CN116081618A - 金刚石镓-空位量子色心、应用及制备方法 - Google Patents

金刚石镓-空位量子色心、应用及制备方法 Download PDF

Info

Publication number
CN116081618A
CN116081618A CN202310030857.7A CN202310030857A CN116081618A CN 116081618 A CN116081618 A CN 116081618A CN 202310030857 A CN202310030857 A CN 202310030857A CN 116081618 A CN116081618 A CN 116081618A
Authority
CN
China
Prior art keywords
quantum
gallium
diamond
vacancy
color center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310030857.7A
Other languages
English (en)
Inventor
刘胜
沈威
吴改
梁康
东芳
王诗兆
汪启军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202310030857.7A priority Critical patent/CN116081618A/zh
Publication of CN116081618A publication Critical patent/CN116081618A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Abstract

本申请公开了金刚石镓‑空位量子色心、应用及制备方法。本技术方案中,设计了一种金刚石镓‑空位量子色心,该量子色心可以在室温下保持基态三重态,激发态也可保持三重态,可进行量子相干调控;零声子线在637nm内,在可见光范围内,易于进行荧光识别;该量子色心可以保持较为稳定的电荷态;进一步的,基于量子调控技术,该镓‑空位量子色心可应用于量子传感、量子通讯、量子计算等领域。

Description

金刚石镓-空位量子色心、应用及制备方法
技术领域
本申请涉及量子信息技术的技术领域,尤其涉及金刚石镓-空位量子色心、应用及制备方法。
背景技术
金刚石是一种具有超高硬度、高热导率、高化学稳定性的宽禁带材料,因此,含有量子色心的金刚石材料因此可应用在复杂恶劣的环境中。
金刚石量子色心,以氮-空位色心为代表,是一种具有基态三重态的量子自旋系统。金刚石氮-空位色心在室温下具有毫秒级别的相干时间,易于通过激光进行相干调控,可应用于量子传感、量子计算、量子通讯等量子信息领域。金刚石量子色心具有原子级尺度大小,因此金刚石量子色心可应用于微观量子信息领域,例如应用于微纳尺度的量子传感技术,可应用于生物、化学及物理研究。
金刚石氮-空位色心仍含有较多缺陷影响其相干性质,其相干时间也有待继续提高,其荧光强度也较弱。氮-空位色心还存在电荷不稳定的缺点,电荷不稳定意味着氮-空位色心会产生荧光闪烁,无法进一步进行稳定的量子调控。研究人员一直在寻找其它色心,以丰富金刚石量子色心的研究。另外比较常见的金刚石量子色心是硅-空位色心、磷-空位色心、以及锗-空位色心等,而金刚石量子色心设计标准是根据加州大学DAVID AWSCHALOM教授[Weber J R,Koehl W F,Varley J B,et al.Quantum computing withdefects.Proceedings of the National Academy of Sciences,2010,107(19):8513-8518]提出的标准,主要有:基态到激发态的激光波长必须在合理范围内(能够找到合适的激光器)、色心缺陷态必须能够抵御温度波动(即保证室温中保持基态三重态)等。
制备金刚石量子色心的方法主要有气相沉积法(CVD)法及离子注入法。CVD法制备出的金刚石材料缺陷较少,量子噪声较小;离子注入法制备的量子色心,优点是色心位置可控性比较高,缺点是含有较多缺陷,晶体质量较差。
发明内容
有鉴于此,本申请提供金刚石镓-空位量子色心、应用及制备方法,能够较为广泛地应用于量子信息领域。
第一方面,本申请提供一种金刚石镓-空位量子色心,以Be原子为色心空位所形成的金刚石量子色心结构。
合适但非限制性地,所述金刚石量子色心结构中,还包括以N和/或P原子为掺杂缺陷原子。
合适但非限制性地,所述掺杂缺陷原子距离镓-空位色心大于7埃米。
第二方面,本申请提供一种如上述金刚石镓-空位量子色心的应用,其在可见光荧光识别上的应用。
合适但非限制性地,可见光的波长为673nm附近。
第三方面,本申请提供一种如上述金刚石镓-空位量子色心的应,其在量子材料方面的应用。
第四方面,本申请提供一种如上述金刚石镓-空位量子色心的制备方法,包括以下步骤:
S1、CVD逐层生长形成金刚石;
S2、在CVD过程中掺入Ga原子;
S3、对经过S2所得的金刚石进行包括退火的后处理;
S4、使经过后处的金刚石形成金刚石量子色心结构。
合适但非限制性地,S2、S3之间,还包括剥离CVD沉积所用的衬底。
合适但非限制性地,剥离的方式为激光剥离。
合适但非限制性地,所述后处理还包括在退火之后的表面处理。
以上提供金刚石镓-空位量子色心、应用及制备方法,设计了一种金刚石镓-空位量子色心,该量子色心可以在室温下保持基态三重态,激发态也可保持三重态,可进行量子相干调控;零声子线在637nm内,在可见光范围内,易于进行荧光识别;该量子色心可以保持较为稳定的电荷态;进一步的,基于量子调控技术,该镓-空位量子色心可应用于量子传感、量子通讯、量子计算等领域。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的镓-空位量子色心的一微观结构图。
图2为本申请实施例提供的镓-空位量子色心的又一微观结构图。
图3为本申请实施例提供的镓-空位量子色心的能级图。
图4为本申请实施例提供的镓-空位量子色心的基态自旋电子密度图。
图5为本申请实施例提供的镓-空位结构在不同电荷态下的形成能图。
图6为本申请实施例提供的制备镓-空位量子色心制备方法的流程图。
具体实施方式
下面将结合本申请实施例,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
如图1所示,为镓-空位量子色心的微观结构图一。
如图1所示,中间最大的“球体”为镓原子,其余“球体”为碳原子。
如图1所示,镓-空位指的是,在金刚石中,一个镓原子替代一个碳原子A,并去除镓原子临近的一个碳原子B成为“空位”,弛豫后,镓原子移动到碳原子A及“空位”之间,即形成镓-空位结构。
如图2所示,为镓-空位量子色心的微观结构图二。
如图2所示,在镓-空位色心附近,进行替位式掺杂氮原子或者磷原子。氮原子或者磷原子距离镓-空位色心大于7埃米。
如图3所示,为镓-空位量子色心的能级图,该图是通过第一性原理计算得到,采用的是HSE06杂化泛函,该能级图指的是镓-空位量子色心的价电子能级位置。
如图3所示,镓-空位量子色心的价电子能级分别为a1(1)、a2(2)、ex、ey、a1(1)’、a2(2)’、ex’、ey’。其中,a1(1)、a2(2)、ex、ey为上自旋的占据态,a1(1)’、a2(2)’为下自旋的占据态,ex’、ey’为下自旋的非占据态。
如图3所示,镓-空位量子色心的基态为三重态,三重态的电子来自于ex、ey,满足了量子色心的基本条件。
如图3所示,镓-空位量子色心ex与ex’的能级相差约为1.67eV,ey与ey’的能级相差约为1.67eV,1.67eV足够大,使得该量子色心能够在室温下稳定的存在,即室温下,ex或者ey上的电子不会自发跃迁到ex’或者ey’上,能够保持基态自旋三重态。
如图4所示,为镓-空位量子色心的基态自旋电子密度图,该图是通过第一性原理计算得到,采用的是HSE06杂化泛函,该电子密度指的是上自旋电荷密度减去下自旋电荷密度得到的电子云,电子云主要集中在镓-空位量子色心附近。
如图5所示,为镓-空位(Ga-Vacancy,简称GaV)结构在不同电荷态下的形成能图,GaV0、GaV1、GaV-1、GaV-2、GaV2分别代表了GaV的0、1、-1、-2及2电荷态。该图是通过第一性原理计算得到,采用的是HSE06杂化泛函。形成能是以GaV0的形成能为标准,即假设GaV0的形成能为0eV。镓-空位量子色心特指GaV-1,即GaV处于-1价态时的情况。为了镓-空位量子色心保持-1电荷态,需要提高费米能级至1.8至3.6eV范围内。
如图2及图5所示,磷原子或者氮原子的价电子为5,可以提高费米能级,并可以作为电子施主,供给GaV,促使GaV处于-1价态,形成镓-空位量子色心;并且,磷原子或者氮原子可使得镓-空位量子色心的电荷态更加稳定。
根据第一性原理计算,镓-空位量子色心零声子线在673nm附近,是人类肉眼可以观察到的可见光波长范围内。
镓-空位量子色心处于基态三重态时,当光照射到镓-空位量子色心时,a1(1)’或者a2(2)’上的一个电子会被激发到ex’或者ey’轨道上,使得激发态也为三重态。镓-空位量子色心处于激发态三重态时,当ex’或者ey’轨道上一个电子回落到a1(1)’或者a2(2)’上时,那么镓-空位量子色心则会观测到荧光。通过拉曼光谱测试测得镓-空位色心的零声子线在673nm附近。
如图5所示,为制备金刚石镓-空位量子色心的步骤。
步骤1:准备衬底放置在CVD设备中,放置在CVD设备的样品台上。
步骤2:通入甲烷、氢气、镓源气体、氮气或者磷烷,开始CVD生长金刚石。
步骤3:逐层生长金刚石。所述镓源气体主要为镓-空位量子色心提供镓原子,在金刚石CVD逐层生长过程中,镓原子掺入金刚石替代一个碳原子。
步骤4:生长完之后,将金刚石从衬底剥离,作为优选,可通过激光剥离。
步骤5:对金刚石进行退火、表面处理等后处理操作。退火主要是为了将金刚石中的原子空位逐步迁移到镓原子附近,形成镓-空位结构。
所述氮气或者磷烷主要是掺入金刚石内,形成氮掺杂或者磷掺杂结构,为镓-空位结构提供一个电子,使得镓-空位量子色心的电荷态更加稳定。该含有镓-空位色心的金刚石可以用于量子传感、量子通讯、量子计算等领域。。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (10)

1.一种金刚石镓-空位量子色心,其特征在于,以Ga原子为色心空位所形成的金刚石量子色心结构。
2.根据权利要求1所述金刚石镓-空位量子色心,其特征在于,所述金刚石量子色心结构中,还包括以N和/或P原子为掺杂缺陷原子。
3.根据权利要求1所述金刚石镓-空位量子色心,其特征在于,所述掺杂缺陷原子距离镓-空位色心大于7埃米。
4.一种如权利要求1所述金刚石镓-空位量子色心的应用,其特征在于,其在可见光荧光识别上的应用。
5.根据权利要求4所述应用,其特征在于,可见光的波长为673nm附近。
6.一种如权利要求1所述金刚石镓-空位量子色心的应,其特征在于,其在量子材料方面的应用。
7.一种如利要求1所述金刚石镓-空位量子色心的制备方法,其特征在于,包括以下步骤:
S1、CVD逐层生长形成金刚石;
S2、在CVD过程中掺入Ga原子;
S3、对经过S2所得的金刚石进行包括退火的后处理;
S4、使经过后处的金刚石形成金刚石量子色心结构。
8.根据权利要求7所述制备方法,其特征在于,S2、S3之间,还包括剥离CVD沉积所用的衬底。
9.根据权利要求8所述制备方法,其特征在于,所述剥离的方式为激光剥离。
10.根据权利要求7所述制备方法,其特征在于,所述后处理还包括在退火之后的表面处理。
CN202310030857.7A 2023-01-10 2023-01-10 金刚石镓-空位量子色心、应用及制备方法 Pending CN116081618A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310030857.7A CN116081618A (zh) 2023-01-10 2023-01-10 金刚石镓-空位量子色心、应用及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310030857.7A CN116081618A (zh) 2023-01-10 2023-01-10 金刚石镓-空位量子色心、应用及制备方法

Publications (1)

Publication Number Publication Date
CN116081618A true CN116081618A (zh) 2023-05-09

Family

ID=86205879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310030857.7A Pending CN116081618A (zh) 2023-01-10 2023-01-10 金刚石镓-空位量子色心、应用及制备方法

Country Status (1)

Country Link
CN (1) CN116081618A (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101053075A (zh) * 2005-06-20 2007-10-10 日本电信电话株式会社 金刚石半导体元件及其制造方法
US20080096308A1 (en) * 2006-10-13 2008-04-24 Charles Santori Methods for coupling diamond structures to photonic devices
US20080219311A1 (en) * 2007-03-08 2008-09-11 Bratkovski Alexandre M Optical structures including selectively positioned color centers, photonic chips including same, and methods of fabricating optical structures
WO2010149775A1 (en) * 2009-06-26 2010-12-29 Element Six Limited Method for treating single crystal cvd diamond and product obtained
US20130107352A1 (en) * 2011-10-28 2013-05-02 Charles M. Santori Quantum optical device
US20190282984A1 (en) * 2018-03-19 2019-09-19 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Molecularly doped nanodiamond
CN113631512A (zh) * 2019-03-26 2021-11-09 株式会社大赛璐 掺杂杂原子的纳米金刚石
US20210371741A1 (en) * 2018-10-19 2021-12-02 Olga A. Shenderova Method of producing fluorescent diamond particles
CN114646624A (zh) * 2022-03-24 2022-06-21 东南大学 一种金刚石nv色心的荧光调控方法
WO2022183895A1 (en) * 2021-03-02 2022-09-09 The University Of Hong Kong Methods and apparatus for integrating diamond with led towards on-chip quantum sensing
CN115332051A (zh) * 2022-08-09 2022-11-11 西安电子科技大学 一种新型的氮化镓镍氮空位色心及其制备方法
US20220364268A1 (en) * 2019-06-27 2022-11-17 Quantum Technologies UG (haftungsbeschränkt) Method of generating a deterministic color center in a diamond

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101053075A (zh) * 2005-06-20 2007-10-10 日本电信电话株式会社 金刚石半导体元件及其制造方法
US20080096308A1 (en) * 2006-10-13 2008-04-24 Charles Santori Methods for coupling diamond structures to photonic devices
US20080219311A1 (en) * 2007-03-08 2008-09-11 Bratkovski Alexandre M Optical structures including selectively positioned color centers, photonic chips including same, and methods of fabricating optical structures
WO2010149775A1 (en) * 2009-06-26 2010-12-29 Element Six Limited Method for treating single crystal cvd diamond and product obtained
US20130107352A1 (en) * 2011-10-28 2013-05-02 Charles M. Santori Quantum optical device
US20190282984A1 (en) * 2018-03-19 2019-09-19 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Molecularly doped nanodiamond
US20210371741A1 (en) * 2018-10-19 2021-12-02 Olga A. Shenderova Method of producing fluorescent diamond particles
CN113631512A (zh) * 2019-03-26 2021-11-09 株式会社大赛璐 掺杂杂原子的纳米金刚石
US20220364268A1 (en) * 2019-06-27 2022-11-17 Quantum Technologies UG (haftungsbeschränkt) Method of generating a deterministic color center in a diamond
WO2022183895A1 (en) * 2021-03-02 2022-09-09 The University Of Hong Kong Methods and apparatus for integrating diamond with led towards on-chip quantum sensing
CN114646624A (zh) * 2022-03-24 2022-06-21 东南大学 一种金刚石nv色心的荧光调控方法
CN115332051A (zh) * 2022-08-09 2022-11-11 西安电子科技大学 一种新型的氮化镓镍氮空位色心及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
董杨等: "基于金刚石体系中氮-空位色心的固态量子传感", 物理学报, no. 16, 31 August 2018 (2018-08-31), pages 8 - 26 *

Similar Documents

Publication Publication Date Title
Achard et al. Chemical vapour deposition diamond single crystals with nitrogen-vacancy centres: a review of material synthesis and technology for quantum sensing applications
JP6363195B2 (ja) 量子撮像、感知、および情報処理デバイス用のダイヤモンド構成要素
US11807955B2 (en) Synthetic diamond material
Zeng et al. Electrochemical deposition of ZnO nanowire arrays: organization, doping, and properties
Sanguinetti et al. Modified droplet epitaxy GaAs/AlGaAs quantum dots grown on a variable thickness wetting layer
Aharonovich et al. Diamond-based single-photon emitters
Orwa et al. Fabrication of single optical centres in diamond—a review
Shklyaev et al. Effect of interfaces on quantum confinement in Ge dots grown on Si surfaces with a SiO2 coverage
Mereni et al. A site-controlled quantum dot system offering both high uniformity and spectral purity
Orwa et al. Diamond nanocrystals formed by direct implantation of fused silica with carbon
KR101067085B1 (ko) 무촉매 그래핀 성장 방법
Choi et al. Site-controlled growth of single GaN quantum dots in nanowires by MOCVD
JP2019152524A (ja) センサ素子、測定装置、センサ素子の製造方法、電子回路素子、および量子情報素子
Achard et al. CVD diamond single crystals with NV centres: a review of material synthesis and technology for quantum sensing applications
Wang et al. Selective antisite defect formation in WS2 monolayers via reactive growth on dilute W‐Au alloy substrates
CN116081618A (zh) 金刚石镓-空位量子色心、应用及制备方法
Xu et al. Superhigh uniform magnetic Cr substitution in a 2D Mo2C superconductor for a macroscopic‐scale Kondo effect
CN116199217A (zh) 金刚石铍-空位量子色心、应用及制备方法
Hartono et al. High quality GaN grown from a nanoporous GaN template
Chawner et al. Control of complex quantum structures in droplet epitaxy
Yang et al. Super-long ZnO nanofibers and novel nucleation mechanism for a gas-phase environment: spatial linear nucleation
Ross § et al. In-situ observations of self-assembled island nucleation on patterned substrates
Newton EPR, ENDOR and EPR Imaging of Defects in Diamond
Ozaki et al. Emission wavelength control of InAs/GaAs quantum dots using an As2 source for near-infrared broadband light source applications
CN115074822B (zh) 一种二维量子点阵列及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination