CN116086241A - Ballistic target based on electromagnetic ejection auxiliary driving primary gas gun - Google Patents
Ballistic target based on electromagnetic ejection auxiliary driving primary gas gun Download PDFInfo
- Publication number
- CN116086241A CN116086241A CN202211716871.4A CN202211716871A CN116086241A CN 116086241 A CN116086241 A CN 116086241A CN 202211716871 A CN202211716871 A CN 202211716871A CN 116086241 A CN116086241 A CN 116086241A
- Authority
- CN
- China
- Prior art keywords
- armature
- pressure gas
- stage
- center line
- electromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005284 excitation Effects 0.000 claims abstract description 83
- 238000012360 testing method Methods 0.000 claims abstract description 69
- 238000005259 measurement Methods 0.000 claims abstract description 47
- 239000007789 gas Substances 0.000 claims description 221
- 239000000523 sample Substances 0.000 claims description 81
- 230000001960 triggered effect Effects 0.000 claims description 46
- 230000007246 mechanism Effects 0.000 claims description 38
- 239000003990 capacitor Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 29
- 238000004146 energy storage Methods 0.000 claims description 28
- 229910000831 Steel Inorganic materials 0.000 claims description 19
- 239000010959 steel Substances 0.000 claims description 19
- 230000001133 acceleration Effects 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 16
- 238000007600 charging Methods 0.000 claims description 13
- 239000003570 air Substances 0.000 claims description 11
- 230000033001 locomotion Effects 0.000 claims description 11
- 230000005855 radiation Effects 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 6
- 239000011104 metalized film Substances 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 6
- 238000010304 firing Methods 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910010293 ceramic material Inorganic materials 0.000 claims description 3
- 239000000805 composite resin Substances 0.000 claims description 3
- 238000010277 constant-current charging Methods 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 239000013307 optical fiber Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000002131 composite material Substances 0.000 abstract description 6
- 230000009471 action Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000003721 gunpowder Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 238000005474 detonation Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 101150100117 gfm1 gene Proteins 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41B—WEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
- F41B6/00—Electromagnetic launchers ; Plasma-actuated launchers
- F41B6/003—Electromagnetic launchers ; Plasma-actuated launchers using at least one driving coil for accelerating the projectile, e.g. an annular coil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41B—WEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
- F41B11/00—Compressed-gas guns, e.g. air guns; Steam guns
- F41B11/70—Details not provided for in F41B11/50 or F41B11/60
- F41B11/71—Electric or electronic control systems, e.g. for safety purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41B—WEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
- F41B11/00—Compressed-gas guns, e.g. air guns; Steam guns
- F41B11/80—Compressed-gas guns, e.g. air guns; Steam guns specially adapted for particular purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/36—Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/50—Systems of measurement based on relative movement of target
- G01S17/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Linear Motors (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及超高速飞行地面模拟试验的技术领域,特别是一种基于电磁弹射辅助驱动一级气体炮的弹道靶。The present application relates to the technical field of ultra-high-speed flight ground simulation tests, and in particular to a ballistic target based on electromagnetic ejection-assisted driving of a first-stage gas cannon.
背景技术Background Art
弹道靶是一种实现气动试验模型在静止气体中自由飞行的空气动力学地面试验设备,可以模拟真实飞行流动条件,用于开展气动力/热、气动物理、超高速碰撞等试验测试。基于模型飞行地面模拟试验的尺度效应,在其它条件相同情况下,模型尺寸越接近飞行器原型尺寸,地面模拟数据结果越接近真实。相同发射速度条件下,发射装置口径越大、模型尺寸越大,模拟试验效果越好。The ballistic target is an aerodynamic ground test device that enables the aerodynamic test model to fly freely in static gas. It can simulate real flight flow conditions and is used to carry out aerodynamic/thermal, aerodynamic physics, hypervelocity collision and other test tests. Based on the scale effect of model flight ground simulation tests, under the same other conditions, the closer the model size is to the aircraft prototype size, the closer the ground simulation data results are to reality. Under the same launch speed conditions, the larger the caliber of the launch device and the larger the model size, the better the simulation test effect.
弹道靶主要由模型发射装置、试验系统和测控系统组成。弹道靶发射装置动力源通常为火药、压缩气体或者氢氧爆轰等方式,结构上主要有一级炮、二级轻气炮、三级轻气炮等构型,尤以火药驱动的二级轻气炮最为常见。二级轻气炮最高可以将弹丸加速到8km/s,但发射管口径通常在50mm以下(最大不超过210mm);三级轻气炮最高可以将弹丸加速到约11km/s,但发射管口径通常在20mm以下。目前二/三级轻气炮均无法满足超高速(8km/s及以上)状态下大尺寸(口径50mm以上)模型飞行地面试验需求。The ballistic target is mainly composed of a model launch device, a test system and a measurement and control system. The power source of the ballistic target launch device is usually gunpowder, compressed gas or hydrogen-oxygen detonation. The structure mainly includes a first-stage gun, a second-stage light gas gun, a third-stage light gas gun and other configurations. The second-stage light gas gun driven by gunpowder is the most common. The second-stage light gas gun can accelerate the projectile to a maximum of 8km/s, but the caliber of the launch tube is usually less than 50mm (maximum no more than 210mm); the third-stage light gas gun can accelerate the projectile to a maximum of about 11km/s, but the caliber of the launch tube is usually less than 20mm. At present, the second/third-stage light gas guns cannot meet the needs of large-size (caliber 50mm or more) model flight ground tests under ultra-high speed (8km/s and above) conditions.
相比于二/三级轻气炮,一级炮口径通常可达50mm以上,相同发射速度条件下,可实现更好的地面模拟试验效果。火药、氢氧爆轰等方式存在安全性差、污染环境、政策管制等问题,造成应用受限;而高压气体驱动方式安全清洁,但其初始注气压力受到注气设备能力的限制,还存在弹丸发射后弹底压力迅速降低的固有问题,无法为弹丸提供较高的平均压力,内弹道性能不佳,驱动能力较弱。总之,由于传统动力源驱动能力不足或者安全性等原因,一级炮发射速度一般不超过2km/s。Compared with the second/third stage light gas gun, the first stage gun usually has a caliber of more than 50mm, and under the same firing speed conditions, it can achieve better ground simulation test results. Gunpowder, hydrogen-oxygen detonation and other methods have problems such as poor safety, environmental pollution, and policy control, which limit their application; while the high-pressure gas drive method is safe and clean, but its initial injection pressure is limited by the capacity of the injection equipment, and there is also an inherent problem of rapid decrease in the bottom pressure of the projectile after the projectile is launched, which cannot provide a high average pressure for the projectile, and the internal ballistic performance is poor and the driving ability is weak. In short, due to the insufficient driving capacity of the traditional power source or safety reasons, the firing speed of the first stage gun generally does not exceed 2km/s.
因此,超高速弹道靶亟需兼具强驱动力、高安全性、优良内弹道性能的新型动力源。线圈型电磁弹射装置具备电磁线圈多级轴向分布、分级模块化赋能、单级独立可调的特点,能够实现优良可控的内弹道性能。中国专利公开号CN108759559A,公开日2018年11月6日,发明创造的名称为:一种二级轻气炮,该申请公开了一种首级驱动采用电磁炮的二级轻气炮,比火药驱动、混合气体爆轰等方式安全性更高,比高压氮气驱动占地空间小、发射速度高,但由于属于二级轻气炮结构,虽然可实现较高的发射速度,但其不足之处是发射管口径较小(如:其实施例发射管管径仅为14mm),试验模型的尺寸和质量均较小,无法满足大尺寸模型超高速飞行模拟试验需求。Therefore, the hypervelocity ballistic target urgently needs a new power source with strong driving force, high safety and excellent internal ballistic performance. The coil-type electromagnetic catapult device has the characteristics of multi-stage axial distribution of electromagnetic coils, graded modular empowerment, and single-stage independent adjustment, which can achieve excellent and controllable internal ballistic performance. China Patent Publication No. CN108759559A, Publication Date November 6, 2018, the name of the invention is: a two-stage light gas gun, the application discloses a two-stage light gas gun with an electromagnetic gun as the first-stage drive, which is safer than gunpowder drive, mixed gas detonation and other methods, and occupies less space and has a higher firing speed than high-pressure nitrogen drive. However, due to the structure of the two-stage light gas gun, although a higher firing speed can be achieved, its disadvantage is that the launch tube has a small caliber (such as: the launch tube diameter of its embodiment is only 14mm), and the size and mass of the test model are small, which cannot meet the requirements of large-scale model ultra-high-speed flight simulation test.
发明内容Summary of the invention
本发明为解决现有弹道靶发射装置驱动能力弱、口径小及内弹道性能不理想等问题,发掘电磁弹射装置驱动方式的潜力,提供一种高压气体和电磁弹射复合驱动一级炮作为发射装置的大口径弹道靶,保证在超高速发射条件下提升试验模型尺寸,同时改善内弹道性能,为气动力/热、气动物理和超高速碰撞等试验提供安全、清洁、高效、可控的大口径试验平台。In order to solve the problems of weak driving ability, small caliber and unsatisfactory internal ballistic performance of existing ballistic target launching devices, the present invention explores the potential of the driving mode of the electromagnetic catapult device and provides a large-caliber ballistic target of the launching device by using a first-stage gun with a high-pressure gas and electromagnetic catapult composite drive, so as to ensure that the size of the test model is increased under the condition of ultra-high-speed launching, and at the same time improve the internal ballistic performance, so as to provide a safe, clean, efficient and controllable large-caliber test platform for tests such as aerodynamic/thermal, aerodynamic physics and ultra-high-speed collision.
第一方面,提供了一种基于电磁弹射辅助驱动一级气体炮的弹道靶,用于执行模型的飞行测量,所述弹道靶包括高压气体推进段、电枢、模型、电磁弹射装置、膨胀箱、试验舱及测控系统;其中,In the first aspect, a ballistic target based on electromagnetic ejection auxiliary driving a first-stage gas cannon is provided, which is used to perform flight measurement of a model, and the ballistic target includes a high-pressure gas propulsion section, an armature, a model, an electromagnetic ejection device, an expansion tank, a test chamber and a measurement and control system; wherein,
所述高压气体推进段包括高压气室、高压气体炮管,所述高压气体炮管内置有所述电枢和所述模型,所述电枢在所述模型后方;The high-pressure gas propulsion section includes a high-pressure gas chamber and a high-pressure gas gun tube, wherein the high-pressure gas gun tube is equipped with the armature and the model, and the armature is behind the model;
所述电磁弹射装置包括电磁发射管、缠绕在电磁发射管上的多级驱动线圈、为多级驱动线圈供电的激励电源和为激励电源充电的充电机,所述高压气室、所述高压气体炮管、所述电磁发射管、所述膨胀箱和所述试验舱依次连接;The electromagnetic ejection device comprises an electromagnetic launch tube, a multi-stage drive coil wound on the electromagnetic launch tube, an excitation power supply for supplying power to the multi-stage drive coil, and a charger for charging the excitation power supply, and the high-pressure gas chamber, the high-pressure gas gun tube, the electromagnetic launch tube, the expansion tank and the test chamber are connected in sequence;
所述高压气室释放出气体,驱动电枢和模型向前运动飞出所述高压气体炮管,在电磁发射管内,所述电枢在气体推力和电磁力的复合驱动下推动模型,所述模型飞出所述发射管经过所述膨胀箱进入所述试验舱;The high-pressure gas chamber releases gas to drive the armature and the model to move forward and fly out of the high-pressure gas gun tube. In the electromagnetic launch tube, the armature pushes the model under the combined drive of gas thrust and electromagnetic force, and the model flies out of the launch tube and passes through the expansion box into the test chamber;
所述测控系统用于根据所述电枢的移动速度和位置,确定每级激励电源触发的时刻。The measurement and control system is used to determine the triggering moment of each level of excitation power supply according to the moving speed and position of the armature.
结合第一方面,在第一方面的某些实现方式中,所述高压气体推进段满足以下至少一项:In conjunction with the first aspect, in certain implementations of the first aspect, the high-pressure gas propulsion section satisfies at least one of the following:
所述高压气室内的气体为空气或氮气或氦气,并且气体压力不大于30MPa;The gas in the high-pressure gas chamber is air, nitrogen or helium, and the gas pressure is not greater than 30 MPa;
所述高压气室通过法兰结构或者开口锯齿螺纹结构与所述高压气体炮管相连;The high-pressure gas chamber is connected to the high-pressure gas gun barrel via a flange structure or an open sawtooth thread structure;
所述高压气室内气体释放后所述高压气室内气体总压P1x和总温T1x的表达式为:The total pressure P 1x and total temperature T 1x of the gas in the high-pressure gas chamber after the gas in the high-pressure gas chamber is released are expressed as follows:
其中,γ1为气体比热比,P10为气体初始压力,T10为气体初始温度,V10为气体初始体积,x为电枢运动的距离,D为电磁发射管内径,V1x(x)为电枢运动x距离时气体体积; Where, γ 1 is the specific heat ratio of the gas, P 10 is the initial pressure of the gas, T 10 is the initial temperature of the gas, V 10 is the initial volume of the gas, x is the distance moved by the armature, D is the inner diameter of the electromagnetic transmitting tube, and V 1x (x) is the volume of the gas when the armature moves x distance;
所述高压气室包括释放机构,所述释放机构为活塞式释放机构或者双破膜式释放机构;The high-pressure gas chamber includes a release mechanism, and the release mechanism is a piston-type release mechanism or a double-break film-type release mechanism;
所述高压气体炮管容积与所述高压气室容积之比≥1.0;The ratio of the volume of the high-pressure gas gun barrel to the volume of the high-pressure gas chamber is ≥ 1.0;
所述高压气体炮管为炮钢材料。The high-pressure gas gun barrel is made of gun steel.
结合第一方面,在第一方面的某些实现方式中,所述电磁弹射装置满足以下至少一项:In conjunction with the first aspect, in some implementations of the first aspect, the electromagnetic catapult device satisfies at least one of the following:
所述电磁发射管为树脂基复合材料或陶瓷材料,最高工作温度可达260摄氏度;The electromagnetic transmitting tube is made of resin-based composite material or ceramic material, and the maximum operating temperature can reach 260 degrees Celsius;
所述电磁弹射装置的多级驱动线圈级数为n,n≥3;The number of the multi-stage driving coils of the electromagnetic ejection device is n, where n≥3;
所述各级驱动线圈及激励电源的结构参数、电磁参数均相同;The structural parameters and electromagnetic parameters of the driving coils and excitation power supplies at each level are the same;
每级驱动线圈长度与电磁发射管内径之比为0.4~1.7;The ratio of the length of each driving coil to the inner diameter of the electromagnetic transmitting tube is 0.4 to 1.7;
相邻级驱动线圈相邻端面间距与电磁发射管内径之比为0.1~0.3;The ratio of the distance between adjacent end faces of adjacent stage driving coils to the inner diameter of the electromagnetic transmitting tube is 0.1 to 0.3;
所述电磁弹射装置驱动线圈导体采用紫铜材料,驱动线圈导体外部被绝缘材料包覆;The driving coil conductor of the electromagnetic ejection device is made of copper material, and the outside of the driving coil conductor is covered with insulating material;
所述多级驱动线圈外部整体被金属层包覆。The exterior of the multi-stage driving coil is entirely covered by a metal layer.
结合第一方面,在第一方面的某些实现方式中,所述激励电源包括储能脉冲电容器组、主开关、续流开关;所述储能脉冲电容器组与所述主开关串联,并与所述续流开关并联连接在所述驱动线圈的两端,所述储能脉冲电容器组的两端还通过充电开关连接在所述充电机的两端,所述主开关和所述充电开关的导通、断开均通过所述测控系统控制。In combination with the first aspect, in certain implementations of the first aspect, the excitation power supply includes an energy storage pulse capacitor group, a main switch, and a freewheeling switch; the energy storage pulse capacitor group is connected in series with the main switch and in parallel with the freewheeling switch at both ends of the drive coil, and the two ends of the energy storage pulse capacitor group are also connected to the two ends of the charger through a charging switch, and the conduction and disconnection of the main switch and the charging switch are controlled by the measurement and control system.
结合第一方面,在第一方面的某些实现方式中,所述激励电源满足以下至少一项:In combination with the first aspect, in some implementations of the first aspect, the excitation power supply satisfies at least one of the following:
所述储能脉冲电容器组由金属化膜自愈式脉冲电容器组合而成,金属化膜自愈式脉冲电容器的能量体积比大于或等于0.5MJ/m3,工作寿命大于或等于1000次;The energy storage pulse capacitor group is composed of metallized film self-healing pulse capacitors, the energy volume ratio of the metallized film self-healing pulse capacitor is greater than or equal to 0.5MJ/m 3 , and the working life is greater than or equal to 1000 times;
所述主开关为火花间隙开关或者由半导体晶闸管组成的高压开关;The main switch is a spark gap switch or a high voltage switch composed of a semiconductor thyristor;
所述续流开关由半导体高压二级管组合而成。The freewheeling switch is composed of a combination of semiconductor high-voltage diodes.
结合第一方面,在第一方面的某些实现方式中,所述测控系统包括中央控制器、脉冲触发电路和电枢测速装置;In combination with the first aspect, in certain implementations of the first aspect, the measurement and control system includes a central controller, a pulse trigger circuit, and an armature speed measuring device;
所述电枢测速装置包括光电传感器本体和多个光电探头,所述多个光电探头沿所述电枢的运动方向间隔安装于所述高压气体炮管、所述电磁发射管壁上,所述光电传感器本体与所述光电探头通过光纤连接;The armature speed measuring device comprises a photoelectric sensor body and a plurality of photoelectric probes, wherein the plurality of photoelectric probes are installed on the high-pressure gas gun tube and the electromagnetic launch tube wall at intervals along the movement direction of the armature, and the photoelectric sensor body is connected to the photoelectric probes via optical fibers;
所述光电探头通过所述高压气体炮管、所述电磁发射管管壁上的通孔向所述电枢发出脉冲光信号并接收反射的光信号,所述光电传感器本体将光信号转换为电信号并传送给所述中央控制器;The photoelectric probe sends a pulse light signal to the armature through the through holes on the wall of the high-pressure gas gun tube and the electromagnetic transmitting tube and receives the reflected light signal. The photoelectric sensor body converts the light signal into an electrical signal and transmits it to the central controller.
所述中央控制器处理电信号得到所述电枢通过所述光电探头处的时刻和速度,并根据时序触发控制方法解算得到待触发级的预计触发时刻;The central controller processes the electrical signal to obtain the time and speed of the armature passing through the photoelectric probe, and calculates the estimated triggering time of the to-be-triggered stage according to the timing triggering control method;
在所述预计触发时刻,由所述中央控制器向所述脉冲触发电路发出触发控制信号,由所述脉冲触发电路输出功率脉冲触发导通待触发级激励电源,使待触发级激励电源的储能脉冲电容器组通过驱动线圈放电。At the expected triggering moment, the central controller sends a trigger control signal to the pulse triggering circuit, and the pulse triggering circuit outputs a power pulse to trigger the conduction of the excitation power supply of the to-be-triggered stage, so that the energy storage pulse capacitor group of the excitation power supply of the to-be-triggered stage discharges through the driving coil.
结合第一方面,在第一方面的某些实现方式中,所述光电探头用于对所述电枢的后端进行检测。In combination with the first aspect, in certain implementations of the first aspect, the photoelectric probe is used to detect the rear end of the armature.
结合第一方面,在第一方面的某些实现方式中,从第1级驱动线圈中心线沿轴向向后均匀设置至少m个光电探头Gf1、Gf2、…、Gfi-1、Gfi、…、Gfm-1、Gfm,第1个光电探头Gf1与第1级驱动线圈中心线轴向间距为h/2,相邻光电探头轴向间隔均为h,所述电枢在电磁发射管内第1级驱动线圈中心线处速度为vza,tm为驱动线圈放电电流从零上升至最大值时的时间间隔;In combination with the first aspect, in some implementations of the first aspect, at least m photoelectric probes G f1 , G f2 , ..., G fi-1 , G fi , ..., G fm-1 , G fm are evenly arranged axially backward from the center line of the first-stage driving coil, the axial spacing between the first photoelectric probe G f1 and the center line of the first-stage driving coil is h/2, and the axial spacing between adjacent photoelectric probes is h. The speed of the armature at the center line of the first-stage driving coil in the electromagnetic transmitting tube is v za , and t m is the time interval when the discharge current of the driving coil rises from zero to the maximum value;
从第1级驱动线圈中心线沿轴向向前均匀设置至少n个光电探头Gz1、Gz2、…、Gzj、Gzj+1、、…、Gzn-1、Gzn,第1个光电探头Gz1位于第1级驱动线圈和第2级驱动线圈之间的管壁上,第1个光电探头Gz1与第1级驱动线圈中心线间距,同第1个光电探头Gz1与第2级驱动线圈中心线间距相等,相邻光电探头轴向间隔均为h。At least n photoelectric probes Gz1 , Gz2 , ..., Gzj , Gzj +1 , ..., Gzn-1 , Gzn are evenly arranged axially forward from the center line of the first-level driving coil. The first photoelectric probe Gz1 is located on the tube wall between the first-level driving coil and the second-level driving coil. The distance between the first photoelectric probe Gz1 and the center line of the first-level driving coil is equal to the distance between the first photoelectric probe Gz1 and the center line of the second-level driving coil. The axial interval between adjacent photoelectric probes is h.
结合第一方面,在第一方面的某些实现方式中, In combination with the first aspect, in some implementations of the first aspect,
结合第一方面,在第一方面的某些实现方式中,tm根据确定,Ld为驱动线圈放电电流经二级管续流之前的放电回路所有自感之和,C为储能电容器组电容值。In combination with the first aspect, in some implementations of the first aspect, t m is based on It is determined that Ld is the sum of all self-inductances of the discharge circuit before the discharge current of the driving coil is freewheeling through the diode, and C is the capacitance value of the energy storage capacitor group.
结合第一方面,在第一方面的某些实现方式中,所述时序触发控制方法包括:In combination with the first aspect, in some implementations of the first aspect, the timing trigger control method includes:
步骤1:所述高压气室释放出气体驱动所述电枢推动所述模型向前运动;Step 1: The high-pressure gas chamber releases gas to drive the armature to push the model forward;
步骤2:令s=1,当电枢运动经过第1级驱动线圈中心线后方第m个光电探头时,i=m,循环执行以下步骤2-1、步骤2-2,直到触发第1级激励电源:Step 2: Let s = 1. When the armature moves past the mth photoelectric probe behind the center line of the first-stage drive coil, i = m. Circulate the following steps 2-1 and 2-2 until the first-stage excitation power supply is triggered:
步骤2-1:当电枢运动经过第1级驱动线圈中心线后方第i个光电探头时,电枢与第1级驱动线圈中心线距离为lfi1=(i-1/2)h,通过电枢测速装置执行测量、中央控制器进行信号处理,得到此时刻和此位置电枢速度vfi;Step 2-1: When the armature moves past the ith photoelectric probe behind the center line of the first-stage drive coil, the distance between the armature and the center line of the first-stage drive coil is l fi1 =(i-1/2)h. The armature speed measuring device performs measurement and the central controller performs signal processing to obtain the armature speed v fi at this moment and this position;
步骤2-2:Step 2-2:
如果则在延迟时间Δt1后触发第1级激励电源,所述延迟时间Δt1满足:令s=s+1,令i=i-1,跳转出本循环执行步骤3;if Then the first stage excitation power supply is triggered after a delay time Δt 1 , and the delay time Δt 1 satisfies: Let s=s+1, let i=i-1, jump out of this loop and execute step 3;
如果则不准备触发任何激励电源,令i=i-1;if Then no excitation power supply is to be triggered, and i=i-1;
步骤3:循环执行以下步骤3-1、步骤3-2,直到电枢经过第1级驱动线圈中心线后方第1个光电探头,并通过第1级驱动线圈中心线;Step 3: Circulate the following steps 3-1 and 3-2 until the armature passes the first photoelectric probe behind the center line of the first-stage drive coil and passes the center line of the first-stage drive coil;
步骤3-1:当电枢运动至第1级驱动线圈中心线后方第i个光电探头时,电枢与第s级驱动线圈中心线距离为lfis=(i+s-3/2)h,通过电枢测速装置执行测量、中央控制器进行信号处理,得到此时刻和此位置电枢速度vfi;Step 3-1: When the armature moves to the i-th photoelectric probe behind the center line of the first-stage drive coil, the distance between the armature and the center line of the s-th-stage drive coil is l fis =(i+s-3/2)h. The armature speed measuring device performs measurement and the central controller performs signal processing to obtain the armature speed v fi at this moment and this position;
步骤3-2:Step 3-2:
如果则立即触发第s级激励电源,令s=s+1,令i=i-1;if Then the s-th level excitation power supply is triggered immediately, let s = s + 1, let i = i - 1;
如果则在延迟时间Δts后触发第s级激励电源,所述延迟时间Δts满足:令s=s+1,令i=i-1;if Then the s-th level excitation power supply is triggered after a delay time Δt s , and the delay time Δt s satisfies: Let s = s + 1, let i = i - 1;
如果则不准备触发任何激励电源,令i=i-1;if Then no excitation power supply is to be triggered, and i=i-1;
步骤4:当电枢通过第1级驱动线圈中心线,并运动至第1级驱动线圈中心线前方第1个光电探头Gz1时,触发导通第s级激励电源,此时刻为ts,电枢与第1级驱动线圈中心线间距为xs=h/2;通过电枢测速装置执行测量、中央控制器进行信号处理,得到ts时刻此位置电枢速度vs;Step 4: When the armature passes through the center line of the first-stage drive coil and moves to the first photoelectric probe Gz1 in front of the center line of the first-stage drive coil, the s-stage excitation power supply is triggered and turned on. This moment is ts , and the distance between the armature and the center line of the first-stage drive coil is xs = h/2; the armature speed measuring device performs measurement and the central controller performs signal processing to obtain the armature speed vs at this position at time ts ;
步骤5:循环执行以下步骤5-1、步骤5-2和步骤5-3,直到获取导通第n级激励电源的时刻tn:Step 5: cyclically execute the following steps 5-1, 5-2 and 5-3 until the time t n at which the n-th stage excitation power supply is turned on is obtained:
步骤5-1:在时刻ts+1触发导通第s+1级激励电源,所述时刻ts+1满足:Step 5-1: triggering and turning on the s+1th level excitation power supply at time ts +1 , wherein the time ts+1 satisfies:
vs为时刻ts电枢速度,a为电枢运动平均加速度,h为相邻两级驱动线圈中心间距,tm为驱动线圈放电电流从零至达到最大值时的时间间隔; v s is the armature speed at time t s , a is the average acceleration of the armature motion, h is the center distance between two adjacent drive coils, and t m is the time interval when the discharge current of the drive coil changes from zero to the maximum value;
步骤5-2:通过中央控制器计算得到时刻ts+1时电枢预计速度为Step 5-2: The central controller calculates the estimated armature speed at time ts+1 :
步骤5-3:令s=s+1。Step 5-3: Let s=s+1.
结合第一方面,在第一方面的某些实现方式中,时刻ts+1时电枢与第1级驱动线圈中心线间距xs+1满足:xs+1=xs+h-atm(ts+1-ts)<xs+h,xs为时刻ts时电枢与第1级驱动线圈中心线间距。In combination with the first aspect, in certain implementations of the first aspect, the center line distance xs +1 between the armature and the first-stage drive coil at time ts+1 satisfies: xs+1 = xs +h- atm ( ts+1 - ts )< xs +h, where xs is the center line distance between the armature and the first-stage drive coil at time ts .
结合第一方面,在第一方面的某些实现方式中,所述电枢经过第1级驱动线圈中心线前方第j个光电探头Gzj、第j+1个光电探头Gzj+1时的时刻和速度分别为tzj、vzj和tzj+1、vzj+1,电枢经过第1级驱动线圈中心线前方第j+1个光电探头Gzj+1时的时刻和速度分别为 In combination with the first aspect, in certain implementations of the first aspect, the time and speed when the armature passes through the jth photoelectric probe Gzj and the j+1th photoelectric probe Gzj +1 in front of the center line of the first-stage drive coil are tzj , vzj and tzj+1 , vzj +1 respectively, and the time and speed when the armature passes through the j+1th photoelectric probe Gzj +1 in front of the center line of the first-stage drive coil are
结合第一方面,在第一方面的某些实现方式中,所述弹道靶满足以下至少一项:In conjunction with the first aspect, in certain implementations of the first aspect, the ballistic target satisfies at least one of the following:
所述高压气体炮管、所述电磁发射管彼此间同轴、内径相等,内径不小于50mm;The high-pressure gas gun tube and the electromagnetic launch tube are coaxial with each other and have the same inner diameter, which is not less than 50 mm;
所述高压气体炮管与所述电磁发射管通过法兰结构连接;The high-pressure gas gun tube is connected to the electromagnetic launch tube via a flange structure;
所述高压气体炮管或者电磁发射管由同规格管材分段互相连接,各段之间采用法兰结构、哈夫螺母结构或者哈夫卡箍结构连接;The high-pressure gas gun tube or electromagnetic launch tube is connected to each other in sections by pipes of the same specification, and each section is connected by a flange structure, a Huff nut structure or a Huff clamp structure;
所述电枢结构为整体实心圆柱或者空心圆柱型式;The armature structure is an integral solid cylinder or a hollow cylinder;
所述电枢材料为铝或者铝合金;The armature material is aluminum or aluminum alloy;
所述模型为不带弹托的全口径模型或者带弹托的组合体模型,所述模型为不带弹托的全口径模型时,模型发射后经过膨胀箱进入试验舱,所述模型为带弹托的组合体模型时,组合体模型由模型本体和弹托组成,模型发射后弹托和模型本体在膨胀箱内实现分离,模型本体进入试验舱;The model is a full-caliber model without a buttstock or a combined model with a buttstock. When the model is a full-caliber model without a buttstock, the model passes through an expansion box and enters the test chamber after being fired. When the model is a combined model with a buttstock, the combined model consists of a model body and a buttstock. After the model is fired, the buttstock and the model body are separated in the expansion box, and the model body enters the test chamber.
所述膨胀箱和试验舱安装模型速度测量系统、测量模型位置及其姿态的照相系统、流场显示用阴/纹影仪及测量光辐射特性的光辐射测量系统;The expansion tank and the test chamber are equipped with a model velocity measurement system, a camera system for measuring the model position and posture, a shadow/schlieren instrument for flow field display, and a light radiation measurement system for measuring light radiation characteristics;
所述弹道靶包括数个支撑机构及轨道系统,支撑机构分别位于高压气室、高压气体炮管、电磁发射管、膨胀箱和试验舱下方,支撑机构安装在轨道系统上并且能沿着轨道移动;The ballistic target includes several supporting mechanisms and a track system, wherein the supporting mechanisms are respectively located under the high-pressure gas chamber, the high-pressure gas gun tube, the electromagnetic launch tube, the expansion tank and the test chamber, and the supporting mechanisms are installed on the track system and can move along the track;
所述充电机采用IGBT串联谐振恒流充电电源;The charger adopts an IGBT series resonant constant current charging power supply;
所述模型前方的高压气体炮管、电磁发射管、膨胀箱和试验舱内充有的试验气体为空气,空气压力为10Pa~0.2MPa;The test gas filled in the high-pressure gas gun barrel, electromagnetic launch tube, expansion box and test chamber in front of the model is air, and the air pressure is 10Pa~0.2MPa;
所述电枢在电磁发射管内第1级驱动线圈中心线处速度vza满足0<vza≤150m/s。The velocity v za of the armature at the center line of the first-stage driving coil in the electromagnetic transmitting tube satisfies 0<v za ≤150m/s.
第二方面,提供了一种时序触发控制方法,所述方法应用于如上述第一方面中的任意一种实现方式中所述的弹道靶,所述方法包括:In a second aspect, a timing trigger control method is provided, the method being applied to the ballistic target as described in any one of the implementations of the first aspect above, the method comprising:
步骤1:所述高压气室释放出气体驱动所述电枢推动所述模型向前运动;Step 1: The high-pressure gas chamber releases gas to drive the armature to push the model forward;
步骤2:令s=1,当电枢运动经过第1级驱动线圈中心线后方第m个光电探头时,i=m,循环执行以下步骤2-1、步骤2-2,直到触发第1级激励电源:Step 2: Let s = 1. When the armature moves past the mth photoelectric probe behind the center line of the first-stage drive coil, i = m. Circulate the following steps 2-1 and 2-2 until the first-stage excitation power supply is triggered:
步骤2-1:当电枢运动经过第1级驱动线圈中心线后方第i个光电探头时,电枢与第1级驱动线圈中心线距离为lfi1=(i-1/2)h,通过电枢测速装置执行测量、中央控制器进行信号处理,得到此时刻和此位置电枢速度vfi;Step 2-1: When the armature moves past the ith photoelectric probe behind the center line of the first-stage drive coil, the distance between the armature and the center line of the first-stage drive coil is l fi1 =(i-1/2)h. The armature speed measuring device performs measurement and the central controller performs signal processing to obtain the armature speed v fi at this moment and this position;
步骤2-2:Step 2-2:
如果则在延迟时间Δt1后触发第1级激励电源,所述延迟时间Δt1满足:令s=s+1,令i=i-1,跳转出本循环执行步骤3;if Then the first stage excitation power supply is triggered after a delay time Δt 1 , and the delay time Δt 1 satisfies: Let s=s+1, let i=i-1, jump out of this loop and execute step 3;
如果则不准备触发任何激励电源,令i=i-1;if Then no excitation power supply is to be triggered, and i=i-1;
步骤3:循环执行以下步骤3-1、步骤3-2,直到电枢经过第1级驱动线圈中心线后方第1个光电探头,并通过第1级驱动线圈中心线;Step 3: Circulate the following steps 3-1 and 3-2 until the armature passes the first photoelectric probe behind the center line of the first-stage drive coil and passes the center line of the first-stage drive coil;
步骤3-1:当电枢运动至第1级驱动线圈中心线后方第i个光电探头时,电枢与第s级驱动线圈中心线距离为lfis=(i+s-3/2)h,通过电枢测速装置执行测量、中央控制器进行信号处理,得到此时刻和此位置电枢速度vfi;Step 3-1: When the armature moves to the i-th photoelectric probe behind the center line of the first-stage drive coil, the distance between the armature and the center line of the s-th-stage drive coil is l fis =(i+s-3/2)h. The armature speed measuring device performs measurement and the central controller performs signal processing to obtain the armature speed v fi at this moment and this position;
步骤3-2:Step 3-2:
如果则立即触发第s级激励电源,令s=s+1,令i=i-1;if Then the s-th level excitation power supply is triggered immediately, let s = s + 1, let i = i - 1;
如果则在延迟时间Δts后触发第s级激励电源,所述延迟时间Δts满足:令s=s+1,令i=i-1;if Then the s-th level excitation power supply is triggered after a delay time Δt s , and the delay time Δt s satisfies: Let s = s + 1, let i = i - 1;
如果则不准备触发任何激励电源,令i=i-1;if Then no excitation power supply is to be triggered, and i=i-1;
步骤4:当电枢通过第1级驱动线圈中心线,并运动至第1级驱动线圈中心线前方第1个光电探头Gz1时,触发导通第s级激励电源,此时刻为ts,电枢与第1级驱动线圈中心线间距为xs=h/2;通过电枢测速装置执行测量、中央控制器进行信号处理,得到ts时刻此位置电枢速度vs;Step 4: When the armature passes through the center line of the first-stage drive coil and moves to the first photoelectric probe Gz1 in front of the center line of the first-stage drive coil, the s-stage excitation power supply is triggered and turned on. This moment is ts , and the distance between the armature and the center line of the first-stage drive coil is xs = h/2; the armature speed measuring device performs measurement and the central controller performs signal processing to obtain the armature speed vs at this position at time ts ;
步骤5:循环执行以下步骤5-1、步骤5-2和步骤5-3,直到获取导通第n级激励电源的时刻tn:Step 5: cyclically execute the following steps 5-1, 5-2 and 5-3 until the time t n at which the n-th stage excitation power supply is turned on is obtained:
步骤5-1:在时刻ts+1触发导通第s+1级激励电源,所述时刻ts+1满足:Step 5-1: triggering and turning on the s+1th level excitation power supply at time ts +1 , wherein the time ts+1 satisfies:
vs为时刻ts电枢速度,a为电枢运动平均加速度,h为相邻两级驱动线圈中心间距,tm为驱动线圈放电电流从零至达到最大值时的时间间隔; v s is the armature speed at time t s , a is the average acceleration of the armature motion, h is the center distance between two adjacent drive coils, and t m is the time interval when the discharge current of the drive coil changes from zero to the maximum value;
步骤5-2:通过中央控制器计算得到时刻ts+1时电枢预计速度为Step 5-2: The central controller calculates the estimated armature speed at time ts+1 :
步骤5-3:令s=s+1。Step 5-3: Let s=s+1.
与现有技术相比,本申请提供的方案至少包括以下有益技术效果:Compared with the prior art, the solution provided by this application includes at least the following beneficial technical effects:
(1)本发明发射装置采用高压气体和电磁弹射复合驱动方式,相比单纯高压气体驱动的一级炮,发射装置驱动能力提升数倍以上。可以利用电磁驱动装置多级赋能的特点,通过增加激励电源和驱动线圈级数的方法,解决大口径设备需要的高能量供给问题。(1) The launcher of the present invention adopts a composite drive mode of high-pressure gas and electromagnetic ejection. Compared with a single-stage cannon driven by high-pressure gas, the launcher's driving capacity is increased by several times. The multi-stage energy-enabling characteristics of the electromagnetic drive device can be utilized to solve the high energy supply problem required by large-caliber equipment by increasing the number of excitation power supplies and drive coil stages.
(2)本发明发射装置采用高压气体和电磁弹射复合驱动方式,电磁弹射装置驱动线圈(初级)与电枢(次级)之间设置绝缘发射管,相关研究表明口径越大电磁耦合效率和电磁能量转化效率越高,口径在50mm以下耦合效率和电磁能量转化效率会急剧下降。本发明设置发射管口径至少大于等于50mm,相比于电磁驱动的二级炮,在保证较高能量转化效率前提下,发射管口径增加数倍,正好特别适合大尺寸大质量模型弹道靶试验。(2) The launch device of the present invention adopts a composite drive mode of high-pressure gas and electromagnetic ejection. An insulating launch tube is arranged between the driving coil (primary) and the armature (secondary) of the electromagnetic ejection device. Relevant studies have shown that the larger the caliber, the higher the electromagnetic coupling efficiency and electromagnetic energy conversion efficiency. When the caliber is below 50 mm, the coupling efficiency and electromagnetic energy conversion efficiency will drop sharply. The launch tube caliber of the present invention is set to be at least greater than or equal to 50 mm. Compared with the electromagnetically driven two-stage gun, the launch tube caliber is increased several times while ensuring a higher energy conversion efficiency, which is particularly suitable for large-size and large-mass model ballistic target testing.
(3)单独高压气体驱动或单独多级电磁驱动均有其各自特有的内弹道特性,单独高压气体驱动时弹丸发射初期加速快但弹底压力迅速降低,无法为弹丸提供较高的平均压力,内弹道性能不佳,后继乏力;单独电磁弹射驱动时,电枢需从静止加速且相比高压气体驱动初期加速慢。本发明采用先高压气体和后电磁弹射为主的复合驱动方式,结合各自驱动特性优势,先以高压气体驱动电枢快速加速,在电磁发射启动时给予电枢一定初速度,之后利用电磁弹射装置激励电源和驱动线圈轴向分布、多级赋能、单级可独立调控等特点,通过调控各级电路结构参数和电磁参数,优化储能、赋能方案,保证较高的能量转换效率的同时,使模型运动过程速度、加速度更平稳可控,总体改善内弹道特性,实现“软发射”。(3) High-pressure gas drive alone or multi-stage electromagnetic drive alone has its own unique internal ballistic characteristics. When high-pressure gas drive alone is used, the initial acceleration of the projectile is fast, but the pressure at the bottom of the projectile decreases rapidly, and it is impossible to provide a high average pressure for the projectile, resulting in poor internal ballistic performance and weak follow-up. When electromagnetic ejection drive alone is used, the armature needs to accelerate from a standstill and accelerates slower than the initial acceleration of high-pressure gas drive. The present invention adopts a composite drive method based on high-pressure gas first and electromagnetic ejection later, combining the advantages of their respective driving characteristics, first driving the armature with high-pressure gas to accelerate quickly, giving the armature a certain initial velocity when electromagnetic launch is started, and then utilizing the electromagnetic ejection device's excitation power supply and drive coil axial distribution, multi-stage empowerment, and single-stage independent regulation and control characteristics. By regulating the circuit structure parameters and electromagnetic parameters at each level, the energy storage and empowerment schemes are optimized, ensuring a high energy conversion efficiency while making the speed and acceleration of the model motion process more stable and controllable, improving the internal ballistic characteristics overall, and achieving "soft launch".
(4)本发明发射装置采用高压气体和电磁弹射复合驱动方式,结构密封性和安全性更高,是比火药或氢氧爆轰更安全、清洁、高效的动力源。(4) The launch device of the present invention adopts a composite drive mode of high-pressure gas and electromagnetic catapult, which has higher structural sealing and safety, and is a safer, cleaner and more efficient power source than gunpowder or hydrogen-oxygen explosion.
(5)随着高能量密度储能技术、高压开关技术和高强度新绝缘材料技术瓶颈的突破,未来多级线圈电磁弹射装置可实现模块化、小型化、轻量化、智能化,电磁驱动力作为弹道靶的独立动力源将具备越来越大的优势。(5) With the breakthrough of high energy density energy storage technology, high voltage switch technology and high strength new insulation material technology bottlenecks, the future multi-stage coil electromagnetic catapult device can be modularized, miniaturized, lightweight and intelligent, and the electromagnetic driving force as an independent power source for ballistic targets will have more and more advantages.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为基于电磁弹射辅助驱动一级气体炮的弹道靶结构示意图;FIG1 is a schematic diagram of a ballistic target structure of a first-stage gas cannon driven by electromagnetic ejection assistance;
图2为电磁弹射装置及时序触发控制系统示意图;FIG2 is a schematic diagram of an electromagnetic ejection device and a timing trigger control system;
图3为电枢测速装置布置及时序触发控制方法原理示意图;FIG3 is a schematic diagram showing the arrangement and timing trigger control method of the armature speed measuring device;
图4为高压气室段结构示意图;FIG4 is a schematic diagram of the structure of a high-pressure air chamber section;
图5为高压气体炮管分段间哈夫螺母连接结构示意图;FIG5 is a schematic diagram of the Hough nut connection structure between the sections of the high-pressure gas gun tube;
图6为高压气室与高压气体炮管法兰连接结构示意图;FIG6 is a schematic diagram of the connection structure between the high-pressure gas chamber and the high-pressure gas gun barrel flange;
图7为高压气体炮管与电磁发射管法兰连接结构示意图;FIG7 is a schematic diagram of the flange connection structure between the high-pressure gas gun tube and the electromagnetic launch tube;
图8为电磁发射管分段间法兰连接结构示意图;FIG8 is a schematic diagram of the flange connection structure between the electromagnetic transmitting tube segments;
图9为膨胀箱、试验舱及相关测控装置俯视示意图。Figure 9 is a top view of the expansion tank, test chamber and related measurement and control equipment.
附图标号说明:Description of Figure Numbers:
1-高压气体推进段;101-高压气室;10101-高压气室腔;10102-排气腔;10103-补偿孔;10104-缓冲腔;10105-单向阀;10106-阻尼腔;10107-弹簧;10108-阀体;10109-进气阀;10110-排气阀;102-连接机构A;10201-钢制法兰管件Aa;10202-钢制法兰管件Ab;10203-钢制螺栓组件Ac;103-高压气体炮管;10301-高压气体炮管第k段;10302-高压气体炮管第k+1段;10303-哈夫螺母组件;2-电枢;3-模型;4-连接机构B;401-钢制法兰管件Ba;402-绝缘法兰管件Bb;403-螺栓组件Bc;5-电磁弹射装置;501-电磁发射管;50101-电磁发射管第k段;50102-电磁发射管第k+1段;502-驱动线圈;503-金属层;504-充电机;50401-充电开关;505-激励电源;50501-储能脉冲电容器组;50502-主开关;50503-续流开关;506-绝缘法兰连接机构C;50601-绝缘法兰管件Ca;50602-绝缘法兰管件Cb;50603-绝缘螺栓组件Cc;6-膨胀箱;601-膨胀箱与真空系统接口;602-膨胀箱侧部观察窗;603-膨胀箱顶部观察窗;7-试验舱;701-试验舱与真空系统接口;702-试验舱侧部观察窗;703-试验舱顶部观察窗;8-测控系统;801-中央控制器;802-脉冲触发电路;803-发射管内电枢测速装置;80301-光电传感器本体;80302-光电探头;804-激励电源电压测量装置;805-驱动线圈电流测量装置;806-膨胀箱内模型测速装置;807-膨胀箱双目视觉测量系统;808-试验舱内模型测速装置;809-试验舱纹影仪;810-试验舱双目视觉测量系统;811-试验舱光辐射测量仪;9-支撑机构;10-轨道系统。1-high-pressure gas propulsion section; 101-high-pressure gas chamber; 10101-high-pressure gas chamber cavity; 10102-exhaust cavity; 10103-compensation hole; 10104-buffer cavity; 10105-check valve; 10106-damping cavity; 10107-spring; 10108-valve body; 10109-intake valve; 10110-exhaust valve; 102-connecting mechanism A; 10201-steel flange pipe fitting Aa; 10202-steel flange pipe fitting Ab; 10203-steel bolt assembly Ac; 103-high-pressure gas barrel; 10301-high pressure Section k of gas gun barrel; 10302-section k+1 of high pressure gas gun barrel; 10303-Huff nut assembly; 2-armature; 3-model; 4-connecting mechanism B; 401-steel flange pipe fitting Ba; 402-insulating flange pipe fitting Bb; 403-bolt assembly Bc; 5-electromagnetic ejection device; 501-electromagnetic launch tube; 50101-section k of electromagnetic launch tube; 50102-section k+1 of electromagnetic launch tube; 502-driving coil; 503-metal layer; 504-charger; 50401-charging switch; 505-excitation power supply; 505 01-energy storage pulse capacitor bank; 50502-main switch; 50503-freewheeling switch; 506-insulating flange connection mechanism C; 50601-insulating flange pipe fitting Ca; 50602-insulating flange pipe fitting Cb; 50603-insulating bolt assembly Cc; 6-expansion tank; 601-expansion tank and vacuum system interface; 602-expansion tank side observation window; 603-expansion tank top observation window; 7-test cabin; 701-test cabin and vacuum system interface; 702-test cabin side observation window; 703-test cabin top observation window; 8-measurement and control system; 801-central controller; 802-pulse trigger circuit; 803-armature speed measuring device in the transmitting tube; 80301-photoelectric sensor body; 80302-photoelectric probe; 804-excitation power supply voltage measuring device; 805-driving coil current measuring device; 806-model speed measuring device in the expansion box; 807-binocular vision measurement system of the expansion box; 808-model speed measuring device in the test cabin; 809-test cabin schlieren; 810-test cabin binocular vision measurement system; 811-test cabin light radiation measuring instrument; 9-support mechanism; 10-track system.
具体实施方式DETAILED DESCRIPTION
下面结合附图对本发明进行更加清楚、完整的说明。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。The present invention will be described more clearly and completely below in conjunction with the accompanying drawings. A person skilled in the art will be able to implement the present invention based on these descriptions.
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别之处,不必按比例回执附图。The word "exemplary" is used exclusively herein to mean "serving as an example, embodiment, or illustration." Any embodiment described herein as "exemplary" is not necessarily to be construed as being preferred or advantageous over other embodiments. Although various aspects of the embodiments are shown in the drawings, the drawings are not necessarily to scale unless otherwise specified.
如图1~图2所示,一种基于电磁弹射辅助驱动一级气体炮的弹道靶,包括高压气体推进段1、电枢2、模型3、电磁弹射装置5、膨胀箱6、试验舱7及测控系统8。As shown in FIGS. 1 and 2 , a ballistic target based on an electromagnetic ejection-assisted driven first-stage gas cannon includes a high-pressure
高压气体推进段1包括高压气室101、高压气体炮管103。电磁弹射装置5包括电磁发射管501、缠绕在电磁发射管501上的多级驱动线圈502。高压气室101、高压气体炮管103、电磁发射管501、膨胀箱6和试验舱7依次连接。电磁弹射装置5还可以包括为多级驱动线圈502供电的激励电源505和为激励电源充电的充电机504。充电机504可以采用IGBT串联谐振恒流充电电源。The high-pressure
高压气体炮管103内置有电枢2和模型3,电枢2在模型3后方。高压气室101内充有高压气体。模型3前方的高压气体炮管103、电磁发射管501、膨胀箱6和试验舱7内充有试验气体。在一种优选的实施方式中,高压气室101内高压气体为高压空气或高压氮气或高压氦气,并且气体压力不大于30MPa;模型3前方的高压气体炮管103、电磁发射管501、膨胀箱6和试验舱7内充有的试验气体为空气,空气压力为10Pa~0.2MPa。The high-pressure
高压气室101释放出高压气体,驱动电枢2和模型3向前运动飞出高压气体炮管103。在电磁发射管501内,电枢2在高压气体推力和电磁力的复合驱动下推动模型3高速发射。模型3经过膨胀箱6进入试验舱7。The high-
在一种实施方式中,高压气室内气体释放后以等熵膨胀模式推动电枢和活塞运动,高压气室内气体总压P1x和总温T1x的表达式为:In one embodiment, after the gas in the high-pressure chamber is released, it drives the armature and the piston to move in an isentropic expansion mode. The total pressure P 1x and the total temperature T 1x of the gas in the high-pressure chamber are expressed as follows:
其中,γ1为高压气体比热比,P10为高压气体初始压力,T10为高压气体初始温度,V10为高压气体初始体积,x为电枢2运动的距离,D为电磁发射管501内径,V1x(x)为电枢2运动x距离时高压气体体积。Wherein, γ 1 is the specific heat ratio of high-pressure gas, P 10 is the initial pressure of high-pressure gas, T 10 is the initial temperature of high-pressure gas, V 10 is the initial volume of high-pressure gas, x is the distance moved by
在一种实施方式中,高压气室101包括释放机构,释放机构为活塞式释放机构或者双破膜式释放机构,起到隔离气体和迅速开启的作用。In one embodiment, the high-
在一种实施方式中,高压气体炮管103为金属材料制得,优选炮钢材料。In one embodiment, the high pressure
电磁发射管501起到导向的作用,在一种实施方式中,电磁发射管501为绝缘材料制得,以确保驱动线圈502和电枢2不会电性导通,同时保证驱动线圈502与电枢2之间实现良好的电磁感应。电磁发射管501最高工作温度可达260摄氏度,从而在电枢2加速导致的温升在电磁发射管501的工作温度范围内。电磁发射管501优选高强度树脂基复合材料或高强度陶瓷材料。The
在一种实施方式中,电磁弹射装置驱动线圈502导体采用紫铜材料,驱动线圈502导体外部被绝缘材料包覆。电磁弹射装置5还可以包括金属层503,金属层503可以包覆在多级驱动线圈502外部,金属层503起到电磁屏蔽作用并对电磁发射管501和多级驱动线圈502起到结构强化作用。In one embodiment, the conductor of the electromagnetic ejection
在一种实施方式中,电枢2结构为整体实心圆柱或者空心圆柱型式,电枢2材料为铝或者铝合金。In one embodiment, the
在一种实施方式中,模型3为不带弹托的全口径模型或者带弹托的组合体模型;模型3为不带弹托的全口径模型时,模型3发射后经过膨胀箱进入试验舱;模型3为带弹托的组合体模型时,组合体模型由模型本体和弹托组成,模型3发射后弹托和模型本体在膨胀箱内实现分离,模型本体进入试验舱。In one embodiment, model 3 is a full-caliber model without a buttstock or a combination model with a buttstock; when model 3 is a full-caliber model without a buttstock, model 3 passes through an expansion box and enters a test chamber after being fired; when model 3 is a combination model with a buttstock, the combination model consists of a model body and a buttstock, and after model 3 is fired, the buttstock and the model body are separated in the expansion box, and the model body enters the test chamber.
在一种实施方式中,电磁弹射装置1多级驱动线圈级数为n,n≥3。在设定的模型峰值速度、平均加速度和泵管口径等基本参数条件下,合理估算加速长度、电能-动能转换效率和预计总能量,并结合单级驱动线圈和激励电源极限参数条件(耐电压、耐电流、应力、温升、设备成本等),综合考虑后确定合理的驱动线圈502的级数,以便于实现电枢2和模型3的高效安全加速。如果驱动线圈502的级数太少,则单级能量过大,影响驱动线圈502和激励电源505的安全性、技术难度和成本;如果驱动线圈502的级数太多,则单级能量过小、加速长度过长,不利于实现电枢2高效快速加速,同时极大提高设备占地面积和设备成本。In one embodiment, the number of multi-stage drive coils of the
在一种实施方式中,电磁弹射装置1每级驱动线圈502长度与电磁发射管501内径之比为0.4~1.7,相邻级驱动线圈502相向端面间距与电磁发射管501的内径之比为0.1~0.3。通过合理设置驱动线圈502的长度,有利于使驱动线圈502和电枢2的互感梯度和总体驱动能力处于合理范围内。In one embodiment, the ratio of the length of each stage of the driving
在一种实施方式中,如图2所示,电磁弹射装置每级驱动线圈502分别连接独立的激励电源505,激励电源505包括储能脉冲电容器组50501、主开关50502、续流开关50503。储能脉冲电容器组50501可以与主开关50502串联,并与续流开关50503并联连接在驱动线圈502的两端。储能脉冲电容器组50501的两端还通过充电开关50401连接在充电机504的两端。In one embodiment, as shown in FIG2 , each stage of the driving
充电机504通过充电开关50401与储能脉冲电容器组50501连接;激励电源505工作前,充电开关50401导通,充电机504为储能脉冲电容器组50501充电,当储能脉冲电容器组50501充到预定电压时,充电开关50401关断,充电机504停止充电。The
激励电源505通过测控系统8采用时序触发控制方法实现激励电源505逐级放电。测控系统8通过传感器监测激励电源505电压信息、驱动线圈502电流信息,高压气体和试验气体压力温度信息,高压气体炮管103、电磁发射管501、膨胀箱6中电枢2和模型3的运动信息以及试验舱7中模型3的运动信息、气动力/热信息、气动物理信息或高速碰撞信息。The
测控系统8包括中央控制器801、脉冲触发电路802、电枢测速装置803。中央控制器801优选数字信号处理器DSP或者现场可编程逻辑门阵列FPGA。电枢测速装置803包括光电传感器本体80301和光电探头80302,电枢测速装置803的多个光电探头80302沿电枢运动方向间隔安装于高压气体炮管103、电磁发射管501壁上;光电传感器本体80301与光电探头80302通过光纤连接。电枢测速装置803光电探头80302可以通过高压气体炮管103、电磁发射管501管壁上的通孔向电枢2发出一定频率的脉冲光信号并接收反射自反光环的光信号,同时将光信号转换为电信号并传送给中央控制器801。The measurement and control system 8 includes a
中央控制器801处理电信号得到电枢2(具体是电枢2位于或接近后端面的区域,后方指电枢2远离模型3的方向)通过光电探头80302处的时刻和速度,通过时序触发控制方法解算得到待触发级的预计触发时刻,或者查询预先存储的数据表得到待触发级的预计触发时刻。在预计触发时刻,由中央控制器向脉冲触发电路802发出触发控制信号,由脉冲触发电路802输出功率脉冲导通下一级激励电源主开关50502,使储能脉冲电容器组50501通过驱动线圈502放电。当储能脉冲电容器组50501电压下降至零时,续流开关50503导通,主开关50502关断,驱动线圈502通过续流开关50503续流直至放电电流下降至零。各级激励电源以此类推逐级工作。The
如图3所示,从第1级驱动线圈中心线沿轴向向后均匀设置至少m个光电探头Gf1、Gf2、…、Gfi-1、Gfi、…、Gfm-1、Gfm。第1个光电探头Gf1与第1级驱动线圈中心线轴向间距为h/2,相邻光电探头轴向间隔均为h。vza为电枢2(具体是电枢2位于或接近后端面的区域)在电磁发射管501内第1级驱动线圈中心线处速度,h为相邻驱动线圈中心线轴向间距,tm为驱动线圈放电电流从零上升至最大值时的时间间隔。在一些实施例中,vza满足0<vza≤1500m/s。优选在一些实施例中,tm可以根据确定,Ld为驱动线圈放电电流经二级管续流之前的放电回路所有自感之和,C为储能电容器组电容值。As shown in Fig. 3, at least m photoelectric probes Gf1 , Gf2 , ..., Gfi -1 , Gfi , ..., Gfm-1 , Gfm are evenly arranged axially backward from the center line of the first-stage driving coil. The axial spacing between the first photoelectric probe Gf1 and the center line of the first-stage driving coil is h/2, and the axial spacing between adjacent photoelectric probes is h. vza is the velocity of the armature 2 (specifically, the area where the
从第1级驱动线圈中心线沿轴向向前均匀设置至少n个光电探头Gz1、Gz2、…、Gzj、Gzj+1、…、Gzn-1、Gzn,第1个光电探头Gz1位于第1级驱动线圈和第2级驱动线圈之间的管壁上,第1个光电探头Gz1与第1级驱动线圈中心线间距,同第1个光电探头Gz1与第2级驱动线圈中心线间距相等。相邻光电探头轴向间隔均为h。At least n photoelectric probes Gz1 , Gz2 , ..., Gzj , Gzj +1 , ..., Gzn-1 , Gzn are evenly arranged axially forward from the center line of the first-stage driving coil. The first photoelectric probe Gz1 is located on the tube wall between the first-stage driving coil and the second-stage driving coil. The distance between the first photoelectric probe Gz1 and the center line of the first-stage driving coil is equal to the distance between the first photoelectric probe Gz1 and the center line of the second-stage driving coil. The axial intervals between adjacent photoelectric probes are h.
中央控制器执行的时序触发控制方法具体可以如下。The timing trigger control method executed by the central controller may be specifically as follows.
步骤1:试验前,电枢2和模型3预置于高压气体炮管103后端内、高压气室101出口附近适当位置。首先开启高压气室101排气阀10110,同时控制电枢测速装置803以适当频率向管内发射光信号。高压气室101释放出高压气体驱动电枢2,电枢2推动模型3在高压气体炮管103内向前运动,电枢2和模型3速度不断增大。Step 1: Before the test, the
步骤2:待触发第1级激励电源,s=1,当电枢2运动经过第1级驱动线圈中心线后方第m个光电探头时,i=m。循环执行以下步骤2-1、2-2,直到触发第1级激励电源:Step 2: Waiting to trigger the first stage excitation power supply, s = 1, when the
步骤2-1:当电枢2运动经过第1级驱动线圈中心线后方第i个光电探头时,电枢2与第1级驱动线圈中心线距离为lfi1=(i-1/2)h,通过电枢测速装置803执行测量、中央控制器801进行信号处理,得到此时刻和此位置电枢2速度vfi;Step 2-1: When the
步骤2-2:Step 2-2:
如果则在延迟时间Δt1后触发第1级激励电源,延迟时间Δt1满足:令s=s+1,令i=i-1,跳转出本循环执行步骤3;if Then the first stage excitation power supply is triggered after the delay time Δt 1 , and the delay time Δt 1 satisfies: Let s=s+1, let i=i-1, jump out of this loop and execute step 3;
如果则不准备触发任何激励电源,令i=i-1;if Then no excitation power supply is to be triggered, and i=i-1;
直到i=1跳转出本循环,令s=s+1,并执行步骤3。When i=1, the loop is jumped out, s=s+1 is set, and step 3 is executed.
步骤3:循环执行以下步骤3-1、3-2,直到电枢2经过第1级驱动线圈中心线后方第1个光电探头,并通过第1级驱动线圈中心线。Step 3: Execute the following steps 3-1 and 3-2 repeatedly until the
步骤3-1:当电枢2运动至第1级驱动线圈中心线后方第i个光电探头时,电枢2与第s级驱动线圈中心线距离为lfis=(i+s-3/2)h,通过电枢测速装置803执行测量、中央控制器801进行信号处理,得到此时刻和此位置电枢2速度vfi。Step 3-1: When the
步骤3-2:Step 3-2:
如果则立即触发第s级激励电源,令s=s+1,令i=i-1;if Then the s-th level excitation power supply is triggered immediately, let s = s + 1, let i = i - 1;
如果则在延迟时间Δts后触发第s级激励电源,延迟时间Δts满足:令s=s+1,令i=i-1;if Then the s-th level excitation power supply is triggered after the delay time Δt s , and the delay time Δt s satisfies: Let s = s + 1, let i = i - 1;
如果则不准备触发任何激励电源,令i=i-1。if Then no excitation power supply is to be triggered, and i=i-1.
步骤4:当电枢2通过第1级驱动线圈中心线,并运动至第1级驱动线圈中心线前方第1个光电探头Gz1时,触发导通第s级激励电源,此时刻为ts,电枢2与第1级驱动线圈中心线间距为xs=h/2,通过电枢测速装置803执行测量、中央控制器801进行信号处理,得到ts时刻此位置电枢2速度vs。Step 4: When the
步骤5:循环执行以下步骤5-1、5-2和5-3,直到获取导通第n级激励电源的时刻tn:Step 5: cyclically execute the following steps 5-1, 5-2 and 5-3 until the time t n at which the n-th stage excitation power supply is turned on is obtained:
步骤5-1:在时刻ts+1触发导通第s+1级激励电源,时刻ts+1满足:Step 5-1: At time ts+1, the s+1th level excitation power supply is triggered to turn on. At time ts+1, the following conditions are satisfied:
vs为时刻ts电枢2速度,a为电枢2运动平均加速度,h为相邻两级驱动线圈中心间距,tm为驱动线圈放电电流从零至达到最大值时的时间间隔; v s is the speed of
步骤5-2:通过中央控制器计算得到时刻ts+1时电枢2预计速度为Step 5-2: The central controller calculates the estimated speed of
将此预计速度作为时刻ts+1时电枢2实际速度的近似值,同时通过中央控制器可以计算得到时刻ts+1时电枢2与第1级驱动线圈中心线间距的近似值为xs+1=xs+h-atm(ts+1-ts)<xs+h; This estimated speed is used as the approximate value of the actual speed of the
步骤5-3:令s=s+1。Step 5-3: Let s=s+1.
在一些场景中,电枢2经过第1级驱动线圈中心线前方第j个光电探头Gzj、第j+1个光电探头Gzj+1时的时刻和速度分别为tzj、vzj和tzj+1、vzj+1,其中电枢2经过第1级驱动线圈中心线前方第1个光电探头Gz1时的时刻和速度分别为tz1=ts、vz1=vs;可以通过中央控制器计算得到电枢2经过第1级驱动线圈中心线前方第j+1个光电探头Gzj+时的时刻和速度预计值为 In some scenarios, the time and speed when the
光电探头Gz2、…、Gzj、Gzj+1、…、Gzn-1、Gzn可以用于测量电枢2通过相应位置时的时刻和速度,并与通过中央控制器801计算得到的时刻和速度预计值进行比较,便于电枢2运动状态和时序触发控制效果的监测和分析,但可以不参与时序触发的动态控制。The photoelectric probes Gz2 , ..., Gzj , Gzj +1 , ..., Gzn-1 , Gzn can be used to measure the time and speed when the
进一步地,储能脉冲电容器组50501由金属化膜自愈式脉冲电容器组合而成,金属化膜自愈式脉冲电容器的能量体积比大于等于0.5MJ/m3,工作寿命大于等于1000次。Furthermore, the energy storage
进一步地,主开关50502为火花间隙开关或者由晶闸管组成的半导体高压开关。Furthermore, the
进一步地,续流开关50503由半导体高压二级管组合而成。Furthermore, the
如图2所示,测控系统8还可以包括激励电源电压测量装置804和驱动线圈电流测量装置805。激励电源电压测量装置804可以用于监测储能脉冲电容器组50501的电压。驱动线圈电流测量装置805可以用于监测驱动线圈502的电流。As shown in FIG2 , the measurement and control system 8 may further include an excitation power supply
高压气体推进段1实施例:High-pressure
如图4所示,高压气室101通过连接机构A102连接高压气体炮管103。高压气室101包括活塞式释放机构,其原理为:高压气体自进气阀10109进入排气腔10102,排气腔10102内压力不断上升,使得阀体活塞向右运动压缩弹簧10107并最终将阀体压紧在高压气室101入口。同时,单向阀10105打开,高压气体自排气腔10102进入高压气室内腔10101,达到预定压力后关闭进气阀10109。需释放时,打开排气阀10110,排气腔10102内高压气体迅速排出,同时气体通过补偿孔10103进入阻尼腔10106。阀体活塞由于左右两端的巨大压差及弹簧10107的弹力作用带动阀体10108迅速向左运动,阀体10108离开高压气室101入口,高压气室内腔10101内的高压气体立即进入高压气体炮管103,驱动电枢2从而推动模型3在高压气体炮管103内向前运动。当阀体左端进入缓冲腔10104时,由于缓冲腔10104内的气体受到压缩,阻止了阀体10108对释放机构的直接冲撞。As shown in FIG4 , the high-
由于制作工艺的限制,同规格管材通常长度有限,高压气体炮管103或者电磁发射管501需要由同规格管材分段互相连接时,分段间采用法兰结构、哈夫螺母结构或者哈夫卡箍结构连接。Due to the limitation of manufacturing process, the length of pipes of the same specification is usually limited. When the high-pressure
高压气体炮管103分段间连接机构实施例:An embodiment of the connection mechanism between the sections of the high-pressure gas gun tube 103:
如图5所示,高压气体炮管第k段10301和高压气体炮管第k+1段相邻,高压气体炮管第k段10301右端带有凹止口,高压气体炮管第k+1段10302左端带有凸止口,两者之间通过钢制的哈夫螺母组件10303连接紧固。As shown in FIG5 , the
在一种实施方式中,高压气室101通过连接机构A102与高压气体炮管103相连;连接机构A102为法兰结构或者开口锯齿螺纹结构。In one embodiment, the high-
高压气室101与高压气体炮管103法兰连接实施例:The flange connection embodiment of the high
如图6所示,高压气室101入口直管段通过连接机构A102与高压气体炮管103左端相连。高压气室101入口直管段带有凹止口,高压气体炮管103左端带有凸止口,连接机构A102包括钢制法兰管件Aa10201、钢制法兰管件Ab10202和钢制螺栓组件Ac10203。钢制法兰管件Aa10201、钢制法兰管件Ab10202通过螺纹或者焊接方式分别与高压气室101入口直管段外表面和高压气体炮管103左端外表面固定,钢制法兰管件Aa10201、钢制法兰管件Ab10202通过钢制螺栓组件Ac10203连接紧固。As shown in FIG6 , the inlet straight pipe section of the high-
在一种实施方式中,所述高压气体炮管103容积与所述高压气室101容积之比≥1.0。In one embodiment, the ratio of the volume of the high-pressure
在一种实施方式中,高压气体炮管103与电磁发射管501通过连接机构B4连接,连接机构B4为法兰结构。In one embodiment, the high-pressure
高压气体炮管103与电磁发射管501连接机构B4实施例:Embodiment B4 of the connection mechanism between the high-pressure
如图7所示,高压气体炮管103与电磁发射管501内径相同,通常高压气体炮管103壁厚较大,电磁发射管501壁厚较小。高压气体炮管103通过连接机构B4与电磁发射管501相连。连接机构B4包括钢制法兰管件Ba401、绝缘法兰管件Bb402和螺栓组件Bc403。钢制法兰管件Ba401通过螺纹或者焊接方式与高压气体炮管103右端外表面固定,绝缘法兰管件Bb通过粘接方式与电磁发射管501左端外表面固定,钢制法兰管件Ba401、绝缘法兰管件Bb通过螺栓组件Bc403连接紧固。As shown in Figure 7, the high-pressure
在一种实施方式中,高压气体炮管103、电磁发射管501彼此间同轴、内径相等,内径不小于50mm。In one embodiment, the high-pressure
电磁发射管501分段间连接机构实施例:Embodiment of the connection mechanism between the sections of the electromagnetic transmitting tube 501:
如图8所示,电磁发射管第k段50101和电磁发射管第k+1段50102相邻,通过绝缘法兰连接机构C506连接。带有凹止口的绝缘法兰管件Ca50601和带有凸止口的绝缘法兰管件Cb50602分别与电磁发射管第k段50601左端外表面、电磁发射管第k+1段右端外表面粘接固定,两者之间通过绝缘螺栓组件Cc50603连接紧固。As shown in Fig. 8, the electromagnetic transmitting
膨胀箱、试验舱及相关测控装置实施例:Expansion tank, test chamber and related measurement and control device embodiments:
如图9所示,膨胀箱6和试验舱7内充有压力范围为10Pa~0.2MPa的空气。膨胀箱6设置有真空系统接口601、多个侧部光学窗口602和顶部光学窗口603,侧部安装多个膨胀箱内模型测速装置806,侧部和顶部安装有多个用于组合体模型弹托与模型本体分离动态过程测量的膨胀箱双目视觉测量系统807;试验舱7设置有真空系统接口701、多个侧部光学窗口702和顶部光学窗口703,侧部安装多个试验舱内模型测速装置808、流场显示用纹影仪809及测量光辐射特性的光辐射测量系统711,侧部和顶部安装有用于模型飞行姿态测量的双目视觉测量系统710。As shown in Fig. 9, the
在一种实施方式中,膨胀箱6和试验舱7安装模型速度测量系统、测量模型位置及其姿态的照相系统、流场显示用阴/纹影仪及测量光辐射特性的光辐射测量系统。In one embodiment, the
在一种实施方式中,弹道靶包括数个支撑机构9及轨道系统10,支撑机构9分别位于高压气室101、高压气体炮管103、电磁发射管501、膨胀箱5和试验舱7下方,支撑机构9安装在轨道系统10上并且能沿着轨道移动。In one embodiment, the ballistic target includes several supporting mechanisms 9 and a
本发明的工作原理如下:The working principle of the present invention is as follows:
试验前,电枢2先放置在适当位置(如:高压气体炮管后端内、高压气室出口附近)。试验时,首先开启高压气室101排气阀10110,同时控制电枢测速装置803以适当频率向高压气体炮管103内发射光信号。高压气室101释放出高压气体驱动电枢2在高压气体炮管103内推动模型3向前运动,电枢2和模型3速度不断增大。电枢2运动经过第1级驱动线圈中心线后方第m个光电探头时,电枢2具有一定初速度。通过电枢测速装置803执行测量、中央控制器801进行信号处理,循环执行时序触发控制方法相关步骤,解算得到第1级预计触发时刻。在预计触发时刻,由中央控制器801向脉冲触发电路802发出触发控制信号,由脉冲触发电路802输出功率脉冲导通第1级激励电源主开关50502,使第1级储能脉冲电容器组50501通过第1级驱动线圈502放电,储能脉冲电容器组50501电压降至零后,驱动线圈502通过续流开关50503续流,脉冲电流激发脉冲磁场使电枢2产生涡旋电流并受到电磁力作用。第1级触发后,电枢2在气体推力和第1级驱动线圈电磁力复合作用下推动模型向前运动。继续执行时序触发控制方法相关步骤,触发若干级激励电源后,电枢2在气体推力和若干级已导通放电的驱动线圈电磁力复合作用下运动,经过第1级驱动线圈中心线后方第1个光电探头,并通过第1级驱动线圈中心线。在时刻ts,电枢2运动至第1级驱动线圈中心线前方第1个光电探头,触发导通第s级激励电源,测速得到此时刻电枢2速度vs。时刻ts之后,电枢2基本按照大致恒定的加速度作匀加速运动,在时刻触发导通第s+1级激励电源,循环执行时序触发控制方法相关步骤,直到导通第n级激励电源。在匀加速运动过程中,电枢2在气体推力和已导通放电的若干级驱动线圈电磁力复合作用下推动模型向前运动。电枢2在电磁力及后端面气体推力、前端面轻质气体阻力的复合作用下推动模型3高速飞出电磁发射管501。模型3为不带弹托的全口径模型时,发射后经过膨胀箱6进入试验舱7;模型3为带弹托的组合体模型时,弹托和模型本体在膨胀箱6内实现分离,模型本体进入试验舱7。Before the test, the
以上结合具体实施方式和范例性实例对本发明进行了详细说明,不多这些说明并不能理解为对本发明的限制。本领域技术人员理解,在不偏离本发明精神和范围的情况下,可以对本发明技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本发明的范围内。本发明的保护范围以所附权利要求为准。本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。下面以附图实施方式为例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。The present invention has been described in detail above in conjunction with specific implementation methods and exemplary examples, but these descriptions cannot be understood as limiting the present invention. Those skilled in the art understand that, without departing from the spirit and scope of the present invention, a variety of equivalent substitutions, modifications or improvements can be made to the technical solution of the present invention and its implementation methods, which all fall within the scope of the present invention. The scope of protection of the present invention shall be subject to the attached claims. The contents not described in detail in the specification of the present invention belong to the common technology of those skilled in the art. The present invention is further described below by taking the implementation methods of the accompanying drawings as an example. The following examples are only descriptive, not restrictive, and the scope of protection of the present invention cannot be limited by them.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211716871.4A CN116086241B (en) | 2022-12-29 | 2022-12-29 | A ballistic target based on electromagnetic ejection auxiliary drive of first-stage gas gun |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211716871.4A CN116086241B (en) | 2022-12-29 | 2022-12-29 | A ballistic target based on electromagnetic ejection auxiliary drive of first-stage gas gun |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116086241A true CN116086241A (en) | 2023-05-09 |
CN116086241B CN116086241B (en) | 2024-11-08 |
Family
ID=86186261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211716871.4A Active CN116086241B (en) | 2022-12-29 | 2022-12-29 | A ballistic target based on electromagnetic ejection auxiliary drive of first-stage gas gun |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116086241B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5125321A (en) * | 1990-12-06 | 1992-06-30 | The United States Of America As Represented By The United States Department Of Energy | Apparatus for and method of operating a cylindrical pulsed induction mass launcher |
JPH0835795A (en) * | 1994-07-22 | 1996-02-06 | Japan Steel Works Ltd:The | Electromagnetic rail gun with external coil |
US20130015295A1 (en) * | 2011-07-13 | 2013-01-17 | Robert Neil Campbell | Traveling wave augmented railgun |
US20160245613A1 (en) * | 2014-05-20 | 2016-08-25 | The Boeing Company | Electromagnetic Muzzle Velocity Controller and Booster for Guns |
US9476668B1 (en) * | 2012-06-12 | 2016-10-25 | Enig Associates Inc. | Hypervelocity projectile launching system |
CN106643286A (en) * | 2016-12-09 | 2017-05-10 | 西南交通大学 | Multi-pole reconnection-type electromagnetic launching device |
DE202018004845U1 (en) * | 2018-10-20 | 2019-01-10 | Koppa GmbH - Defence Research & Engineering | Device for firing high-speed projectiles by means of coupled pneumatic and electromagnetic linear accelerators |
-
2022
- 2022-12-29 CN CN202211716871.4A patent/CN116086241B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5125321A (en) * | 1990-12-06 | 1992-06-30 | The United States Of America As Represented By The United States Department Of Energy | Apparatus for and method of operating a cylindrical pulsed induction mass launcher |
JPH0835795A (en) * | 1994-07-22 | 1996-02-06 | Japan Steel Works Ltd:The | Electromagnetic rail gun with external coil |
US20130015295A1 (en) * | 2011-07-13 | 2013-01-17 | Robert Neil Campbell | Traveling wave augmented railgun |
US9476668B1 (en) * | 2012-06-12 | 2016-10-25 | Enig Associates Inc. | Hypervelocity projectile launching system |
US20160245613A1 (en) * | 2014-05-20 | 2016-08-25 | The Boeing Company | Electromagnetic Muzzle Velocity Controller and Booster for Guns |
CN106643286A (en) * | 2016-12-09 | 2017-05-10 | 西南交通大学 | Multi-pole reconnection-type electromagnetic launching device |
DE202018004845U1 (en) * | 2018-10-20 | 2019-01-10 | Koppa GmbH - Defence Research & Engineering | Device for firing high-speed projectiles by means of coupled pneumatic and electromagnetic linear accelerators |
Also Published As
Publication number | Publication date |
---|---|
CN116086241B (en) | 2024-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | Thinking and study of electromagnetic launch technology | |
US9784523B2 (en) | Hybrid propellant electromagnetic gun system | |
CN117554017A (en) | Bird strike test device based on electromagnetic loading and test method thereof | |
CN104964612A (en) | An electromagnetic ejection type emergency rescue ejector | |
CN116026197B (en) | Compressed air-based ascending ejection experimental device and experimental method | |
Crawford et al. | The design and testing of a large-caliber railgun | |
CN116086241A (en) | Ballistic target based on electromagnetic ejection auxiliary driving primary gas gun | |
CN217084136U (en) | Pulse wind tunnel of large-size electromagnetic drive and stop piston | |
CN116202367B (en) | Ballistic target based on electromagnetic ejection auxiliary driving secondary light air cannon | |
CN1421670A (en) | Military electromagnetic-energy superhigh speed shooting gun | |
CN116255862A (en) | Trajectory target based on electromagnetic ejection auxiliary driving three-level light air cannon | |
CN205028552U (en) | Novel magnetic artillery experiment device | |
CN115930702B (en) | Electromagnetic track-based emission fragment damage simulation test technology and system | |
CN218895709U (en) | Shock wave and flyer integrated transmitting device | |
CN110160393A (en) | A kind of compact electromagnetic emitter | |
CN116294790A (en) | Electromagnetic ejection driven large-caliber ballistic target | |
CN116123930B (en) | Trajectory target based on three-level light air cannon driven by electromagnetic ejection | |
CN116294789A (en) | Ballistic target based on electromagnetic ejection driving secondary light air cannon | |
Veracka et al. | Automatic multishot operation of an electromagnetic launcher | |
Zhang et al. | Design and Development of an Electromagnetic Catapult for Life-Saving Projectile | |
CN114674175A (en) | An electromagnetic emission simulation experiment platform with adjustable initial contact pressure and its measurement method | |
Tidman et al. | Electrothermal light gas gun | |
Holland et al. | Six megajoule rail gun test facility | |
Littrell et al. | An experimental investigation of plasma armature railgun performance in the 3.2 to 4.2 km/s regime | |
Liu et al. | An initial velocity model study of electromagnetic railgun based on back propagation neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |