CN116072259B - An optimal dose selection method and system for neonatal β-lactam drugs - Google Patents
An optimal dose selection method and system for neonatal β-lactam drugs Download PDFInfo
- Publication number
- CN116072259B CN116072259B CN202310089869.7A CN202310089869A CN116072259B CN 116072259 B CN116072259 B CN 116072259B CN 202310089869 A CN202310089869 A CN 202310089869A CN 116072259 B CN116072259 B CN 116072259B
- Authority
- CN
- China
- Prior art keywords
- drug
- optimal dose
- drug dosage
- optimal
- dosage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229940079593 drug Drugs 0.000 title claims abstract description 197
- 239000003814 drug Substances 0.000 title claims abstract description 197
- 150000003952 β-lactams Chemical class 0.000 title claims abstract description 30
- 238000010187 selection method Methods 0.000 title claims description 3
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000010276 construction Methods 0.000 claims abstract description 6
- 238000012549 training Methods 0.000 claims description 26
- 244000052616 bacterial pathogen Species 0.000 claims description 10
- 206010040047 Sepsis Diseases 0.000 claims description 6
- 238000004088 simulation Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 2
- 230000008685 targeting Effects 0.000 claims description 2
- 230000003285 pharmacodynamic effect Effects 0.000 description 33
- 208000006816 Neonatal Sepsis Diseases 0.000 description 7
- 206010067484 Adverse reaction Diseases 0.000 description 3
- 230000006838 adverse reaction Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 238000004820 blood count Methods 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000003907 kidney function Effects 0.000 description 2
- 230000003908 liver function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- VVJYUAYZJAKGRQ-UHFFFAOYSA-N 1-[4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C(O)C1 VVJYUAYZJAKGRQ-UHFFFAOYSA-N 0.000 description 1
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 1
- 108010082126 Alanine transaminase Proteins 0.000 description 1
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 1
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 1
- 208000031504 Asymptomatic Infections Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010074051 C-Reactive Protein Proteins 0.000 description 1
- 102100032752 C-reactive protein Human genes 0.000 description 1
- 102000012192 Cystatin C Human genes 0.000 description 1
- 108010061642 Cystatin C Proteins 0.000 description 1
- 238000008789 Direct Bilirubin Methods 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 238000008050 Total Bilirubin Reagent Methods 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- GPRBEKHLDVQUJE-VINNURBNSA-N cefotaxime Chemical compound N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C(O)=O)=O)C(=O)/C(=N/OC)C1=CSC(N)=N1 GPRBEKHLDVQUJE-VINNURBNSA-N 0.000 description 1
- 229960000484 ceftazidime Drugs 0.000 description 1
- ORFOPKXBNMVMKC-DWVKKRMSSA-N ceftazidime Chemical compound S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC(C)(C)C(O)=O)C=2N=C(N)SC=2)CC=1C[N+]1=CC=CC=C1 ORFOPKXBNMVMKC-DWVKKRMSSA-N 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 239000003777 experimental drug Substances 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- DMJNNHOOLUXYBV-PQTSNVLCSA-N meropenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](C(=O)N(C)C)C1 DMJNNHOOLUXYBV-PQTSNVLCSA-N 0.000 description 1
- 229960002260 meropenem Drugs 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/10—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/20—Ensemble learning
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H70/00—ICT specially adapted for the handling or processing of medical references
- G16H70/40—ICT specially adapted for the handling or processing of medical references relating to drugs, e.g. their side effects or intended usage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Pharmacology & Pharmacy (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
本发明公开的一种新生儿β内酰胺药物最佳剂量选择方法及系统,包括:获取新生儿的特征信息、选用药物和药物给药剂量及频次信息;根据新生儿的特征信息、选用药物、药物给药剂量及频次信息和训练好的药物最佳剂量选择模型,确定药物给药剂量是否为推荐的最佳剂量,其中,药物最佳剂量选择模型,以新生儿的特征信息、选用药物、药物给药剂量及频次信息为输入,以药物给药剂量是否为推荐的最佳剂量为输出,通过CatBoost模型构建获得;当药物给药剂量不为推荐的最佳剂量时,重新调整药物给药剂量,使通过药物最佳剂量选择模型判定调整后的药物给药剂量为推荐的最佳剂量。实现了对药物最佳剂量的准确预测。
The invention discloses a method and system for selecting the optimal dosage of β-lactam drugs for newborns, which includes: obtaining the characteristic information of the newborn, selecting drugs, and drug dosage and frequency information; selecting drugs according to the characteristic information of the newborn, The drug dosage and frequency information and the trained drug optimal dose selection model determine whether the drug dosage is the recommended optimal dose. Among them, the drug optimal dose selection model uses the newborn's characteristic information, selected drugs, The drug dosage and frequency information is the input, and whether the drug dosage is the recommended optimal dose is the output, which is obtained through CatBoost model construction; when the drug dosage is not the recommended optimal dose, the drug dosage is readjusted. Dosage, so that the adjusted drug dosage is determined to be the recommended optimal dose through the drug optimal dosage selection model. Accurate prediction of optimal drug dosage is achieved.
Description
技术领域Technical field
本发明涉及药物最佳剂量预测技术领域,尤其涉及一种新生儿β内酰胺药物最佳剂量选择方法及系统。The present invention relates to the technical field of optimal dose prediction of drugs, and in particular to a method and system for optimal dose selection of neonatal β-lactam drugs.
背景技术Background technique
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。The statements in this section merely provide background technical information related to the present invention and do not necessarily constitute prior art.
新生儿败血症是一种全身性疾病,临床表现从亚临床感染到严重的局部或全身感染,具有很高的发病率和死亡率,β-内酰胺类药物是治疗新生儿败血症最常使用的抗生素之一。如何准确预测β-内酰胺类药物的最佳剂量是目前需要解决的问题。Neonatal sepsis is a systemic disease with clinical manifestations ranging from subclinical infection to severe local or systemic infection, with high morbidity and mortality. β-lactams are the most commonly used antibiotics to treat neonatal sepsis. one. How to accurately predict the optimal dose of β-lactam drugs is currently a problem that needs to be solved.
β-内酰胺类药物最佳剂量是由多种因素决定的,包括:(1)新生儿快速的生理变化和特殊的病理生理学导致了药物处置和临床反应的广泛的个体间和个体内的差异性;(2)感染性实体及其相应的最低抑菌浓度(MICs)是抗生素治疗的重要依据,然而,在临床上很难得到新生儿细菌的阳性培养结果和抗菌素敏感性结果;(3)时间依赖性β-内酰胺类药物的药效学(PD)目标是游离抗生素浓度保持在目标病原体最低抑制浓度以上的时间部分(%fT>MIC),然而,新生儿的具体PD目标值是有争议的,没有普遍接受的PD目标,因为在最近的新生儿研究中,PD目标从40%fT>MIC到100%fT>4-5xMIC不等;(4)中心差异,具体β-内酰胺类药物的选择和新生儿败血症选择的剂量方案因中心和地区的不同而不同。The optimal dose of beta-lactams is determined by multiple factors, including: (1) Rapid physiological changes and unique pathophysiology of neonates lead to wide inter- and intra-individual variability in drug disposition and clinical response sex; (2) Infectious entities and their corresponding minimum inhibitory concentrations (MICs) are an important basis for antibiotic treatment. However, it is difficult to obtain positive culture results and antimicrobial sensitivity results of neonatal bacteria in clinical practice; (3) The pharmacodynamic (PD) target for time-dependent β-lactams is the portion of time during which the free antibiotic concentration remains above the minimum inhibitory concentration of the target pathogen (%fT > MIC). However, specific PD target values for neonates are Controversially, there is no universally accepted PD target, as in recent neonatal studies, PD targets ranged from 40% fT>MIC to 100% fT>4-5xMIC; (4) Central differences, specific β-lactams The choice of drugs and dosing regimen chosen for neonatal sepsis vary between centers and regions.
目前主要通过群体药代动力学模型来预测β-内酰胺类药物的最佳剂量,但是在对β-内酰胺类药物的最佳剂量进行预测时,没有考虑药物的PD指标,使得预测的结果不准确。At present, population pharmacokinetic models are mainly used to predict the optimal dose of β-lactam drugs. However, when predicting the optimal dose of β-lactam drugs, the PD index of the drug is not considered, making the prediction results Inaccurate.
发明内容Contents of the invention
本发明为了解决上述问题,提出了一种新生儿β内酰胺药物最佳剂量选择方法及系统,能够对β内酰胺药物的最佳剂量进行准确预测。In order to solve the above problems, the present invention proposes a method and system for selecting the optimal dose of β-lactam drugs for newborns, which can accurately predict the optimal dose of β-lactam drugs.
为实现上述目的,本发明采用如下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:
第一方面,提出了一种新生儿β内酰胺药物最佳剂量选择方法,包括:In the first aspect, a method for optimal dosage selection of neonatal β-lactam drugs is proposed, including:
获取新生儿的特征信息、选用药物和药物给药剂量及频次信息;Obtain the newborn's characteristic information, selected drugs, and drug dosage and frequency information;
根据新生儿的特征信息、选用药物、药物给药剂量及频次信息和训练好的药物最佳剂量选择模型,确定药物给药剂量是否为推荐的最佳剂量,其中,药物最佳剂量选择模型,以新生儿的特征信息、选用药物、药物给药剂量及频次信息为输入,以药物给药剂量是否为推荐的最佳剂量为输出,通过CatBoost模型构建获得;Based on the newborn's characteristic information, selected drugs, drug dosage and frequency information, and the trained drug optimal dose selection model, determine whether the drug dosage is the recommended optimal dose. Among them, the drug optimal dose selection model, Taking the newborn's characteristic information, selected drugs, drug dosage and frequency information as input, and taking whether the drug dosage is the recommended optimal dose as the output, it is obtained through CatBoost model construction;
当药物给药剂量不为推荐的最佳剂量时,重新调整药物给药剂量,使通过药物最佳剂量选择模型判定调整后的药物给药剂量为推荐的最佳剂量。When the drug dosage is not the recommended optimal dose, the drug dosage is readjusted so that the adjusted drug dosage is determined to be the recommended optimal dose through the optimal drug dosage selection model.
第二方面,提出了一种新生儿β内酰胺药物最佳剂量选择系统,包括:In the second aspect, an optimal dosage selection system for neonatal β-lactam drugs is proposed, including:
数据获取模块,用于获取新生儿的特征信息、选用药物和药物给药剂量及频次信息;The data acquisition module is used to obtain the characteristic information of newborns, selected drugs, and drug dosage and frequency information;
推荐的最佳剂量确定模块,用于根据新生儿的特征信息、选用药物、药物给药剂量及频次信息和训练好的药物最佳剂量选择模型,确定药物给药剂量是否为最佳剂量,其中,药物最佳剂量选择模型,以新生儿的特征信息、选用药物、药物给药剂量及频次信息为输入,以药物给药剂量是否为最佳剂量为输出,通过CatBoost模型构建获得;当药物给药剂量不为推荐的最佳剂量时,重新调整药物给药剂量,使通过药物最佳剂量选择模型判定调整后的药物给药剂量为推荐的最佳剂量。The recommended optimal dose determination module is used to determine whether the drug dosage is the optimal dose based on the newborn's characteristic information, selected drugs, drug dosage and frequency information, and the trained drug optimal dose selection model, where , the optimal drug dose selection model takes the newborn's characteristic information, selected drugs, drug dosage and frequency information as input, and uses whether the drug dosage is the optimal dose as the output, which is obtained through the CatBoost model construction; when the drug is given When the drug dosage is not the recommended optimal dose, the drug dosage is readjusted so that the adjusted drug dosage is determined to be the recommended optimal dose through the optimal drug dosage selection model.
第三方面,提出了一种电子设备,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成一种新生儿β内酰胺药物最佳剂量选择方法所述的步骤。In a third aspect, an electronic device is proposed, including a memory and a processor, and computer instructions stored in the memory and run on the processor. When the computer instructions are run by the processor, a neonatal beta-lactam drug is completed. The steps described in the optimal dose selection method.
第四方面,提出了一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成一种新生儿β内酰胺药物最佳剂量选择方法所述的步骤。In a fourth aspect, a computer-readable storage medium is proposed, which is used to store computer instructions. When the computer instructions are executed by a processor, the steps described in a method for selecting an optimal dose of beta-lactam drugs for newborns are completed.
与现有技术相比,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
1、本发明在进行药物的最佳剂量预测时,综合考虑了新生儿的特征信息和所选用的药物,并通过设定给药量下的药物的PD指标与PD目标的关系,确定药物的给药量是否为推荐的最佳剂量,进而从推荐的最佳剂量中选取最小值作为药物的最佳剂量,实现了对药物最佳剂量的准确预测。1. When predicting the optimal dose of a drug, the present invention comprehensively considers the characteristic information of the newborn and the selected drug, and determines the relationship between the PD index and the PD target of the drug under the dosage. Whether the dosage is the recommended best dose, and then select the minimum value from the recommended best dose as the best dose of the drug, achieving accurate prediction of the best dose of the drug.
2、本发明在选定PD目标时,将败血症所有病原菌的MIC考虑在内,使得选择出的最佳剂量能够对败血症所有病原菌有效。2. When selecting the PD target, the present invention takes the MICs of all pathogenic bacteria of sepsis into consideration, so that the selected optimal dose can be effective against all pathogenic bacteria of sepsis.
3、本发明仅通过药物最佳剂量选择模型实现了对药物推荐的最佳剂量的预测,在保证最佳剂量预测准确度的基础上,提高了预测效率。3. The present invention only realizes the prediction of the optimal dose of recommended drugs through the drug optimal dose selection model, and improves the prediction efficiency on the basis of ensuring the accuracy of optimal dose prediction.
本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of the drawings
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。The description and drawings that constitute a part of this application are used to provide a further understanding of this application. The illustrative embodiments and their descriptions of this application are used to explain this application and do not constitute an improper limitation of this application.
图1为实施例1公开方法的流程图;Figure 1 is a flow chart of the method disclosed in Embodiment 1;
图2为实施例1公开药物最佳剂量选择模型的应用流程图。Figure 2 is an application flow chart of the optimal drug dosage selection model disclosed in Example 1.
具体实施方式Detailed ways
下面结合附图与实施例对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and examples.
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is illustrative and is intended to provide further explanation of the present application. Unless otherwise defined, all technical and scientific terms used herein have the same meanings commonly understood by one of ordinary skill in the art to which this application belongs.
实施例1Example 1
在该实施例中,公开了一种新生儿β内酰胺药物最佳剂量选择方法,如图1、图2所示,包括:In this embodiment, a method for optimal dose selection of neonatal β-lactam drugs is disclosed, as shown in Figures 1 and 2, including:
S1:获取新生儿的特征信息、选用药物和药物给药剂量及频次信息。S1: Obtain the newborn's characteristic information, selected drugs, and drug dosage and frequency information.
新生儿的特征信息包括人口统计学信息和诊断信息。Characteristic information about the newborn includes demographic information and diagnostic information.
人口统计学信息包括性别、身高、出生体重、当前体重、BMI、胎龄、产后日龄、矫正胎龄、合并疾病、手术史和生化信息等信息。Demographic information included information such as gender, height, birth weight, current weight, BMI, gestational age, postpartum age, corrected gestational age, comorbid diseases, surgical history, and biochemical information.
生化信息包括肾功能信息、肝功能信息和血常规等信息。Biochemical information includes renal function information, liver function information, and blood routine information.
肾功能信息包括肌酐、尿酸、尿素氮、胱抑素-C和二氧化碳信息;肝功能信息包括天门冬氨酸氨基转移酶、丙氨酸氨基转移酶、总胆红素、直接胆红素、白蛋白和球蛋白信息;血常规信息包括血小板计数、白细胞计数、红细胞计数、中性粒细胞、C反应蛋白和血沉信息。Renal function information includes creatinine, uric acid, urea nitrogen, cystatin-C and carbon dioxide information; liver function information includes aspartate aminotransferase, alanine aminotransferase, total bilirubin, direct bilirubin, white blood Protein and globulin information; routine blood information includes platelet count, white blood cell count, red blood cell count, neutrophils, C-reactive protein and erythrocyte sedimentation rate information.
根据新生儿的诊断信息,由医生针对该诊断信息选用药物,本实施例针对的是新生儿败血症,故针对新生儿败血症,医生可以选用的药物为头孢噻肟、头孢他啶、美罗培南、拉氧头孢或阿莫西林等常用β内酰胺药物。According to the diagnostic information of the newborn, the doctor selects a drug based on the diagnostic information. This embodiment is aimed at neonatal sepsis. Therefore, the drugs that the doctor can choose for neonatal sepsis are cefotaxime, ceftazidime, meropenem, and laxamethasone. Or commonly used beta-lactam drugs such as amoxicillin.
根据选用药物,初步设定选用药物的给药剂量及频次信息。Based on the selected drug, the dosage and frequency information of the selected drug will be initially set.
S2:根据新生儿的特征信息、选用药物、药物给药剂量及频次信息和训练好的药物最佳剂量选择模型,确定药物给药剂量是否为推荐的最佳剂量,其中,药物最佳剂量选择模型,以新生儿的特征信息、选用药物、药物给药剂量及频次信息为输入,以药物给药剂量是否为推荐的最佳剂量为输出,通过CatBoost模型构建获得。S2: Based on the newborn's characteristic information, selected drugs, drug dosage and frequency information, and the trained drug optimal dose selection model, determine whether the drug dosage is the recommended optimal dose. Among them, the optimal drug dose selection The model takes the newborn's characteristic information, selected drugs, drug dosage and frequency information as input, and uses whether the drug dosage is the recommended optimal dose as the output, and is constructed through the CatBoost model.
获取训练好的药物最佳剂量选择模型的过程为:The process of obtaining the trained optimal dose selection model for drugs is:
获取已有的新生儿特征信息、选用药物信息、给药剂量及频次信息和不良反应,作为初始训练数据,并确定药物不同给药剂量下的PD指标;Obtain existing newborn characteristics information, drug selection information, dosage and frequency information, and adverse reactions as initial training data, and determine PD indicators under different drug dosages;
根据PD指标与PD目标的大小关系对初始训练数据进行标签标注,作为训练用数据,其中,当PD指标大于等于PD目标时,初始训练数据的标注标签是为推荐的最佳剂量,当指标小于PD目标时,初始训练数据的标注标签是不为推荐的最佳剂量;Label the initial training data according to the relationship between the PD index and the PD target as training data. When the PD index is greater than or equal to the PD target, the label of the initial training data is the recommended optimal dose. When the index is less than When targeting PD, the annotation label of the initial training data is not the recommended optimal dose;
通过训练用数据对构建的药物最佳剂量选择模型进行训练,训练完成的药物最佳剂量选择模型为训练好的药物最佳剂量选择模型。The constructed optimal drug dosage selection model is trained with the training data, and the trained optimal drug dosage selection model is the trained optimal drug dosage selection model.
在具体实施时,获取的初始训练数据均为新生儿父母书面同意获取的,且新生儿的矫正胎龄在48周以内的相关数据,而接受过他系统性试验药物治疗的,如新生儿ID、人口统计学信息、诊断信息、给药剂量及频次信息等主要研究数据严重缺失的,或其他不适合选用的新生儿数据被删除。During the specific implementation, the initial training data obtained are all relevant data obtained with the written consent of the parents of the newborn, and the newborn's corrected gestational age is within 48 weeks, and the newborn has received other systemic experimental drug treatment, such as newborn ID , demographic information, diagnostic information, dosage and frequency information and other major research data are seriously missing, or other neonatal data that are not suitable for selection are deleted.
在确定初始训练数据的类型时,将获取的新生儿数据中缺失率大于设定值的数据类型删除,作为最终的初始训练数据。When determining the type of initial training data, data types with a missing rate greater than the set value in the acquired newborn data are deleted and used as the final initial training data.
本实施例通过群体药代动力学模型对初始训练数据进行模拟,获得每一种药物不同给药剂量下的PD指标。In this embodiment, the initial training data is simulated through a population pharmacokinetic model to obtain the PD index of each drug under different dosages.
群体药代动力学模型为将基于房室结构的一室或二室模型作为总体框架,搭载个体间变异性模型以及残差模型,其中,个体间变异性模型为幂指数方式,残差模型为加法或比例或混合方式。The population pharmacokinetic model uses a one-compartment or two-compartment model based on compartmental structure as the overall framework, equipped with an inter-individual variability model and a residual model. Among them, the inter-individual variability model is a power exponential method, and the residual model is Additive or proportional or mixed.
为了提高获取的PD指标的准确率,对现有的群体药代动力学模型进行筛选,从中选取最优的群体药代动力学模型作为本实施例进行数据模拟的群体药代动力学模型。In order to improve the accuracy of the obtained PD indicators, existing population pharmacokinetic models were screened, and the optimal population pharmacokinetic model was selected as the population pharmacokinetic model for data simulation in this embodiment.
在通过群体药代动力学模型对初始训练数据进行模拟时,以不同的选用药物,不同药物给药剂量为模拟条件,对初始训练数据进行模拟,获得每一种药物不同给药剂量下的不同PD指标。When simulating the initial training data through the population pharmacokinetic model, using different selected drugs and different drug dosages as simulation conditions, simulate the initial training data to obtain different drug concentrations under different dosages. PD indicator.
不同PD指标为50%给药间隔时间、70%给药间隔时间和100%给药间隔时间时,获取的血液中的药物浓度。The drug concentration in the blood was obtained when different PD indicators were 50% dosing interval, 70% dosing interval and 100% dosing interval.
可以选择三种PD指标中的任意一种在后续与PD目标进行比较。Any one of the three PD indicators can be selected for subsequent comparison with the PD target.
目前关于PD指标哪一种更优,国际上没有明确的共识。因此,本实施例获取了药物的三种最常见的PD指标,可以根据实际需要,选择合适的PD指标在后续与PD目标进行比较,来确定药物的最佳剂量,以提高本实施例公开方法的适应性。At present, there is no clear international consensus on which PD indicator is better. Therefore, this embodiment obtains the three most common PD indicators of the drug. According to actual needs, appropriate PD indicators can be selected and subsequently compared with the PD target to determine the optimal dose of the drug to improve the method disclosed in this embodiment. adaptability.
PD目标的选定标准为:将败血症所有病原菌的MIC的最大值作为PD目标。The selection criteria for PD targets are: taking the maximum MIC value of all pathogenic bacteria in sepsis as the PD target.
汇总统计国内外新生儿败血症的所有病原菌,并在不同药物情况下,对所有病原菌对应的MIC进行统计,每种药物选择一种可以覆盖所有常见病原菌的MIC作为PD目标。通过该PD目标筛选出的药物的最佳剂量能够对所有的新生儿败血症的病原菌有效。Summarize statistics on all pathogenic bacteria of neonatal sepsis at home and abroad, and calculate the MIC corresponding to all pathogenic bacteria under different drugs. For each drug, select an MIC that can cover all common pathogenic bacteria as the PD target. The optimal dose of the drug selected by this PD target is effective against all pathogenic bacteria of neonatal sepsis.
将初始训练数据和基于不同条件下的模拟与仿真获得PD指标数据进行汇总整合,得到新生儿虚拟数据库,被用来作为训练数据,进行后续的机器学习分析。The initial training data and PD indicator data obtained through simulation and simulation under different conditions are summarized and integrated to obtain a newborn virtual database, which is used as training data for subsequent machine learning analysis.
以新生儿的特征信息、选用药物、药物给药剂量及频次信息为输入,以药物给药剂量是否为推荐的最佳剂量为输出,通过CatBoost模型构建药物最佳剂量选择模型,此外,药物最佳剂量选择模型还能输出给药剂量对应的不良反应。Taking the newborn's characteristic information, selected drugs, drug dosage and frequency information as input, and using whether the drug dosage is the recommended optimal dose as the output, the CatBoost model is used to build the optimal dosage selection model of the drug. In addition, the optimal dosage of the drug is The optimal dose selection model can also output the adverse reactions corresponding to the administered dose.
将训练数据随机划分为训练集和测试集,对构建的构建药物最佳剂量选择模型进行训练,训练完成,获得训练好的构建药物最佳剂量选择模型。The training data is randomly divided into a training set and a test set, and the constructed optimal dose selection model of the constructed drug is trained. After the training is completed, the trained optimal dosage selection model of the constructed drug is obtained.
CatBoost模型不仅擅长处理分类特征,而且可以对预测偏移进行处理,从而减少模型过拟合的可能;CatBoost算法内置的模型是对称树,训练速度快,且不太容易过拟合,该模型可以很好的对新生儿患者β内酰胺药物数据进行分析建模。The CatBoost model is not only good at processing classification features, but also can handle prediction offsets, thereby reducing the possibility of model overfitting; the built-in model of the CatBoost algorithm is a symmetric tree, which has fast training speed and is not prone to overfitting. This model can Excellent analysis and modeling of beta-lactam drug data for neonatal patients.
将S1获取的新生儿的特征信息、选用药物和药物给药剂量及频次信息输入训练好的药物最佳剂量选择模型中,确定药物给药剂量是否为推荐的最佳剂量。Input the newborn's characteristic information, selected drugs, drug dosage and frequency information obtained by S1 into the trained drug optimal dose selection model to determine whether the drug dosage is the recommended optimal dose.
当药物给药剂量不为推荐的最佳剂量时,重新调整药物给药剂量,使通过训练好的药物最佳剂量选择模型判定调整后的药物给药剂量为推荐的最佳剂量。When the drug dosage is not the recommended optimal dose, the drug dosage is readjusted so that the adjusted drug dosage is determined to be the recommended optimal dose through the trained drug optimal dose selection model.
为了获得药物的最佳剂量,可以通过设定不同的药物给药剂量,进而通过训练好的药物最佳剂量选择模型筛选出推荐的最佳剂量,并从推荐的最佳剂量中选取最小值为药物的最佳剂量。In order to obtain the optimal dose of the drug, different drug dosages can be set, and then the recommended optimal dose can be screened through the trained drug optimal dose selection model, and the minimum value can be selected from the recommended optimal dose as The optimal dose of the drug.
本实施例虽然获取了药物的最佳剂量和对应的不良反应,但是在具体应用时,该药物最佳剂量仅供医生参考,不直接应用于新生儿治疗。Although the optimal dose of the drug and the corresponding adverse reactions are obtained in this embodiment, in specific applications, the optimal dose of the drug is only for doctors' reference and is not directly used for neonatal treatment.
本实施例在进行药物的最佳剂量预测时,综合考虑了新生儿的特征信息和所选用的药物,并通过设定给药量下的药物的PD指标与PD目标的关系,确定药物的给药量是否为推荐的最佳剂量,进而从推荐的最佳剂量中选取最小值作为药物的最佳剂量,实现了对药物最佳剂量的准确预测;在选定PD目标时,将败血症所有病原菌的MIC考虑在内,使得选择出的最佳剂量能够对败血症所有病原菌有效。In this embodiment, when predicting the optimal dose of a drug, the characteristic information of the newborn and the selected drug are comprehensively considered, and the drug dosage is determined by setting the relationship between the PD index and the PD target of the drug under the dosage. Whether the drug dose is the recommended best dose, and then select the minimum value from the recommended best dose as the best dose of the drug, achieving accurate prediction of the best dose of the drug; when selecting the PD target, all pathogenic bacteria of sepsis The MIC is taken into account so that the optimal dose can be selected to be effective against all pathogenic bacteria of sepsis.
本实施例仅通过药物最佳剂量选择模型实现了对药物推荐的最佳剂量的预测,在保证最佳剂量预测准确度的基础上,提高了预测效率。This embodiment only realizes the prediction of the recommended optimal dose of the drug through the optimal drug dose selection model, and improves the prediction efficiency on the basis of ensuring the accuracy of optimal dose prediction.
实施例2Example 2
在该实施例中,公开了一种新生儿β内酰胺药物最佳剂量选择系统,包括:In this embodiment, an optimal dose selection system for neonatal β-lactam drugs is disclosed, including:
数据获取模块,用于获取新生儿的特征信息、选用药物和药物给药剂量及频次信息;The data acquisition module is used to obtain the characteristic information of newborns, selected drugs, and drug dosage and frequency information;
推荐的最佳剂量确定模块,用于根据新生儿的特征信息、选用药物、药物给药剂量及频次信息和训练好的药物最佳剂量选择模型,确定药物给药剂量是否为最佳剂量,其中,药物最佳剂量选择模型,以新生儿的特征信息、选用药物、药物给药剂量及频次信息为输入,以药物给药剂量是否为最佳剂量为输出,通过CatBoost模型构建获得;当药物给药剂量不为推荐的最佳剂量时,重新调整药物给药剂量,使通过药物最佳剂量选择模型判定调整后的药物给药剂量为推荐的最佳剂量。The recommended optimal dose determination module is used to determine whether the drug dosage is the optimal dose based on the newborn's characteristic information, selected drugs, drug dosage and frequency information, and the trained drug optimal dose selection model, where , the optimal drug dose selection model takes the newborn's characteristic information, selected drugs, drug dosage and frequency information as input, and uses whether the drug dosage is the optimal dose as the output, which is obtained through the CatBoost model construction; when the drug is given When the drug dosage is not the recommended optimal dose, the drug dosage is readjusted so that the adjusted drug dosage is determined to be the recommended optimal dose through the optimal drug dosage selection model.
实施例3Example 3
在该实施例中,公开了一种电子设备,包括存储器和处理器以及存储在存储器上并在处理器上运行的计算机指令,所述计算机指令被处理器运行时,完成实施例1公开的一种新生儿β内酰胺药物最佳剂量选择方法所述的步骤。In this embodiment, an electronic device is disclosed, including a memory, a processor, and computer instructions stored in the memory and executed on the processor. When the computer instructions are executed by the processor, a method disclosed in Embodiment 1 is completed. The steps described in the method for selecting the optimal dosage of beta-lactam drugs for neonates.
实施例4Example 4
在该实施例中,公开了一种计算机可读存储介质,用于存储计算机指令,所述计算机指令被处理器执行时,完成实施例1公开的一种新生儿β内酰胺药物最佳剂量选择方法所述的步骤。In this embodiment, a computer-readable storage medium is disclosed for storing computer instructions. When the computer instructions are executed by a processor, the optimal dose selection of a neonatal beta-lactam drug disclosed in Embodiment 1 is completed. The steps described in the method.
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the present invention and not to limit it. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that the present invention can still be modified. Modifications or equivalent substitutions may be made to the specific embodiments, and any modifications or equivalent substitutions that do not depart from the spirit and scope of the invention shall be covered by the scope of the claims of the invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310089869.7A CN116072259B (en) | 2023-02-02 | 2023-02-02 | An optimal dose selection method and system for neonatal β-lactam drugs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310089869.7A CN116072259B (en) | 2023-02-02 | 2023-02-02 | An optimal dose selection method and system for neonatal β-lactam drugs |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116072259A CN116072259A (en) | 2023-05-05 |
CN116072259B true CN116072259B (en) | 2023-09-08 |
Family
ID=86176608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310089869.7A Active CN116072259B (en) | 2023-02-02 | 2023-02-02 | An optimal dose selection method and system for neonatal β-lactam drugs |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116072259B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109336954A (en) * | 2018-11-12 | 2019-02-15 | 北京纳百生物科技有限公司 | A kind of Beta-lactam medicine receptor protein and its application |
CN110232955A (en) * | 2019-06-19 | 2019-09-13 | 华中农业大学 | A kind of construction method of Cefquinome PK-PD model and its application |
CN113241193A (en) * | 2021-06-01 | 2021-08-10 | 平安科技(深圳)有限公司 | Drug recommendation model training method, recommendation method, device, equipment and medium |
CN113270203A (en) * | 2021-04-20 | 2021-08-17 | 郑州大学第一附属医院 | Drug dose prediction method, device, electronic device and storage medium |
CN115035976A (en) * | 2022-06-01 | 2022-09-09 | 山东大学 | A method and system for optimizing the dose of mezlocillin used in neonatal groups |
TW202242134A (en) * | 2021-01-07 | 2022-11-01 | 英商牛津生物力學公眾有限公司 | Chromosome interactions |
CN115295114A (en) * | 2022-06-29 | 2022-11-04 | 中南大学湘雅三医院 | An analgesic administration method based on an objective pain assessment system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE0302815D0 (en) * | 2003-10-24 | 2003-10-24 | Mathcore Engineering Ab | Computer system for determining a drug dosage |
-
2023
- 2023-02-02 CN CN202310089869.7A patent/CN116072259B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109336954A (en) * | 2018-11-12 | 2019-02-15 | 北京纳百生物科技有限公司 | A kind of Beta-lactam medicine receptor protein and its application |
CN110232955A (en) * | 2019-06-19 | 2019-09-13 | 华中农业大学 | A kind of construction method of Cefquinome PK-PD model and its application |
TW202242134A (en) * | 2021-01-07 | 2022-11-01 | 英商牛津生物力學公眾有限公司 | Chromosome interactions |
CN113270203A (en) * | 2021-04-20 | 2021-08-17 | 郑州大学第一附属医院 | Drug dose prediction method, device, electronic device and storage medium |
CN113241193A (en) * | 2021-06-01 | 2021-08-10 | 平安科技(深圳)有限公司 | Drug recommendation model training method, recommendation method, device, equipment and medium |
CN115035976A (en) * | 2022-06-01 | 2022-09-09 | 山东大学 | A method and system for optimizing the dose of mezlocillin used in neonatal groups |
CN115295114A (en) * | 2022-06-29 | 2022-11-04 | 中南大学湘雅三医院 | An analgesic administration method based on an objective pain assessment system |
Non-Patent Citations (1)
Title |
---|
早产儿败血症临床治疗中碳青霉烯类和β-内酰胺类药物的使用与耐药性分析;于新桥;;检验医学与临床(第07期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN116072259A (en) | 2023-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schweizer et al. | Comparative effectiveness of switching to daptomycin versus remaining on vancomycin among patients with methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections | |
Hong et al. | State of the art of machine learning–enabled clinical decision support in intensive care units: literature review | |
Liu et al. | Development of a prediction model on preeclampsia using machine learning-based method: A retrospective cohort study in China | |
Song et al. | Comparison of logistic regression and machine learning methods for predicting postoperative delirium in elderly patients: a retrospective study | |
Udy et al. | The association between low admission peak plasma creatinine concentration and in-hospital mortality in patients admitted to intensive care in Australia and New Zealand | |
CN111161865A (en) | Blood demand prediction method and blood dynamic inventory early warning system | |
Kuroczycka-Saniutycz et al. | Does obesity or hyperuricemia influence lithogenic risk profile in children with urolithiasis? | |
Fielding et al. | Sepsis and septic shock in the equine neonate | |
Goffman et al. | A framework for improving characterization of obstetric hemorrhage using informatics data | |
Liao et al. | Development and validation of prediction models for gestational diabetes treatment modality using supervised machine learning: a population-based cohort study | |
Chen et al. | Imipenem population pharmacokinetics: Therapeutic drug monitoring data collected in critically ill patients with or without extracorporeal membrane oxygenation | |
Liu et al. | Population pharmacokinetics of vancomycin in Chinese pediatric patients | |
CN116072259B (en) | An optimal dose selection method and system for neonatal β-lactam drugs | |
Heffernan et al. | Ceftriaxone dosing in patients admitted from the emergency department with sepsis | |
KR20230063354A (en) | Delirium prediction method and apparatus | |
CN112200213A (en) | Method and device for realizing accurate newborn blood transfusion | |
Birkelo et al. | The road to precision medicine for acute kidney injury | |
CN114974562A (en) | Clinical prediction model construction method for severe pancreatitis based on machine learning | |
Gold et al. | Factors associated with nonsurvival in foals diagnosed with perinatal asphyxia syndrome | |
Tan et al. | Association of fluid balance with mortality in sepsis is modified by admission hemoglobin levels: a large database study | |
Wang et al. | Progress in drug development–pediatric dose selection: workshop summary | |
Yahya et al. | A Retrospective Review of Neonatal Sepsis among GBS‐Colonized Women Undergoing Planned Cesarean Section after Labor Onset or Rupture of Membranes | |
Liu et al. | The development and validation of a predictive model for neonatal phototherapy outcome using admission indicators | |
CN115035976A (en) | A method and system for optimizing the dose of mezlocillin used in neonatal groups | |
Li et al. | Development and validation of outcome prediction models for acute kidney injury patients undergoing continuous renal replacement therapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |