间位置偏移。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明主要体现光学结构整体示意图;
图2为本发明主要体现AR装置整体结构的示意图;
图3为本发明主要体现AR装置工作方法的原理示意图;
图4为本发明主要体现对比例一中体现AR装置优势性能的视觉效果图。
图中所示:
光学透视增强现实头戴显示器1       第五S偏振方向光束115
第一遮挡设备21                    第六S偏振方向光束116
第二遮挡设备22                    第七S偏振方向光束117
第一偏振分光器31                  第八S偏振方向光束118
第二偏振分光器32                  第一P偏振方向光束121
第一平面反射镜41                  第二P偏振方向光束122
第二平面反射镜42                  第三P偏振方向光束123
第三平面反射镜43                  第四P偏振方向光束124
第一四分之一波片51                主相机13
第二四分之一波片52                掩模相机14
第三四分之一波片53                第一虚拟图像161
第一凸透镜6                       第二虚拟图像162
第二凸透镜7                       初步掩模图像17
线偏振片8                         校准程序18
空间光调制器9                     最终掩模图像19
入射光10                          现实图像20
第一S偏振方向光束111              有遮挡AR图像201
第二S偏振方向光束112              无遮挡AR图像202
第三S偏振方向光束113              现实图像中的遮挡区域203
第四S偏振方向光束114
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
实施例一
如图1所示,根据本发明提供的一种用于现实场景遮挡的光学结构,包括第一偏振分光器31、第二偏振分光器32、第一平面反射镜41、第二平面反射镜42、第三平面反射镜43,第一四分之一波片51、第二四分之一波片52、第三四分之一波片53、第一凸透镜6、第二凸透镜7,线偏振片8以及空间光调制器9。其中,入射光10为自然光。
入射光10经第一偏振分光器31形成第一S偏振方向光束111,第一S偏振方向光束111穿过第一四分之一波片51,经第一平面反射镜41反射,再次穿过第一四分之一波片51形成第一P偏振方向光束121。第一P偏振方向光束121穿过第一偏振分光器31,再穿过第一凸透镜6,之后再穿过第二偏振分光器32形成第二P偏振方向光束122。第二P偏振方向光束122经过空间光调制器9生成第二S偏振方向光束112。第二S偏振方向光束112经过第二偏振分光器32形成第三S偏振方向光束113,第三S偏振方向光束113通过第二凸透镜7形成第四S偏振方向光束114。第四S偏振方向光束114穿过第二四分之一波片52,经第二平面反射镜42反射,再次穿过第二四分之一波片52形成第三P偏振方向光束123。第三P偏振方向光束123穿过第二凸透镜7,再穿过第二偏振分光器32形成第四P偏振方向光束124;第四P偏振方向光束124穿过第三四分之一波片53,经第三平面反射镜43反射,再次穿过第三四分之一波片53形成第五S偏振方向光束115。第五S偏振方向光束115经过第二偏振分光器32形成第六S偏振方向光束116,第六S偏振方向光束116通过第一凸透镜6形成第七S偏振方向光束117;第七S偏振方向光束117经过第一偏振分光器31,再通过线偏振片8形成第八S偏振方向光束118作为出射光输出。
具体地,入射光10与第一偏振分光器31的锐角夹角包括四十五度,出射光与第一偏振分光器31的锐角夹角包括四十五度,且入射光10与出射光共轭。第一平面反射镜41与空间光调制器9呈相对设置,第二平面反射镜42与第三平面反射镜43呈相对设置。第一平面反射镜41和空间光调制器9二者之间最短的连线,与第二平面反射镜42和第三平面反射镜43二者之间最短的连线相互垂直。第一偏振分光器31和第二偏振分光器32二者相互平行。第一凸透镜6所在平面与第二凸透镜7所在平面相互垂直。实现入射光10的偏振方向在初始方向和垂直方向间复数次切换形成出射光,使用光学元件将传输光束的偏振方向在初始方向和垂直方向间复数次切换指:控制传输光束重复通过四分之一波片,线偏振光初次经过四分之一波片后变为右旋(左旋)圆偏振光,再次通过四分之一波片后恢复为线偏振光,但此时的偏振方向垂直于初始偏振方向。通过将光学系统的入瞳与出瞳重合,使用户所见的经遮挡处理的现实图像20无视差的设备设计。
通过对传输光线进行复数次偏振状态调制,使用反射镜和偏振分光器压缩光路实现的小型化设备设计。对传输光线进行复数次偏振状态调制指:使用起偏器将进入遮挡设备的现实图像20光束转化为线偏振光,在随后的光学系统中使用光学元件将传输光束的偏振方向在初始方向和垂直方向间复数次切换。起偏器指:只允许特定偏振方向的光通过的光学元件,可为单块光学晶体或者聚合物,也可使用复数光学晶体或者薄膜的组合实现。现实场景投射向人眼的自然光经过起偏器后转化为线偏振光。
更为具体地,第一偏振分光器31和第二偏振分光器32二者均包括金属线栅偏振片。相比于其他偏振分光器,金属线栅偏振片不仅在可见光波段保持了对s方向线偏振光的高反射率和p方向线偏振光的高透射率,也可在高达45°的入射角中实现频谱平坦性能。遮挡设备需要处理来自现实场景的大范围、宽频谱的自然光,金属线栅偏振片相比于其它种类偏振分光器能带给设备更高的透光率和对比度。
进一步地,s方向线偏振光指:偏振方向垂直于偏振分光器偏振方向的线偏振光。p方向线偏振光指:偏振方向平行于偏振分光器偏振方向的线偏振光。设备的透光率指:遮挡设备不显示掩模图像时,由遮挡设备光学系统的出射和入射的现实图像20亮度比值。设备的对比度指:对于同一均匀亮度的现实图像20,遮挡设备不显示掩模图像时和显示全黑的掩模图像时所透射现实图像20的亮度比值。
进一平面反射镜、第二平面反射镜42以及第三平面反射镜43三者的工作波段均为可见光波段,对来自现实场景的自然光具有高反射率。
第一四分之一波片51、第二四分之一波片52以及第三四分之一波片53三者均包括消色差波片。标准四分之一波片对传输光束的相位改变随光束波长偏离波片工作波长的程度变化,在遮挡设备中使用标准四分之一波片会导致用户观所见的现实图像20出现明显的色差和亮度下降。消色差四分之一波片可在较宽的频谱范围对传输光束的相位进行较为稳定的调制。本实例使用工作波段450–600nm的聚合物消色差四分之一波片,可极大减少用户透过遮挡装置所见现实图像20的色差,提高现实图像20的亮度。
第一凸透镜6和第二凸透镜7二者均包括消色差非球面透镜。其中第一凸透镜6的直径为25mm,焦距为30mm;第二凸透镜7的直径为25mm,焦距为35mm。相比于标准凸透镜,消色差非球面透镜可以减少用户所见现实图像20的球面像差和色差,提高遮挡设备的成像质量。
线偏振片8包括高对比度线性偏振膜,高对比度线性偏振膜对400–700nm波长范围的传输光束具有最高9000:1的消光比。线偏振片8按照偏振方向垂直于第一偏振分光器31和第二偏振分光器32放置,因此其透射偏振方向为s方向的线偏振光,反射偏振方向为p方向的线偏振光。
使用反射镜和偏振分光器压缩光路:将反射镜放置在中继透镜组两片透镜中点,已通过前两片透镜的光束被其反射180°,反射光束再次通过相同的两片透镜,则可用双透镜系统等效经典OC-OSTHMD中的四透镜系统完成现实图像20的遮挡。偏振分光器透射与其偏振方向相同的光束,反射与其偏振方向垂直的光束。将偏振分光器置于压缩得到的双透镜系统的两片透镜中间,使用光学元件将经其透射(反射)后的光束反射180°并进行偏振状态调制,反射光可在同一偏振分光器表面反射(透射),实现了对偏振分光器和其所占据的空间的重复利用,进一步压缩设备体积和重量。
具体实施过程中,由于各偏振光学元件对传输光束的偏振方向无法完美调制,部分偏振p方向的偏振光会随着s方向线偏振光11h进入用户眼中,使得用户所见现实图像20存在鬼像。线偏振片8可以有效过滤这一部分光束,避免鬼像进入用户眼中。线偏振片8的消光比越高过滤效果越好。
空间光调制器9为反射式振幅型液晶空间光调制器9,工作波段为420–1100nm,有效区域为0.69英寸,像素个数为1920Х1080,对比度为2000:1,反射效率为75%(@532nm),灰度深度为8位。来自p方向线偏振光12b的现实图像20入射到空间光调制器9表面,空间光调制器9根据所显示的掩模图像对现实图像20进行像素级精度的偏振方向调制。
根据所显示的掩模图像对现实图像20进行像素级精度的偏振方向调制指:对于所显示掩模图像上灰度为255的像素区域,空间光调制器9将现实图像20中的对应像素的传输光束由入射时的p偏振方向改变为s偏振方向,使反射光11b可以通过随后的光学系统进入用户眼中。对于所显示掩模图像上灰度为0的像素区域,空间光调制器9不改变现实图像20中的对应像素的传输光束的偏振方向,这一部分光束则无法通过随后的光学系统进入用户眼中,完成了对用户所见现实图像20对应部分像素级精度的遮挡。对于掩模图像上灰度在0–255间的区域,空间光调制器9根据灰度等级对反射光中可以通过随后光学系统的比例在0–1范围内进行8位深度的调制,可对用户所见现实图像20中对应像素进行8位深度的亮度调制。
如图1和图2所示,本发明还提供一种AR装置,采用上述的用于现实场景遮挡的光学结构,还包括第一遮挡设备21、第二遮挡设备22以及光学透视增强现实头戴显示器1,第一遮挡设备21和第二遮挡设备22二者均安装在光学透视增强现实头戴显示器1的前方。第一遮挡设备21和第二遮挡设备22内均集成有光学结构,且第一遮挡设备21的出瞳位置与光学透视增强现实头戴显示器1的其一出瞳位置重合,第二遮挡设备22的出瞳位置与光学透视增强现实头戴显示器1的另一出瞳位置重合。
用户使用遮挡设备时其瞳孔位于光学系统的出瞳处,出瞳的位置决定了用户裸眼状态下的视点;入瞳为光学系统的“瞳孔”位置,决定了遮挡设备所显示的现实图像20对应的视点。通过将入瞳与出瞳光学共轭,用户透过遮挡设备所见现实图像20对应的视点于此时用户裸眼状态下的视点无空间位置偏移。
将遮挡装置置于普通OSTHMD光合路器的前方,并使得二者的光学系统出瞳位置重合。使用时OSTHMD正常显示虚拟图像,遮挡装置则根据虚拟物体和现实场景的深度信息对现实图像20中不应被用户看见的部分进行遮挡。如此,该AR显示系统同时具有OC-OSTHMD平台来自遮挡功能的高真实感AR场景、高色彩保真度以及高图像对比度和通常OSTHMD平台来自各类AR显示技术的高性能虚拟图像显示。
具体地,本申请的光学透视增强现实头戴显示器1以HoloLens为例进行阐述,HoloLens由微软(Microsoft)公司于2015年推出,使用光波导技术投影虚拟图像,视场角为30Х17.5°,单眼分辨率为1280Х720,未来几年内全球的HoloLens设备的保有量有望超过50万台。
如图1、图2以及图3所示,本发明具体实施例中分为光学透视增强现实头戴显示器1和遮挡设备两部分。光学透视增强现实头戴显示器1负责进行第一虚拟图像161和初步掩模图像17的输出。第一虚拟图像161由所构建AR场景中的主相机13渲染完成。掩模图像相机具有与主相机13相同的参数,其相机角度和坐标同步自主相机13,因此输出与第一虚拟图像161相同的第二虚拟图像162,在此基础上生成初步掩模图像17。初步掩模图像17被传输至遮挡设备,并通过校准程序18完成与虚拟图像在用户视野中的校准,生成最终掩模图像19。现实图像20被最终掩模图像19遮挡后,与光学透视增强现实头戴显示器1输出的虚拟图像结合,生成用户所见的有遮挡AR图像201。
光学透视增强现实头戴显示器1负责进行第一虚拟图像161和初步掩模图像17的输出指:第一虚拟图像161的渲染由光学透视增强现实头戴显示器1所运行的程序实例完成,该程序实例同时进行初步掩模图像17的渲染。光学透视增强现实头戴显示器1只进行虚拟图像的显示,初步掩模图像17生成后不进行显示而被直接发送到遮挡设备。
在AR场景中加入渲染掩膜图像的相机:在OSTHMD端构建AR场景时,除负责渲染用户所见的虚拟图像的主相机13外,额外添加一个负责掩模图像渲染的相机。该相机具有与主相机13相同的属性,其位置和角度与主相机13保持同步。
虚拟图像生成掩模图像指:由于渲染掩膜图像的相机具有与主相机13相同的属性,该相机输出的图像为OSTHMD用户所见的虚拟图像,虚拟图像对应的现实场景区域则为遮挡设备应遮挡的现实图像20部分。遮挡设备的光学系统对SLM所显示的掩模图像进行翻转和缩放,最终用户视野中的遮挡区域具有与掩模图像相同的轮廓,但其在用户视野中的方位和大小收到光学系统的影响。可根据遮挡设备中凸透镜的焦距和SLM的像素间距计算SLM所显示的掩模图像和用户所见遮挡区域的像素映射关系,以此对SLM显示的掩模图像进行修正,使得用户最终所见的虚拟图像重合于现实场景被遮挡区域。掩模图像的像素灰度决定SLM对现实图像20像素的透过率,由目标AR场景中此处虚拟图像和现实图像20的混合比例决定。
第一虚拟图像161由所构建AR场景中的主相机13渲染完成指:HoloLens运行的程序实例中包含虚拟物体和代表用户视点的主相机13(MainCamera)。主相机13的视场角(Field of view)被设定为与HoloLens设备的视场角同样大小。主相机13具有变换属性(MainCamera.Transform),包含了来自HoloLens设备中IMU模块的实时用户位置和视点信息。主相机13通过对视场范围内的虚拟物体进行渲染所得到的图像即为此时AR场景中用户可以看见的虚拟图像,也是HoloLens设备所显示的虚拟图像。
掩模图像相机具有与主相机13相同的参数指:在HoloLens设备中运行的程序实例开始渲染第一帧图像前,将主相机13的参数使用复制命令(Camera.CopyFrom())同步至掩模相机14。
相机角度和坐标同步自主相机13指:掩模相机14在进行场景裁剪之前(Onprecull()),会复制主相机13的世界坐标(MainCamera.Transform.Post ion)和角度(MainCamera.Transform.Rotation)属性,其中坐标为三维向量(vector3),角度为四元数(quaternion)。由此,掩模相机14会同步获得当前主相机13所渲染的虚拟图像,以便下一步掩模图像的生成。
在此基础上生成初步掩模图像17指:在掩模相机14完成图像渲染之后,加入后处理阶段(OnPostProcessing())。后处理阶段对所渲染的图像进行二值化,将有虚拟图像显示的区域灰度设为0(即有遮挡区域),无虚拟图像显示的区域灰度设为255(即无遮挡区域),以此得到初步掩模图像17。
通过校准程序18完成与虚拟图像在用户视野中的校准,生成最终掩模图像19指:遮挡设备接收到来自HoloLens设备的初步掩模图像17之后,为了补偿因意外原因造成的用户所见虚拟图像和遮挡区域的偏离,在遮挡设备端加入校准程序18,细微调节用户视野中掩模图像的位置和大小,使其对现实场景的遮挡区域重合于虚拟图像。校准程序18可使用着色器中像素着色器(Fragment Shader)对初步掩模图像17的像素坐标进行位移和缩放实现,此过程中也可对掩模图像中灰度为0的区域重新赋值,实现对目标现实区域的半透明遮挡。
现实图像20被最终掩模图像19遮挡后,与HoloLens输出的虚拟图像结合指:用户所见的AR场景由现实图像20和虚拟图像组成,其中现实图像20通过遮挡设备被掩模图像部分遮挡,虚拟图像则由HoloLens设备直接投影到人眼。
发明还提供的一种AR装置的工作方法,基于上述的一种AR装置,工作方法包括:光学透视增强现实头戴显示器1内的主相机13渲染得到第一虚拟图像161,光学透视增强现实头戴显示器1内的掩模相机14的相机角度和坐标与主相机13同步,掩模相机14渲染得到第二虚拟图像162,再通过第二虚拟图像162生成初步掩模图像17,初步掩模图像17被传输至遮挡设备,并通过校准程序18完成与虚拟图像在用户视野中的校准,生成最终掩模图像19;现实图像20被最终掩模图像19遮挡后,与第一虚拟图像161结合生成用户所见的有遮挡AR图像201。实现对AR场景中的现实图像实现像素级的遮挡,提高了使用者的视觉效果。
对比例一
基于实施例一,如图1、图2、图3以及图4所示,根据本发明提供的一种用于现实场景遮挡的光学结构、AR装置以及工作方法,以HoloLens设备为例,本申请的AR装置可以帮助HoloLens设备提高图像显示性能。
直接使用HoloLens设备将第一虚拟图像161显示在现实图像20中,用户所见AR场景中的无遮挡AR图像202呈现高度透明状态,用户对图像的可视度极低。
使用遮挡设备可解决这一问题。通过将最终掩模图像19输入遮挡设备,经过遮挡处理后的现实图像中的遮挡区域203在用户视野中消失。此时再使用HoloLens显示第一虚拟图像161,用户所见的有遮挡AR图像201中的虚拟图像不再透明,呈现出真实的视觉效果。
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统及其各个装置、模块、单元以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统及其各个装置、模块、单元以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同功能。所以,本发明提供的系统及其各项装置、模块、单元可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置、模块、单元也可以视为硬件部件内的结构;也可以将用于实现各种功能的装置、模块、单元视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

1.一种用于现实场景遮挡的光学结构,其特征在于,包括入射光(10)经第一偏振分光器(31)形成第一S偏振方向光束(111);
所述第一S偏振方向光束(111)穿过第一四分之一波片(51),经第一平面反射镜(41)反射,再次穿过第一四分之一波片(51)形成第一P偏振方向光束(121);
所述第一P偏振方向光束(121)穿过第一偏振分光器(31),再穿过第一凸透镜(6),之后再穿过第二偏振分光器(32)形成第二P偏振方向光束(122);
所述第二P偏振方向光束(122)经过空间光调制器(9)生成第二S偏振方向光束(112);
所述第二S偏振方向光束(112)经过第二偏振分光器(32)形成第三S偏振方向光束(113),第三S偏振方向光束(113)通过第二凸透镜(7)形成第四S偏振方向光束(114);
所述第四S偏振方向光束(114)穿过第二四分之一波片(52),经第二平面反射镜(42)反射,再次穿过第二四分之一波片(52)形成第三P偏振方向光束(123);
所述第三P偏振方向光束(123)穿过第二凸透镜(7),再穿过第二偏振分光器(32)形成第四P偏振方向光束(124);
第四P偏振方向光束(124)穿过第三四分之一波片(53),经第三平面反射镜(43)反射,再次穿过第三四分之一波片(53)形成第五S偏振方向光束(115);
第五S偏振方向光束(115)经过第二偏振分光器(32)形成第六S偏振方向光束(116),第六S偏振方向光束(116)通过第一凸透镜(6)形成第七S偏振方向光束(117);
第七S偏振方向光束(117)经过第一偏振分光器(31),再通过线偏振片(8)形成第八S偏振方向光束(118)作为出射光输出。
2.如权利要求1所述的用于现实场景遮挡的光学结构,其特征在于,所述入射光(10)与第一偏振分光器(31)的锐角夹角包括四十五度,所述出射光与第一偏振分光器(31)的锐角夹角包括四十五度,且所述入射光(10)与出射光共轭。
3.如权利要求1所述的用于现实场景遮挡的光学结构,其特征在于,所述第一平面反射镜(41)与空间光调制器(9)呈相对设置,所述第二平面反射镜(42)与第三平面反射镜(43)呈相对设置;
所述第一平面反射镜(41)和空间光调制器(9)二者之间最短的连线,与所述第二平面反射镜(42)和第三平面反射镜(43)二者之间最短的连线相互垂直。
4.如权利要求1所述的用于现实场景遮挡的光学结构,其特征在于,所述第一偏振分光器(31)和第二偏振分光器(32)二者相互平行;
所述第一凸透镜(6)所在平面与第二凸透镜(7)所在平面相互垂直。
5.如权利要求1所述的用于现实场景遮挡的光学结构,其特征在于,所述入射光(10)的偏振方向在初始方向和垂直方向间复数次切换形成出射光。
6.如权利要求1所述的用于现实场景遮挡的光学结构,其特征在于,所述第一偏振分光器(31)和第二偏振分光器(32)二者均包括金属线栅偏振片。
7.如权利要求1所述的用于现实场景遮挡的光学结构,其特征在于,所述第一四分之一波片(51)、第二四分之一波片(52)以及第三四分之一波片(53)三者均包括消色差波片;
所述第一凸透镜(6)和第二凸透镜(7)二者均包括消色差非球面透镜。
8.如权利要求1所述的用于现实场景遮挡的光学结构,其特征在于,所述线偏振片(8)包括高对比度线性偏振膜,所述高对比度线性偏振膜对400–700nm波长范围的传输光束具有最高9000:1的消光比。
9.一种AR装置,其特征在于,采用权利要求1-8任一项所述的用于现实场景遮挡的光学结构,还包括第一遮挡设备(21)、第二遮挡设备(22)以及光学透视增强现实头戴显示器(1),所述第一遮挡设备(21)和第二遮挡设备(22)二者均安装在光学透视增强现实头戴显示器(1)的前方;
第一遮挡设备(21)和第二遮挡设备(22)内均集成有光学结构,且所述第一遮挡设备(21)的出瞳位置与光学透视增强现实头戴显示器(1)的其一出瞳位置重合,所述第二遮挡设备(22)的出瞳位置与光学透视增强现实头戴显示器(1)的另一出瞳位置重合。
10.一种AR装置的工作方法,其特征在于,基于权利要求9所述的AR装置,工作方法包括:
光学透视增强现实头戴显示器(1)内的主相机(13)渲染得到第一虚拟图像(161),光学透视增强现实头戴显示器(1)内的掩模相机(14)的相机角度和坐标与主相机(13)同步,掩模相机(14)渲染得到第二虚拟图像(162),再通过第二虚拟图像(162)生成初步掩模图像(17),初步掩模图像(17)被传输至遮挡设备,并通过校准程序(18)完成与虚拟图像在用户视野中的校准,生成最终掩模图像(19);
现实图像(20)被最终掩模图像(19)遮挡后,与第一虚拟图像(161)结合生成用户所见的有遮挡AR图像(201)。
CN202310196530.7A 2023-03-01 2023-03-01 用于现实场景遮挡的光学结构、ar装置以及工作方法 Pending CN116088184A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310196530.7A CN116088184A (zh) 2023-03-01 2023-03-01 用于现实场景遮挡的光学结构、ar装置以及工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310196530.7A CN116088184A (zh) 2023-03-01 2023-03-01 用于现实场景遮挡的光学结构、ar装置以及工作方法

Publications (1)

Publication Number Publication Date
CN116088184A true CN116088184A (zh) 2023-05-09

Family

ID=86212140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310196530.7A Pending CN116088184A (zh) 2023-03-01 2023-03-01 用于现实场景遮挡的光学结构、ar装置以及工作方法

Country Status (1)

Country Link
CN (1) CN116088184A (zh)

Similar Documents

Publication Publication Date Title
JP6434076B2 (ja) 相互遮蔽および不透明度制御能力を有する光学式シースルー型ヘッドマウントディスプレイのための装置
US7639208B1 (en) Compact optical see-through head-mounted display with occlusion support
US11624915B2 (en) Near-eye display device and near-eye display method
US11269186B2 (en) Augmented reality apparatus and method, and optical engine component
Cakmakci et al. A compact optical see-through head-worn display with occlusion support
US20070047043A1 (en) image projecting device and method
WO2018100240A1 (en) Display apparatus image renderers and optical combiners
US11885968B2 (en) Pupil matched occlusion-capable optical see-through head-mounted display
Rolland et al. The past, present, and future of head-mounted display designs
CN108398791A (zh) 一种基于偏光隐形眼镜的近眼显示装置
CN108333781B (zh) 近眼显示系统
CN110376739A (zh) 一种基于光偏振方向大出瞳快速计算的全息平面混合近眼显示系统
JP2021524067A (ja) 拡張現実ディスプレイ装置
CN111308720A (zh) 一种头戴式显示装置
CN112051671B (zh) 一种近眼显示光机及其方法和近眼显示设备
Zhang et al. Add-on occlusion: Turning off-the-shelf optical see-through head-mounted displays occlusion-capable
Zhang et al. Super wide-view optical see-through head mounted displays with per-pixel occlusion capability
CN116088184A (zh) 用于现实场景遮挡的光学结构、ar装置以及工作方法
JP3151771B2 (ja) 画像表示装置
CN208737102U (zh) 光学系统及增强现实眼镜
CN212009157U (zh) 一种头戴式显示装置
CN213482569U (zh) 近眼显示装置以及显示设备
KR102524150B1 (ko) 투명 디스플레이를 이용한 대화면 직시형 증강현실 영상 제공 장치 및 방법
CN108710209B (zh) 光学系统及增强现实眼镜
WO2022064564A1 (ja) ヘッドマウントディスプレイ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination