CN116073449A - 一种基于低碳效益和不确定性的可控光伏参与调峰方法 - Google Patents

一种基于低碳效益和不确定性的可控光伏参与调峰方法 Download PDF

Info

Publication number
CN116073449A
CN116073449A CN202310285709.XA CN202310285709A CN116073449A CN 116073449 A CN116073449 A CN 116073449A CN 202310285709 A CN202310285709 A CN 202310285709A CN 116073449 A CN116073449 A CN 116073449A
Authority
CN
China
Prior art keywords
constraint
photovoltaic
peak shaving
power
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310285709.XA
Other languages
English (en)
Other versions
CN116073449B (zh
Inventor
陈涛
冯德品
徐兵
路长禄
李中凯
亓富军
段福凯
崔波
赵中华
韩宗耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linyi Power Supply Co of State Grid Shandong Electric Power Co Ltd
Original Assignee
Linyi Power Supply Co of State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linyi Power Supply Co of State Grid Shandong Electric Power Co Ltd filed Critical Linyi Power Supply Co of State Grid Shandong Electric Power Co Ltd
Priority to CN202310285709.XA priority Critical patent/CN116073449B/zh
Publication of CN116073449A publication Critical patent/CN116073449A/zh
Application granted granted Critical
Publication of CN116073449B publication Critical patent/CN116073449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0075Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种基于低碳效益和不确定性的可控光伏参与调峰方法,该方法包括:提出了一种低碳场景下确定性可控光伏参与调峰的模型,以最小化电交易成本、碳交易成本和调峰成本为目标,以光伏削减的有功功率和无功功率为决策变量,基于潮流约束、安全约束和光伏削减约束;接着,构建基于低碳效益和不确定性的可控光伏参与调峰的模型,基于正态分布的性质,引入方差和均值,将潮流约束和安全约束重新表述为机会约束的形式,并调整目标函数;最后,提出基于不确定性的可控光伏参与调峰的求解方法,将机会约束转化为二阶锥约束,利用Cplex求解器进行求解,从而得到基于低碳效益的可控光伏参与调峰结果。本发明有利于为低碳效益下可控光伏参与调峰提供参考。

Description

一种基于低碳效益和不确定性的可控光伏参与调峰方法
技术领域
本发明在降低电交易、碳交易和调峰成本的基础上,基于光伏参与调峰的不确定性特征,提出一种基于低碳效益和不确定性的可控光伏参与调峰方法,属于配电网分布式光伏参与调峰领域。
背景技术
随着分布式光伏装机容量的迅速提升,能源的供需方式已发生改变。光伏的波动性和反调峰特性加大了系统净负荷值的波动,使得配电网调峰压力日益增加,因此,研究光伏参与调峰的问题变得尤为重要。为保障电力供应的安全稳定,在电网负荷低谷时段,分布式光伏应具备参与调峰的能力,同时,受光照强度等天气变化的影响,光伏出力及光伏削减量的随机性会对调峰容量产生影响,基于到预测光伏的不确定性,通过对光伏有功和无功的控制,可以实现削峰填谷,减小净负荷曲线的波动,从而保障配电网负载均衡。此外,在“碳达峰、碳中和”的战略目标下,降低电力系统的碳排放日益得到关注,然而少有文献讨论分布式光伏参与配电网调峰与碳排放之间的影响。
为填补研究空白,在基于光伏接入的配电网中,为求解满足电交易成本、碳交易成本和调峰成本的优化问题,通过采取基于低碳效益和不确定性的可控光伏参与调峰方法,有利于为配电网分布式光伏参与调峰提供参考。
发明内容
为了解决现有调峰问题中存在的不足,本专利提出了一种基于低碳效益和不确定性的可控光伏参与调峰方法,在基于光伏出力和削减量的随机性下,以最小化电交易成本、碳交易成本和调峰成本为目标,对配电网光伏参与调峰进行求解。具体的,本申请提出的基于低碳效益和不确定性的可控光伏参与调峰方法包括:
(1)构建低碳效益下确定性可控光伏参与调峰的模型,以最小化电交易成本、碳交易成本和调峰成本为目标,以光伏削减的有功功率和无功功率为决策变量,基于潮流约束和安全约束;
(2)在确定性模型的基础上,构建基于低碳效益和不确定性的可控光伏参与调峰的模型,引入正态分布的方差和均值参数,将潮流约束和安全约束重新表述为机会约束的形式,并调整目标函数;
(3)提出基于不确定性的可控光伏参与调峰的求解方法,在步骤2的基础上,将机会约束转换为二阶锥约束,利用Cplex求解器进行求解,从而得到基于低碳效益的可控光伏参与调峰结果。
所述步骤(1)构建低碳效益下确定性可控光伏参与调峰的模型,具体包括:
1)目标函数
目标函数为电交易成本、碳交易成本和调峰成本之和最小。具体包括购售电交易成本Cgrid、碳交易成本Ccarbon和调峰成本Creg。具体表述如下:
minC=Cgrid+Ccarbon+Creg
Figure BDA0004139763530000023
Figure BDA0004139763530000021
Pnet,j,t=PL,j,t-(PPV,j,t-PPVcur,j,t)
Figure BDA0004139763530000024
Figure BDA0004139763530000022
Figure BDA0004139763530000031
其中,Pnet,j,t表示第t时刻第j节点的净负荷。CPV,t、TOU、πcarbon,t、πreg分别表示各时刻的光伏上网电价、分时电价、碳排放价格、调峰价格系数。PL,j,t为第t时刻第j节点的负荷,PPV,j,t为第t时刻第j节点的PV有功功率,PPVcur,j,t为第t时刻第j节点的光伏削减的有功功率。et表示碳排放强度,Pnet,j,t +表示净负荷大于0的部分,即产生碳排放的部分。
2)约束条件
约束条件包括Distflow线性潮流约束、安全约束和光伏削减约束。
其中,Distflow线性潮流约束包括节点功率平衡约束、节点电压之间的约束、支路功率约束:
节点功率平衡约束如下:
Figure BDA0004139763530000032
其中,Pj,t和Qj,t分别为第t时刻第j节点的注入有功功率和无功功率,Pg,j,t和Qg,j,t分别为第t时刻第j节点的电网有功功率和无功功率。
节点电压之间的约束:
Figure BDA0004139763530000033
其中,vj,t为第t时刻第j节点的电压,vi,t为第t时刻第i节点的电压,Pij,t为支路ij在t时刻的有功功率,Qij,t为支路ij在t时刻的无功功率,Rij为支路ij的电阻;Xij为支路ij的电抗;
支路功率约束:
Figure BDA0004139763530000034
其中,
Figure BDA0004139763530000041
为流入第j节点的各支路有功功率之和,
Figure BDA0004139763530000042
为从第j节点流出的各支路的有功功率之和,
Figure BDA0004139763530000043
为流入第j节点的各支路无功功率之和,
Figure BDA0004139763530000044
为从第j节点流出的各支路的无功功率之和。
安全约束包括节点电压安全约束和支路容量安全约束;
节点电压安全约束:
Figure BDA0004139763530000045
Vmin和Vmax分别是节点电压的最小值和最大值。
支路容量安全约束:
Figure BDA0004139763530000046
光伏削减约束包括光伏的有功和无功削减:
Figure BDA0004139763530000047
Figure BDA0004139763530000048
其中,
Figure BDA0004139763530000049
为光伏在第j节点削减率的上界。
所述步骤(2)提出构建基于低碳效益和不确定性的可控光伏参与调峰的模型,在步骤(1)中的模型基础上,将潮流约束和安全约束重新表述为机会约束的形式,具体如下:
1)光伏出力建模
针对某一典型日进行建模,某一时刻分布式光伏功率的实际值建模为随机变量,根据中心极限定理,光伏出力的预测误差服从正态分布,可以表达为下式:
Figure BDA00041397635300000410
其中,
Figure BDA00041397635300000411
为第t时刻光伏接入j节点的有功功率实际出力值;N为光伏接入的总节点数,
Figure BDA0004139763530000051
为第t时刻光伏预测有功功率的均值;
Figure BDA0004139763530000052
为第t时刻光伏有功功率的方差;
Figure BDA0004139763530000053
为第t时刻光伏接入j节点的无功功率实际出力值,与有功功率之间满足KPV相角关系;
Figure BDA0004139763530000054
Figure BDA0004139763530000055
的矩阵展开式为:
Figure BDA0004139763530000056
2)光伏削减建模
基于光伏削减的随机性,令光伏削减功率服从正态分布,可以表达为下式:
Figure BDA0004139763530000057
其中,
Figure BDA0004139763530000058
为第t时刻光伏接入j节点有功功率削减的实际值;PPVcur,j,t为光伏有功功率削减的均值;
Figure BDA0004139763530000059
为光伏有功功率削减的方差。
Figure BDA00041397635300000510
为第t时刻光伏接入j节点无功功率削减的实际值,与有功功率削减量之间也满足相角关系;
Figure BDA00041397635300000511
的矩阵展开式为:
Figure BDA00041397635300000512
3)Distflow线性潮流约束的重新表述
基于到光伏功率波动的随机性,以矩阵形式将Distflow线性潮流约束更新为:
Figure BDA0004139763530000061
与有功功率相关的均值和方差为:
Figure BDA0004139763530000062
与无功功率相关的均值和方差为:
Figure BDA0004139763530000063
有功功率和无功功率注入之间的相关性表示为:
Figure BDA0004139763530000064
基于到光伏电压波动的随机性,电压正态分布服从如下:
Figure BDA0004139763530000065
其中ΣV,t是电压分布的方差,Φ是标准化正态分布的向量,μV,t是电压分布的均值。
以矩阵形式将节点电压之间约束更新为:
Figure BDA0004139763530000066
支路功率约束更新为:
Figure BDA0004139763530000067
4)安全约束的重新表述
由于光伏随机因素的影响,上述电压和线路传输为随机变量的形式,因此这里把电压约束和容量约束整理为机会约束形式如下:
Figure BDA0004139763530000068
支路容量约束:
Figure BDA0004139763530000071
5)目标函数的重新表述
基于随机性之后,目标函数可以表示为期望形式:
Figure BDA0004139763530000076
Figure BDA0004139763530000077
Figure BDA0004139763530000072
所述步骤(3)提出基于不确定性的可控光伏参与调峰的求解方法,对步骤(2)中的机会约束进行处理,转换成二阶锥约束,并利用Cplex求解器对转换后的模型进行求解,从而得到基于低碳效益和不确定性的可控光伏参与调峰的结果。具体如下:
1)电压机会约束的转换
前述关于电压的机会约束被重新写为如下的两个部分:
Figure BDA0004139763530000073
其中,1-pV为电压机会约束成立的置信度,由上述分析可知,电压服从正态分布,因此通过寻找相应的分位点将机会约束可重新转化为如下线性约束:
Figure BDA0004139763530000074
其中Φ-1是标准化高斯分布的反函数;
为使模型具有可行解,继续将电压的线性约束转为二阶锥约束;
令:
Figure BDA0004139763530000075
其中,λVmax,j,t和λVmin,j,t为辅助变量,通过设置该参数将电压约束转换为二阶锥约束;
Figure BDA0004139763530000081
2)支路容量机会约束的转换
通过采用圆形约束线性化的方法将支路容量约束用线性约束进行逼近如下:
Figure BDA0004139763530000082
同电压约束类似,其中,1-pS为功率机会约束成立的置信度,找到与功率置信水平对应的随机变量的分位数,我们可以利用这个分位数将其转换为确定性约束。重写的约束如下所示:
Figure BDA0004139763530000083
设置各个参数对应的二阶锥变量如下:
Figure BDA0004139763530000084
将支路容量约束重新表述为:
Figure BDA0004139763530000091
有益效果:
(1)本发明基于概率统计理论,提出了基于低碳效益和不确定性的光伏参与调峰方法,对光伏实际出力和削减出力的不确定性进行基于,有利于评估结果的准确性;
(2)通过构建基于低碳效益和不确定性的可控光伏参与调峰的模型,以电交易成本、碳交易成本和调峰成本最小为目标,有利于为光伏削减的出力大小提供参考。
(3)通过基于不确定性的可控光伏参与调峰的求解方法,有利于实现模型的快速求解,适用于配电网分布式光伏参与调峰的问题。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中的基于低碳效益的光伏随机可控调峰方法求解流程图
图2本实施案例中使用的IEEE33节点配电系统结构图
图3光伏参与调峰前后净负荷曲线对比图
图4各接入节点光伏有功削减图
图5为本方法流程图
具体实施方式
为使本发明的结构和优点更加清楚,下面将结合附图对本发明的结构作进一步地描述。
结合附图1详细阐述本发明所提一种基于低碳效益的光伏随机可控调峰方法整体求解流程,具体步骤如下:
步骤1:输入算例信息;
步骤2:构建低碳场景下确定性可控光伏参与调峰的模型;
步骤3:构建基于低碳效益和不确定性的可控光伏参与调峰的模型,引入机会约束,重新表述潮流约束、安全约束、目标函数;
步骤4:提出基于不确定性的可控光伏参与调峰的求解方法,将机会约束转为二阶锥约束;
步骤5:采用Cplex求解器进行求解。
本实施例采用的IEEE33节点算例结构图如附图中图2所示,光伏共接入5个位置,分别为图中的10、17、23、26、32号节点。最大负荷设为1MW,光伏渗透率为最大负荷的100%,令功率因数为0.95,各随机变量的方差设为0.0025。分时电价在00:00-7:00、23:00-24:00为0.331元/kWh;08:00-09:00、12:00-15:00、21:00-23:00为0.636元/kWh,09:00-12:00、15:00-21:00为0.919元/kWh。碳交易成本按照57元/tCO2,碳排放因数取0.5810tCO2/MWh,调峰价格系数设为100。采用Cplex求解器求解,下面分别为不同机会约束置信度下的交易总成本、碳排放量和净负荷标准差。
表1不同机会约束置信度下的交易成本和净负荷标准差结果
置信度 交易总成本(单位:元) 碳排放量(单位:tCO2) 净负荷标准差
95% 10311 104.9 0.067
85% 9212 98.3 0.033
75% 8331 89.4 0.009
在表1中可以看出,当机会约束置信度越大,对应的交易成本越高、碳排放量、净负荷标准差越大。附图3为光伏参与调峰前后净负荷曲线对比图,附图4为各接入节点的光伏有功削减图。
通过本实施例可以为配电网分布式光伏参与调峰提供指导。
以上所述仅为本发明的实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于低碳效益和不确定性的可控光伏参与调峰方法,其特征在于:所述方法包括:
步骤(1):构建低碳效益下确定性可控光伏参与调峰的模型,以最小化电交易成本、碳交易成本和调峰成本为目标,以光伏削减的有功功率和无功功率为决策变量,基于潮流约束和安全约束;
步骤(2):在确定性模型的基础上,构建基于低碳效益和不确定性的可控光伏参与调峰的模型,引入正态分布的方差和均值参数,将潮流约束和安全约束重新表述为机会约束的形式,并调整目标函数;
步骤(3):提出基于不确定性的可控光伏参与调峰的求解方法,在步骤(2)的基础上,将机会约束转换为二阶锥约束,利用Cplex求解器进行求解,从而得到基于低碳效益的可控光伏参与调峰结果。
2.根据权利要求1所述的基于低碳效益和不确定性的可控光伏参与调峰方法,其特征在于:步骤(1)所述的构建低碳场景下确定性可控光伏参与调峰的模型,具体包括:
构建低碳场景下确定性可控光伏参与调峰的模型的目标函数,目标函数为电交易成本、碳交易成本和调峰成本之和最小,具体包括购售电交易成本Cgrid、碳交易成本Ccarbon和调峰成本Creg,具体表述如下:
minC=Cgrid+Ccarbon+Creg
Cgridjtπgrid,t·Pnet,j,t
Figure FDA0004139763520000011
Pnet,j,t=PL,j,t-(PPV,j,t-PPVcur,j,t)
Ccarbonjtcarbon,t·et·Pnet,j,t +)
Figure FDA0004139763520000021
Figure FDA0004139763520000022
其中,Pnet,j,t表示第t时刻第j节点的净负荷,CPV,t、TOU、πcarbon,t、πreg分别表示各时刻的光伏上网电价、分时电价、碳排放价和调峰价格系数,PL,j,t为第t时刻第j节点的负荷,PPV,j,t为第t时刻第j节点的PV有功功率,PPVcur,j,t为第t时刻第j节点的光伏削减的有功功率,et表示碳排放强度,Pnet,j,t +表示净负荷大于0的部分,即产生碳排放的部分。
3.根据权利要求2所述的基于低碳效益和不确定性的可控光伏参与调峰方法,其特征在于:
步骤(1)所述的基于潮流约束和安全约束包括Distflow线性潮流约束、安全约束和光伏削减约束,其中,Distflow线性潮流约束包括节点注入功率约束、节点电压之间的约束、支路功率约束;安全约束包括节点电压安全约束、支路容量安全约束;光伏削减约束包括光伏有功功率和无功功率的削减。
4.根据权利要求3所述的基于低碳效益和不确定性的可控光伏参与调峰方法,其特征在于:步骤(2)所述的构建基于随机性的可控光伏参与调峰的模型,将潮流约束和安全约束重新表述为机会约束的形式,具体如下:
光伏出力建模,针对某一典型日进行建模,某一时刻分布式光伏功率的实际值建模为随机变量,根据中心极限定理,光伏出力的预测误差服从正态分布,可以表达为下式:
Figure FDA0004139763520000023
其中,
Figure FDA0004139763520000024
为第t时刻光伏接入j节点的有功功率实际出力值;N为光伏接入的总节点数,
Figure FDA0004139763520000031
为第t时刻光伏预测有功功率的均值;
Figure FDA0004139763520000032
为第t时刻光伏预测有功功率的方差;
Figure FDA0004139763520000033
为第t时刻光伏接入j节点的无功功率实际出力值,与有功功率之间满足KPV相角关系,
Figure FDA0004139763520000034
Figure FDA0004139763520000035
的矩阵展开式为:
Figure FDA0004139763520000036
5.根据权利要求4所述的基于低碳效益和不确定性的可控光伏参与调峰方法,其特征在于:
对光伏出力建模后,基于光伏削减的随机性,令光伏削减功率的误差服从正态分布,可以表达为下式:
Figure FDA0004139763520000037
其中,
Figure FDA0004139763520000038
为第t时刻光伏接入j节点有功功率削减的实际值;PPVcur,j,t为光伏有功功率削减的均值;
Figure FDA0004139763520000039
为光伏有功功率削减的方差,
Figure FDA00041397635200000310
为第t时刻光伏接入j节点无功功率削减的实际值,与有功功率削减量之间也满足相角关系,
Figure FDA00041397635200000311
的矩阵展开式为:
Figure FDA00041397635200000312
同时,光伏削减峰值功率还需满足下式:
Figure FDA00041397635200000313
Figure FDA0004139763520000041
其中,
Figure FDA0004139763520000042
为光伏在第j节点削减率的上界。
6.根据权利要求5所述的基于低碳效益和不确定性的可控光伏参与调峰方法,其特征在于:所述Distflow线性潮流约束的重新表述为:
基于到光伏功率波动的随机性,以矩阵形式将Distflow线性潮流约束更新为:
Figure FDA0004139763520000043
与有功功率相关的均值和方差为:
Figure FDA0004139763520000044
与无功功率相关的均值和方差为:
Figure FDA0004139763520000045
有功功率和无功功率注入之间的相关性表示为:
Figure FDA0004139763520000046
基于到光伏电压波动的随机性,电压正态分布服从如下:
Figure FDA0004139763520000047
其中ΣV,t是电压分布的方差,Φ是标准化正态分布的向量,μV,t是电压分布的均值,
以矩阵形式将节点电压之间约束更新为:
Figure FDA0004139763520000048
支路功率约束更新为:
Figure FDA0004139763520000049
7.根据权利要求6所述的基于低碳效益和不确定性的可控光伏参与调峰方法,其特征在于:安全约束的重新表述,由于光伏随机因素的影响,上述电压和线路传输为随机变量的形式,因此把电压约束和容量约束整理为机会约束形式如下:
Figure FDA0004139763520000051
支路容量约束:
Figure FDA0004139763520000052
8.根据权利要求7所述的基于低碳效益和不确定性的可控光伏参与调峰方法,其特征在于:所述目标函数的重新表述,基于随机性之后,目标函数可以表示为期望形式:
Cgridjtπgrid,tgEP(Pnet,j,t)
Ccarbonjtcarbon,t·et·EP(Pnet,j,t +))
Figure FDA0004139763520000053
9.根据权利要求8所述的基于低碳效益和不确定性的可控光伏参与调峰方法,其特征在于:步骤(3)提出基于不确定性的可控光伏参与调峰的求解方法,将机会约束转为二阶锥约束进行求解,具体如下:
电压机会约束的转换,
前述关于电压的机会约束被重新写为如下的两个部分:
Figure FDA0004139763520000054
其中,1-pV为电压机会约束成立的置信度,由上述分析可知,电压服从正态分布,因此通过寻找相应的分位点将机会约束可重新转化为如下线性约束:
Figure FDA0004139763520000061
其中Φ-1是标准化高斯分布的反函数,
为使模型具有可行解,继续将电压的线性约束转为二阶锥约束,
令:
Figure FDA0004139763520000062
其中,λVmax,j,t和λVmin,j,t为辅助变量,通过设置该参数将电压约束转换为二阶锥约束:
Figure FDA0004139763520000063
支路容量机会约束的转换
通过采用圆形约束线性化的方法将支路容量约束用线性约束进行逼近如下:
Figure FDA0004139763520000064
同电压约束类似,其中,1-pS为功率机会约束成立的置信度,找到与功率置信水平对应的随机变量的分位数,我们可以利用这个分位数将其转换为确定性约束,重写的约束如下所示:
Figure FDA0004139763520000071
设置各个参数对应的二阶锥变量如下:
Figure FDA0004139763520000072
将支路容量约束重新表述为:
Figure FDA0004139763520000073
CN202310285709.XA 2023-03-22 2023-03-22 一种基于低碳效益和不确定性的可控光伏参与调峰方法 Active CN116073449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310285709.XA CN116073449B (zh) 2023-03-22 2023-03-22 一种基于低碳效益和不确定性的可控光伏参与调峰方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310285709.XA CN116073449B (zh) 2023-03-22 2023-03-22 一种基于低碳效益和不确定性的可控光伏参与调峰方法

Publications (2)

Publication Number Publication Date
CN116073449A true CN116073449A (zh) 2023-05-05
CN116073449B CN116073449B (zh) 2024-03-22

Family

ID=86173432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310285709.XA Active CN116073449B (zh) 2023-03-22 2023-03-22 一种基于低碳效益和不确定性的可控光伏参与调峰方法

Country Status (1)

Country Link
CN (1) CN116073449B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597894A (zh) * 2022-03-15 2022-06-07 天津大学合肥创新发展研究院 考虑碳成本及多重不确定性的配电网日前调度方法及装置
WO2022142392A1 (zh) * 2020-12-28 2022-07-07 国网天津市电力公司电力科学研究院 一种移动储能时空联合优化调度策略的制定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022142392A1 (zh) * 2020-12-28 2022-07-07 国网天津市电力公司电力科学研究院 一种移动储能时空联合优化调度策略的制定方法
CN114597894A (zh) * 2022-03-15 2022-06-07 天津大学合肥创新发展研究院 考虑碳成本及多重不确定性的配电网日前调度方法及装置

Also Published As

Publication number Publication date
CN116073449B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
Wang et al. Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets
Stadler et al. Model-based optimization of distributed and renewable energy systems in buildings
Barelli et al. A micro-grid operation analysis for cost-effective battery energy storage and RES plants integration
Yuan et al. Data-driven risk-adjusted robust energy management for microgrids integrating demand response aggregator and renewable energies
Chiş et al. Demand response for renewable energy integration and load balancing in smart grid communities
Aurangzeb et al. Energy forecasting using multiheaded convolutional neural networks in efficient renewable energy resources equipped with energy storage system
CN113991742B (zh) 一种配电网分布式光伏双层协同优化投资决策方法
Ma et al. Two-stage stochastic robust optimization model of microgrid day-ahead dispatching considering controllable air conditioning load
Wen et al. Optimal distributed energy storage investment scheme for distribution network accommodating high renewable penetration
Hayati et al. A two-stage stochastic optimization scheduling approach for integrating renewable energy sources and deferrable demand in the spinning reserve market
CN105514986A (zh) 一种基于虚拟电厂技术的der用户竞价并网方法
Liu et al. Two-stage scheduling strategy for integrated energy systems considering renewable energy consumption
Lankeshwara et al. Dynamic operating envelopes-enabled demand response in low-voltage residential networks
Zou et al. Online energy management in microgids considering reactive power
CN116362421B (zh) 一种基于能源综合统筹分析的供能分配预测系统及其方法
Xu et al. CVaR‐based method for optimizing the contract bidding strategy of PV power stations
CN116073449B (zh) 一种基于低碳效益和不确定性的可控光伏参与调峰方法
Zhao et al. Research on Multiobjective Optimal Operation Strategy for Wind‐Photovoltaic‐Hydro Complementary Power System
CN115758763A (zh) 一种计及源荷不确定性的多能流系统优化配置方法及系统
Long et al. Research on Multi-Objective Optimization of Smart Grid Based on Particle Swarm Optimization.
Alobaidi et al. Distributionally robust generation expansion planning of gas-fired distributed generation with demand response
Byalihal Optimal allocation of solar and wind distributed generation using particle swarm optimization technique.
Mu et al. Risk-constrained multi-period planning for park-level integrated energy system based on CVaR method
Sun et al. Multi-objective confidence gap decision based robust optimal dispatch of integrated energy system using entropy expectation maximization GMM
Gheouany et al. Optimal active and reactive energy management for a smart microgrid system under the Moroccan grid pricing code

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant