CN116071912A - Method and device for determining road traffic distribution - Google Patents
Method and device for determining road traffic distribution Download PDFInfo
- Publication number
- CN116071912A CN116071912A CN202111233967.0A CN202111233967A CN116071912A CN 116071912 A CN116071912 A CN 116071912A CN 202111233967 A CN202111233967 A CN 202111233967A CN 116071912 A CN116071912 A CN 116071912A
- Authority
- CN
- China
- Prior art keywords
- traffic volume
- location
- road
- candidate
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000009826 distribution Methods 0.000 title claims abstract description 43
- 238000005457 optimization Methods 0.000 claims abstract description 45
- 238000004590 computer program Methods 0.000 claims description 12
- 238000003860 storage Methods 0.000 claims description 12
- 238000012546 transfer Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 description 11
- 238000011161 development Methods 0.000 description 11
- 238000004891 communication Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000011664 signaling Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000000556 factor analysis Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0129—Traffic data processing for creating historical data or processing based on historical data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06312—Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/40—Business processes related to the transportation industry
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/065—Traffic control systems for road vehicles by counting the vehicles in a section of the road or in a parking area, i.e. comparing incoming count with outgoing count
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/12—Timing analysis or timing optimisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Game Theory and Decision Science (AREA)
- Computer Hardware Design (AREA)
- Analytical Chemistry (AREA)
- Educational Administration (AREA)
- Chemical & Material Sciences (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
技术领域Technical Field
本公开涉及计算机技术领域,尤其涉及道路交通量分配预测领域。The present disclosure relates to the field of computer technology, and in particular to the field of road traffic volume distribution prediction.
背景技术Background Art
在交通规划技术领域,为预测两地之间目标道路的交通分配量,往往仅考虑单一路段的通行时间对交通量的影响,而忽略了全局运输路网在均衡状态下的交通格局。此外,传统的预测方法未考虑其他出行方式对交通量分流带来的影响,导致确定的道路交通量分配的精度较低,效果较差。In the field of traffic planning technology, in order to predict the traffic distribution of a target road between two places, only the impact of the travel time of a single section on the traffic volume is often considered, while the traffic pattern of the global transportation road network in a balanced state is ignored. In addition, traditional prediction methods do not consider the impact of other travel modes on traffic diversion, resulting in low accuracy and poor results in determining road traffic distribution.
发明内容Summary of the invention
本公开提供了一种道路交通量分配的确定方法及装置。The present disclosure provides a method and device for determining road traffic volume distribution.
根据本公开的一方面,提供了一种道路交通量分配的确定方法,该方法可以包括以下步骤:According to one aspect of the present disclosure, a method for determining road traffic volume distribution is provided, and the method may include the following steps:
获取N条候选道路对应的交通量初始值;所述候选道路为第一地点与第二地点之间的道路,N为大于等于1的整数;所述交通量用于表征所述候选道路上的车流量;Obtaining initial traffic volume values corresponding to N candidate roads; the candidate roads are roads between the first location and the second location, and N is an integer greater than or equal to 1; the traffic volume is used to characterize the vehicle flow on the candidate roads;
利用所述候选道路对应的交通量初始值,分别确定所述N条候选道路对应的第一预测通行时间,得到N个第一预测通行时间;Using the initial traffic volume values corresponding to the candidate roads, respectively determine the first predicted travel times corresponding to the N candidate roads to obtain N first predicted travel times;
利用预先获取的所述第一地点与所述第二地点之间的交通量预测值和所述N个第一预测通行时间,确定目标道路的第一交通量分配优化值,所述目标道路为N条候选道路中的第i条候选道路,i为大于等于0且小于等于N的正整数。Using the pre-acquired traffic volume prediction value between the first location and the second location and the N first predicted travel times, a first traffic volume distribution optimization value of the target road is determined, and the target road is the i-th candidate road among the N candidate roads, where i is a positive integer greater than or equal to 0 and less than or equal to N.
根据本公开的另一方面,提供了一种道路交通量分配的确定装置,包括:According to another aspect of the present disclosure, there is provided a device for determining road traffic volume distribution, comprising:
交通量初始值获取模块,用于获取N条候选道路对应的交通量初始值;所述候选道路为第一地点与第二地点之间的道路,N为大于等于1的整数;所述交通量用于表征道路上的车流量;A traffic volume initial value acquisition module is used to acquire traffic volume initial values corresponding to N candidate roads; the candidate roads are roads between the first location and the second location, and N is an integer greater than or equal to 1; the traffic volume is used to characterize the traffic volume on the road;
第一预测通行时间确定模块,用于利用所述候选道路对应的交通量初始值,确定所述N条候选道路对应的第一预测通行时间,得到N个第一预测通行时间;A first predicted travel time determination module, configured to determine the first predicted travel times corresponding to the N candidate roads by using the initial traffic volume values corresponding to the candidate roads, and obtain N first predicted travel times;
第一交通量分配优化值确定模块,用于利用预先获取的所述第一地点与所述第二地点之间的交通量预测值和所述N个第一预测通行时间,确定目标道路的第一交通量分配优化值,所述目标道路为N条候选道路中的第i条候选道路,i为大于等于0且小于等于N的正整数。The first traffic volume distribution optimization value determination module is used to determine the first traffic volume distribution optimization value of the target road by using the pre-acquired traffic volume prediction value between the first location and the second location and the N first predicted travel times, wherein the target road is the i-th candidate road among the N candidate roads, and i is a positive integer greater than or equal to 0 and less than or equal to N.
根据本公开的另一方面,提供了一种电子设备,包括:According to another aspect of the present disclosure, there is provided an electronic device, comprising:
至少一个处理器;以及at least one processor; and
与该至少一个处理器通信连接的存储器;其中,a memory communicatively connected to the at least one processor; wherein,
该存储器存储有可被该至少一个处理器执行的指令,该指令被该至少一个处理器执行,以使该至少一个处理器能够执行本公开任一实施例中的方法。The memory stores instructions that can be executed by the at least one processor, and the instructions are executed by the at least one processor to enable the at least one processor to execute the method in any embodiment of the present disclosure.
根据本公开的另一方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,该计算机指令用于使计算机执行本公开任一实施例中的方法。According to another aspect of the present disclosure, a non-transitory computer-readable storage medium storing computer instructions is provided. The computer instructions are used to enable a computer to execute the method in any embodiment of the present disclosure.
根据本公开的另一方面,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现本公开任一实施例中的方法。According to another aspect of the present disclosure, a computer program product is provided, including a computer program, and when the computer program is executed by a processor, the method in any embodiment of the present disclosure is implemented.
通过上述过程,在原有交通量预测模型的基础上,通过用户均衡模型确定整个公路路网的用户广义通行时间最小时对应的目标道路交通分配量。同时,通过计算其他出行方式对目标道路交通量的影响值,提升所确定的目标道路交通分配量准确性。Through the above process, on the basis of the original traffic volume prediction model, the target road traffic allocation corresponding to the minimum generalized travel time of users in the entire highway network is determined through the user equilibrium model. At the same time, by calculating the impact of other travel modes on the target road traffic volume, the accuracy of the determined target road traffic allocation is improved.
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。It should be understood that the content described in this section is not intended to identify the key or important features of the embodiments of the present disclosure, nor is it intended to limit the scope of the present disclosure. Other features of the present disclosure will become easily understood through the following description.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
附图用于更好地理解本方案,不构成对本公开的限定。其中:The accompanying drawings are used to better understand the present solution and do not constitute a limitation of the present disclosure.
图1是根据本公开交通量预测方法的流程图;FIG1 is a flow chart of a traffic volume prediction method according to the present disclosure;
图2是根据本公开确定第一交通量数据的流程图;FIG2 is a flow chart of determining first traffic volume data according to the present disclosure;
图3是根据本公开确定第二交通量数据的流程图;FIG3 is a flow chart of determining second traffic volume data according to the present disclosure;
图4是根据本公开构建交通量预测模型的流程图;FIG4 is a flow chart of constructing a traffic volume prediction model according to the present disclosure;
图5是根据本公开确定目标区域的预测流出数据的流程图;5 is a flow chart of determining predicted outflow data for a target area according to the present disclosure;
图6是根据本公开车流量预测方法的流程图;FIG6 is a flow chart of a vehicle flow prediction method according to the present disclosure;
图7是根据本公开道路交通量预测方法的流程图;FIG7 is a flow chart of a road traffic volume prediction method according to the present disclosure;
图8是根据本公开确定第二交通量分配优化值的流程图;8 is a flow chart of determining a second traffic volume distribution optimization value according to the present disclosure;
图9是根据本公开交通量预测装置的示意图;FIG9 is a schematic diagram of a traffic volume prediction device according to the present disclosure;
图10是根据本公开车流量预测装置的示意图;FIG10 is a schematic diagram of a vehicle flow prediction device according to the present disclosure;
图11是根据本公开道路交通量预测装置的示意图;FIG11 is a schematic diagram of a road traffic volume prediction device according to the present disclosure;
图12是用来实现本公开实施例的规划路线方法的电子设备的框图。FIG. 12 is a block diagram of an electronic device for implementing the route planning method according to an embodiment of the present disclosure.
具体实施方式DETAILED DESCRIPTION
以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。The following is a description of exemplary embodiments of the present disclosure in conjunction with the accompanying drawings, including various details of the embodiments of the present disclosure to facilitate understanding, which should be considered as merely exemplary. Therefore, it should be recognized by those of ordinary skill in the art that various changes and modifications may be made to the embodiments described herein without departing from the scope and spirit of the present disclosure. Similarly, for the sake of clarity and conciseness, descriptions of well-known functions and structures are omitted in the following description.
如图1所示,本公开涉及一种交通量预测的方法,该方法可以包括以下步骤:As shown in FIG1 , the present disclosure relates to a method for traffic volume prediction, which may include the following steps:
S101:确定目标区域的第一交通量数据;S101: Determine first traffic volume data of a target area;
S102:基于目标区域的历史相关数据,预测目标区域的第二交通量数据;历史相关数据包括影响目标区域交通量变化的数据;S102: predicting second traffic volume data of the target area based on historical relevant data of the target area; the historical relevant data includes data that affects changes in traffic volume of the target area;
S103:根据第一交通量数据和第二交通量数据,确定目标区域的交通量增长率;S103: Determine a traffic volume growth rate of the target area according to the first traffic volume data and the second traffic volume data;
S104:基于交通量增长率,确定目标区域的预测流入数据及预测流出数据。S104: Determine predicted inflow data and predicted outflow data of the target area based on the traffic volume growth rate.
本实施例提供的方案可以应用于电子设备,比如可以是服务器、电脑、平板电脑、笔记本等等。再具体来说,本实施例可以通过电子设备中的目标应用执行上述S101-S104的处理。其中,目标应用可以是根据实际情况确定的,该目标应用需要具备一定的数据处理功能。The solution provided in this embodiment can be applied to electronic devices, such as servers, computers, tablet computers, notebooks, etc. More specifically, this embodiment can perform the above-mentioned S101-S104 processing through a target application in the electronic device. Among them, the target application can be determined according to actual conditions, and the target application needs to have certain data processing functions.
目标区域可以是目标小区、目标行政区、目标城市或者在地图中以特定经纬度限定得到的区域等,此处不予限定。The target area may be a target community, a target administrative district, a target city, or an area defined by specific longitude and latitude in a map, etc., which is not limited here.
交通量是指在单位时间内,通过道路上的某一地点或者某一断面实际参与交通的参与者的双向数量。其中,交通参与者可以是行人、非机动车、机动车等。Traffic volume refers to the number of participants in the two-way traffic passing through a certain location or section on the road in a unit of time. Traffic participants can be pedestrians, non-motor vehicles, motor vehicles, etc.
第一交通量数据可以是在目标区域中选定的多个地点或者多个断面中采集的基年交通量数据。具体地,可以是目标区域在基年年份内对应的交通量数据,其中,基年可以指当前年份或者历史指定年份。以昆明市作为目标区域为例进行说明,在昆明城区外围选取多个站点作为机动车交通量数据采集点,以当前年份作为基年,将当前年份内各个站点采集得到的机动车交通量数据之和可以作为第一交通量数据。The first traffic volume data may be base year traffic volume data collected from multiple locations or multiple sections selected in the target area. Specifically, it may be the traffic volume data corresponding to the target area in the base year, wherein the base year may refer to the current year or a specified year in history. Taking Kunming as the target area as an example, multiple stations are selected as motor vehicle traffic volume data collection points in the periphery of Kunming city, and the current year is taken as the base year. The sum of the motor vehicle traffic volume data collected from each station in the current year can be used as the first traffic volume data.
第二交通量数据可以是目标区域在目标年份的交通量数据,具体可以是未来某一年份的交通量数据。其中,目标区域未来的交通量数据与社会经济发展存在明显的相关性,在预测未来交通量的过程中,以目标区域未来社会经济发展趋势为基础,可以分析得到交通出行与社会经济发展之间的关联性,以此通过预测目标区域在各个维度的经济发展指标来预测第二交通量数据。目标区域的历史相关数据可以是在基年之前与目标区域相关的经济发展数据。The second traffic volume data may be the traffic volume data of the target area in the target year, and specifically may be the traffic volume data of a certain year in the future. Among them, the future traffic volume data of the target area has an obvious correlation with social and economic development. In the process of predicting future traffic volume, based on the future social and economic development trend of the target area, the correlation between traffic travel and social and economic development can be analyzed, and the second traffic volume data can be predicted by predicting the economic development indicators of the target area in various dimensions. The historical relevant data of the target area may be the economic development data related to the target area before the base year.
根据第一交通量数据和第二交通量数据,确定目标区域的交通量增长率。具体地,可以将第二交通量数据与第一交通量的比值作为目标区域的交通量增长率。The traffic volume growth rate of the target area is determined according to the first traffic volume data and the second traffic volume data. Specifically, the ratio of the second traffic volume data to the first traffic volume data can be used as the traffic volume growth rate of the target area.
根据交通量增长率以及预先获取的目标区域在基年的交通流入数据及交通流出数据,确定目标区域的预测流入数据及预测流出数据。The predicted inflow data and predicted outflow data of the target area are determined based on the traffic volume growth rate and the pre-acquired traffic inflow data and traffic outflow data of the target area in the base year.
通过以上过程,可以通过目标区域的整体交通量数据获取目标区域的交通增长率,仅需要消耗较少的人力、物力便可以确定目标区域的预测流入数据及预测流出数据。Through the above process, the traffic growth rate of the target area can be obtained through the overall traffic volume data of the target area, and the predicted inflow data and predicted outflow data of the target area can be determined with only a small amount of manpower and material resources.
如图2所示,在一种实施方式中,S101可以包括以下子步骤:As shown in FIG. 2 , in one implementation, S101 may include the following sub-steps:
S201:获取目标区域的参照数据,参照数据包括目标区域的交调站数据、收费站数据以及手机信令数据中的至少一种;S201: Acquire reference data of a target area, where the reference data includes at least one of traffic control station data, toll station data, and mobile phone signaling data of the target area;
S202:利用目标区域的参照数据确定目标区域的第一交通量数据。S202: Determine first traffic volume data of the target area using reference data of the target area.
其中,目标区域的参照数据可以是交调站数据、收费站数据以及手机信令数据中的一种,例如,以收费站数据作为参照数据确定目标区域的第一交通量数据。目标区域的参照数据还可以是上述三种数据中的两种或者三种,此处不做赘述。The reference data of the target area may be one of traffic station data, toll station data and mobile phone signaling data. For example, the toll station data is used as reference data to determine the first traffic volume data of the target area. The reference data of the target area may also be two or three of the above three types of data, which will not be described in detail here.
交调站数据是指通过在一个或者多个位置设置交调站,进而采集该位置的交通量数据,具体可以包括采集线路、采集经纬度、车流量等。收费数据可以以高速公路收费信息记录为基础,整合得到的收费站点交通量数据;手机信令数据可以以个人携带的手机通讯设备为采集对象,通过跟踪单位时间内手机定位信号所产生的数据。Traffic station data refers to traffic volume data collected at one or more locations by setting up traffic stations, which may include collecting routes, collecting longitude and latitude, and vehicle flow, etc. Toll data can be based on highway toll information records, integrating toll station traffic volume data; mobile phone signaling data can be collected from mobile phone communication devices carried by individuals, and the data generated by tracking mobile phone positioning signals within a unit of time.
利用目标区域的参照数据确定目标区域的第一交通量数据,可以是首先利用多源交通数据进行预处理,预处理具体可以包括数据清洗、数据剔除、数据换算等。在对数据进行预处理后,依据预先确定的采集站点对多源数据进行集计处理,获取基于站点的交通量数据。最后基于手机信令数据,对各站点的交通数据进行校正。The first traffic volume data of the target area is determined by using the reference data of the target area. The multi-source traffic data may be preprocessed first. The preprocessing may include data cleaning, data elimination, data conversion, etc. After the data is preprocessed, the multi-source data is aggregated according to the predetermined collection sites to obtain the site-based traffic volume data. Finally, the traffic data of each site is corrected based on the mobile phone signaling data.
通过以上过程,基于目标区域的交调站数据、收费站数据以及手机信令数据中的至少一种来确定目标区域的第一交通量数据,数据来源可靠且精确度较高。Through the above process, the first traffic volume data of the target area is determined based on at least one of the traffic station data, toll station data and mobile phone signaling data of the target area, and the data source is reliable and has high accuracy.
如图3所示,在一种实施方式中,步骤S102可以包括以下子步骤:As shown in FIG. 3 , in one implementation, step S102 may include the following sub-steps:
S301:基于目标区域的历史相关数据,预测目标区域在目标年的相关数据;S301: predicting relevant data of the target area in a target year based on historical relevant data of the target area;
S302:将目标年的相关数据输入预先构建的交通量预测模型,得到第二交通量数据。S302: Inputting relevant data of the target year into a pre-built traffic volume prediction model to obtain second traffic volume data.
其中,目标区域的历史相关数据可以是目标区域在基年以及基年之前若干年份的历史相关数据,目标区域在目标年的相关数据可以是目标区域在未来某一年份对应的相关数据。例如,为了确定昆明市2030年(目标年)对应的相关数据,基于2001年-2020年(基年)对应的历史相关数据进行预测。The historical relevant data of the target area may be the historical relevant data of the target area in the base year and several years before the base year, and the relevant data of the target area in the target year may be the relevant data corresponding to a certain year in the future. For example, in order to determine the relevant data corresponding to Kunming in 2030 (the target year), a forecast is made based on the historical relevant data corresponding to 2001-2020 (the base year).
在一种实施方式中,历史相关数据包括目标区域的人口数据、GDP数据、公路里程数据以及旅客数据中的至少一种。In one embodiment, the historical related data includes at least one of population data, GDP data, highway mileage data, and passenger data of the target area.
举例来说,为预测目标区域在目标年的人口数据,可以采取定量与定向相结合的方法,通过对目标区域的人口进行统计分析。根据其历史发展规律,采用预设的数学模型来分析人口数据的未来发展趋势,进而确定目标区域在目标年的人口数量。For example, to predict the population data of the target area in the target year, a combination of quantitative and directional methods can be used to conduct statistical analysis on the population of the target area. According to its historical development law, a preset mathematical model is used to analyze the future development trend of the population data, and then the population of the target area in the target year is determined.
其他相关数据的预测方法与人口数据的预测方法类似,此处不再赘述。The prediction methods for other related data are similar to those for population data and will not be elaborated here.
在得到目标区域在目标年的各个相关数据后,可以基于各个相关数据确定出第二交通量数据。具体地,将目标年的相关数据分别进行标准化处理,并将标准化处理后的结果输入预先构建的交通量预测模型,得到第二交通量数据。After obtaining the relevant data of the target area in the target year, the second traffic volume data can be determined based on the relevant data. Specifically, the relevant data of the target year are standardized respectively, and the standardized results are input into the pre-built traffic volume prediction model to obtain the second traffic volume data.
通过上述过程,基于预先构建的交通量预测模型来确定目标区域的第二交通量数据,获取第二交通量数据的方式简便高效,且精确度较高。Through the above process, the second traffic volume data of the target area is determined based on the pre-built traffic volume prediction model, and the method of obtaining the second traffic volume data is simple, efficient and has high accuracy.
如图4所示,在一种实施方式中,预先交通量预测模型的构建方式,包括:As shown in FIG4 , in one embodiment, the construction method of the pre-traffic volume prediction model includes:
S401:基于目标区域的历史相关数据,提取对应的年度交通影响因子;S401: extracting corresponding annual traffic impact factors based on historical relevant data of the target area;
S402:基于年度交通影响因子以及对应的年度交通量数据进行计算,得到交通量预测模型。S402: Calculate based on the annual traffic impact factor and the corresponding annual traffic volume data to obtain a traffic volume prediction model.
具体地,对目标区域的历史相关数据进行因子分析,在较多的原始变量中提取出较少的几个年度交通影响因子。例如,可以在历史相关数据中提取目标区域的年度人口因子,年度GDP因子,年度公路里程因子等。Specifically, factor analysis is performed on the historical data of the target area to extract a few annual traffic impact factors from more original variables. For example, the annual population factor, annual GDP factor, annual highway mileage factor, etc. of the target area can be extracted from the historical data.
基于上述多个年度交通影响因子以及对应的年度交通量数据进行计算,可以是基于多个年度交通影响因子以及对应的年度交通量数据进行非线性回归得到交通量预测模型。该预测模型随着输入数据的增长,对应的交通量输出数据呈S型变化,即,在发展初期,数据或者规模增长缓慢,达到一定规模后增长趋势变缓,在发展末期输出值不再随着交通因子数值的增长而增长,达到一个稳定值。Based on the above multiple annual traffic impact factors and the corresponding annual traffic volume data, the traffic volume prediction model can be obtained by performing nonlinear regression based on multiple annual traffic impact factors and the corresponding annual traffic volume data. As the input data of the prediction model grows, the corresponding traffic volume output data shows an S-shaped change, that is, in the early stage of development, the data or scale grows slowly, and the growth trend slows down after reaching a certain scale. At the end of the development, the output value no longer grows with the growth of the traffic factor value, and reaches a stable value.
如图5所示,在一种实施方式中,步骤S104可以包括以下子步骤:As shown in FIG. 5 , in one implementation, step S104 may include the following sub-steps:
S501:确定目标区域的初始流入数据和初始流出数据;S501: Determine initial inflow data and initial outflow data of a target area;
S502:利用初始流入数据和交通量增长率,确定目标区域的预测流入数据;S502: Determine predicted inflow data for the target area using the initial inflow data and the traffic volume growth rate;
S503:利用初始流出数据和交通量增长率,确定目标区域的预测流出数据。S503: Determine the predicted outflow data of the target area using the initial outflow data and the traffic volume growth rate.
确定目标区域在基年的初始流入数据和初始流出数据,可以是根据基年OD表获取相关数据后得到,或者基于目标区域的基年交通量数据计算得到。例如,根据目标区域的收费站数据,可以确定目标区域在基年的车辆流入数据和车辆流出数据。然后可以利用交通量增长率分别确定目标区域的预测流入数据和预测流出数据。The initial inflow data and initial outflow data of the target area in the base year can be determined by obtaining relevant data from the base year OD table, or calculated based on the base year traffic volume data of the target area. For example, based on the toll station data of the target area, the vehicle inflow data and vehicle outflow data of the target area in the base year can be determined. Then, the predicted inflow data and predicted outflow data of the target area can be determined respectively using the traffic volume growth rate.
如图6所示,本公开涉及一种车流量的预测方法,该方法可以包括以下步骤:As shown in FIG6 , the present disclosure relates to a method for predicting vehicle flow, which may include the following steps:
S601:获取离开第一地点的第一车辆数据和到达第二地点的第二车辆数据;S601: Acquire first vehicle data leaving a first location and second vehicle data arriving at a second location;
S602:根据第一车辆数据和第二车辆数据,确定第一地点和第二地点之间的车流量预测初始值,车流量预测初始值包括受不同因素影响的第一车流量预测初始值和第二车流量预测初始值;S602: Determine, based on the first vehicle data and the second vehicle data, an initial value of vehicle flow prediction between the first location and the second location, wherein the initial value of vehicle flow prediction includes a first initial value of vehicle flow prediction and a second initial value of vehicle flow prediction affected by different factors;
S603:利用第一车流量预测初始值和第二车流量预测初始值中的至少一种,确定第一地点和第二地点之间的车流量预测优化值。S603: Determine an optimized value of the traffic flow prediction between the first location and the second location using at least one of the first traffic flow prediction initial value and the second traffic flow prediction initial value.
第一车辆数据包括基年离开第一地点的交通量数据以及目标年离开第一地点的交通量数据。第二车辆数据包括基年到达第二地点的交通量数据以及目标年到达第二地点的交通量数据。其中,第一车辆数据和第二车辆数据可以依据步骤S101-S104进行获取,此处不再赘述。The first vehicle data includes the traffic volume data leaving the first location in the base year and the traffic volume data leaving the first location in the target year. The second vehicle data includes the traffic volume data arriving at the second location in the base year and the traffic volume data arriving at the second location in the target year. The first vehicle data and the second vehicle data can be obtained according to steps S101-S104, which will not be repeated here.
根据第一车辆数据和第二车辆数据,确定第一地点和第二地点之间的车流量预测初始值,即从第一地点出发并到达第二地点的车流量预测初始值。According to the first vehicle data and the second vehicle data, an initial value of the predicted traffic volume between the first location and the second location is determined, that is, an initial value of the predicted traffic volume starting from the first location and arriving at the second location.
不同因素可以包括第一因素以及第二因素,其中,第一因素可以是经济、政治等影响区域发展的宏观因素。受第一因素影响的第一车流量预测初始值可以是在路网结构保持不变的情况下,综合考虑各区域经济发展及政策影响所得到的车流量预测初始值。Different factors may include a first factor and a second factor, wherein the first factor may be a macro factor such as economy and politics that affects regional development. The first vehicle flow forecast initial value affected by the first factor may be a vehicle flow forecast initial value obtained by comprehensively considering the economic development and policy impact of each region while keeping the road network structure unchanged.
第二因素可以是新建交通项目对应的交通因素,受第二因素影响的第二车流量预测初始值可以是由新增公路项目建设、增加运输供给能力影响所得到的车流量预测初始值。The second factor may be a traffic factor corresponding to a newly built traffic project, and the second traffic flow prediction initial value affected by the second factor may be a traffic flow prediction initial value obtained by the construction of a new highway project and the increase in transportation supply capacity.
利用第一车流量预测初始值和第二车流量预测初始值中的至少一种,确定第一地点和第二地点之间的车流量预测优化值,包括:Determining a traffic flow prediction optimization value between a first location and a second location using at least one of a first traffic flow prediction initial value and a second traffic flow prediction initial value includes:
可以仅利用第一车流量预测初始值或第二车流量预测初始值,确定第一地点和第二地点之间的车流量预测优化值。或者是,可以对第一车流量预测初始值和第二车流量预测初始值进行加权求和,将求和结果作为第一地点和第二地点之间的车流量预测优化值。其中,第一车流量预测初始值和第二车流量预测初始值的权重可以根据需要进行设定,例如,两个权重可以均设置为0.5,在新增公路项目的建设时间距离当前时间较远时,可以适当下调第二车流量预测初始值所占的权重,具体数值可以根据需要进行设置,此处不做限定。The optimized value of the traffic flow prediction between the first location and the second location can be determined by using only the first traffic flow prediction initial value or the second traffic flow prediction initial value. Alternatively, the first traffic flow prediction initial value and the second traffic flow prediction initial value can be weighted and summed, and the summation result can be used as the optimized value of the traffic flow prediction between the first location and the second location. The weights of the first traffic flow prediction initial value and the second traffic flow prediction initial value can be set as needed. For example, both weights can be set to 0.5. When the construction time of the new highway project is far from the current time, the weight of the second traffic flow prediction initial value can be appropriately lowered. The specific value can be set as needed and is not limited here.
在一种实施方式中,第一车流量预测初始值的确定方式,包括:In one implementation, a method for determining the first vehicle flow prediction initial value includes:
获取第一车流量初始值,第一车流量初始值为从第一地点出发到达第二地点的车流量;Obtaining a first vehicle flow initial value, where the first vehicle flow initial value is the vehicle flow starting from the first location and arriving at the second location;
利用第一车辆数据、第二车辆数据以及第一车流量初始值,确定第一车流量预测初始值。The first vehicle data, the second vehicle data and the first vehicle flow initial value are used to determine the first vehicle flow prediction initial value.
其中,第一车流量初始值可以为基年从第一地点出发到达第二地点的车流量,基年可以为2020年,2019年等,此处不做限定。Among them, the initial value of the first traffic flow can be the traffic flow from the first location to the second location in the base year. The base year can be 2020, 2019, etc., and there is no limitation here.
利用第一车辆数据、第二车辆数据以及第一车流量初始值,确定第一车流量预测初始值。具体可以利用以下公式(1)进行计算:The first vehicle data, the second vehicle data and the first vehicle flow initial value are used to determine the first vehicle flow prediction initial value. Specifically, the following formula (1) can be used for calculation:
其中,Qij表示第一车流量预测初始值,表示第一车流量初始值,Oi表示离开第i个第一地点的第一车辆数据,dj表示到达第j个第二地点的第二车辆数据,表示离开第i个第一地点的第一车辆预初始数据,表示到达第j个第二地点的第二车辆初始数据,f()表示计算式。Where, Qij represents the initial value of the first vehicle flow prediction, represents the initial value of the first vehicle flow, O i represents the first vehicle data leaving the i-th first location, d j represents the second vehicle data arriving at the j-th second location, represents the initial data of the first vehicle leaving the i-th first location, represents the initial data of the second vehicle arriving at the j-th second location, and f() represents a calculation formula.
计算式f()所依据的选用方法包括常增长系数法、平均增长系数法、底特律法、福莱特法以及福尼斯法,不同选用方法对应的表达式f()有所不同,此处不做限定。The calculation formula f() is based on selection methods including constant growth coefficient method, average growth coefficient method, Detroit method, Follett method and Furniss method. The expressions f() corresponding to different selection methods are different and are not limited here.
按照公式(1)进行计算需满足区域交通流入量和区域交通流出量守恒的约束,即:所在地区各个目标区域流入的交通总量与各个目标区域流出的交通总量是相等的,具体应符合以下约束条件:The calculation according to formula (1) must meet the conservation constraints of regional traffic inflow and regional traffic outflow, that is, the total amount of traffic flowing into each target area in the region is equal to the total amount of traffic flowing out of each target area. Specifically, the following constraints should be met:
其中,oi表示离开i地的第一车辆预测数据,dj表示到达j地的第二车辆预测数据,Q表示所在地区交通总量。Among them, o i represents the predicted data of the first vehicle leaving place i, d j represents the predicted data of the second vehicle arriving at place j, and Q represents the total traffic volume in the area.
在一种实施方式中,第二车流量预测初始值可以依据新增公路项目建成前后的通行时间进行确定。在第一车流量预测初始值不为0的情况下,利用第一车流量预测初始值和第一地点到第二地点之间的通行时间,确定第二车流量预测初始值。具体可以利用以下公式(2)进行计算:In one embodiment, the second traffic flow prediction initial value can be determined based on the travel time before and after the completion of the new highway project. When the first traffic flow prediction initial value is not 0, the second traffic flow prediction initial value is determined using the first traffic flow prediction initial value and the travel time between the first location and the second location. Specifically, the following formula (2) can be used for calculation:
其中,Qij′表示第二车流量预测初始值,Qij表示第一车流量预测初始值,tij表示从第i个第一地点到第j个第二地点的第一通行时间,tij′表示从第i个第一地点到第j个第二地点的第二通行时间,γ表示重力模型参数。Among them, Qij ′ represents the initial value of the second traffic flow prediction, Qij represents the initial value of the first traffic flow prediction, tij represents the first travel time from the i-th first location to the j-th second location, tij ′ represents the second travel time from the i-th first location to the j-th second location, and γ represents the gravity model parameter.
新增公路项目建成前后,从i地到j地的通行效率提升,通行时间缩短,即tij′<tij。tij′与tij之间的差值体现从i地到j地的通行效率的提升程度,差值越大,则吸引更多车辆选择目标区域通行,进而第二车流量预测初始值越大。Before and after the completion of the new highway project, the travel efficiency from i to j is improved and the travel time is shortened, that is, t ij ′<t ij . The difference between t ij ′ and t ij reflects the degree of improvement in the travel efficiency from i to j. The larger the difference, the more vehicles will be attracted to choose the target area to pass, and the larger the initial value of the second traffic flow prediction.
在第一车流量预测初始值为0的情况下,利用第一车辆数据、第二车辆数据和第一地点到第二地点之间的通行时间,确定第二车流量预测初始值。具体可以利用以下公式(3)进行计算:When the initial value of the first vehicle flow prediction is 0, the initial value of the second vehicle flow prediction is determined by using the first vehicle data, the second vehicle data and the travel time between the first location and the second location. Specifically, the following formula (3) can be used for calculation:
其中,Qij′表示第二车流量预测初始值,Oi表示离开第i个第一地点的第一车辆数据,dj表示到达第j个第二地点的第二车辆数据,tij表示从第i个第一地点到第j个第二地点的第一通行时间,tij′表示从第i个第一地点到第j个第二地点的第二通行时间,k,α,β,γ均表示重力模型参数。Among them, Qij ′ represents the initial value of the second vehicle flow prediction, Oi represents the first vehicle data leaving the i-th first location, dj represents the second vehicle data arriving at the j-th second location, tij represents the first travel time from the i-th first location to the j-th second location, tij ′ represents the second travel time from the i-th first location to the j-th second location, and k, α, β, and γ all represent gravity model parameters.
重力模型参数k,α,β,γ的取值可以以基年路网为基础,计算得到基年行程时间矩阵,结合基年交通数据通过回归分析得到,其中交通数据可以是第一地点及第二地点对应OD表中的数据。举例来说,回归分析得到的k,α,β,γ可以分别为1.045,0.863,0.758,和0.434,重力模型参数还可以取其他值,此处不做限定。The values of the gravity model parameters k, α, β, and γ can be obtained by calculating the base year travel time matrix based on the base year road network, and by combining the base year traffic data through regression analysis, where the traffic data can be the data in the OD table corresponding to the first location and the second location. For example, k, α, β, and γ obtained by regression analysis can be 1.045, 0.863, 0.758, and 0.434, respectively. The gravity model parameters can also take other values, which are not limited here.
如图7所示,本公开涉及一种道路交通量预测方法,该方法可以包括以下步骤:As shown in FIG. 7 , the present disclosure relates to a road traffic volume prediction method, which may include the following steps:
S701:获取N条候选道路对应的交通量初始值;候选道路为第一地点与第二地点之间的道路,N为大于等于1的整数;交通量用于表征道路上的车流量;S701: Obtaining initial traffic volume values corresponding to N candidate roads; the candidate road is a road between a first location and a second location, and N is an integer greater than or equal to 1; the traffic volume is used to characterize the traffic flow on the road;
S702:利用候选道路对应的交通量初始值,确定N条候选道路对应的第一预测通行时间,得到N个第一预测通行时间;S702: using the initial traffic volume values corresponding to the candidate roads, determining the first predicted travel times corresponding to the N candidate roads, and obtaining N first predicted travel times;
S703:利用预先获取的第一地点与第二地点之间的交通量预测值和N个第一预测通行时间,确定目标道路的第一交通量分配优化值,目标道路为N条候选道路中的第i条候选道路,i为大于等于0且小于等于N的正整数。S703: Determine the first traffic volume distribution optimization value of the target road using the traffic volume prediction value between the first location and the second location and the N first predicted travel times acquired in advance, where the target road is the i-th candidate road among the N candidate roads, where i is a positive integer greater than or equal to 0 and less than or equal to N.
其中,候选道路可以是第一地点与第二地点之间的多种出行方式中的一种或者多种,例如公路、铁路等。优选地,N条候选道路可以是第一地点与第二地点之间的多条公路,N可以取1,2,3等,此处不予限定。The candidate roads may be one or more of the multiple travel modes between the first location and the second location, such as roads, railways, etc. Preferably, the N candidate roads may be multiple roads between the first location and the second location, and N may be 1, 2, 3, etc., which is not limited here.
交通量初始值用于表征候选道路上的车流量,具体可以是单位时间内机动车的数量,例如,单位时间可以设置为1小时,1天或者1年等,此处不予限定。The initial traffic volume value is used to characterize the traffic volume on the candidate road, and specifically can be the number of motor vehicles per unit time. For example, the unit time can be set to 1 hour, 1 day or 1 year, etc., which is not limited here.
获取到的N条候选道路对应的交通量初始值得到N个交通量初始值,其中,N个交通量初始值需满足交通量均衡模型,即,N个交通量初始值之和应等于从第一地点出发并到达第二地点的交通量预测值。例如,第一地点与第二地点之间共计3条候选道路,预先获取到从第一地点出发并到达第二地点的交通量预测值为10000车次/天,在第1条候选道路的交通量初始值为300车次/天、第2条候选道路的交通量初始值为600车次/天的情况下,第3条候选道路的交通量初始值为100车次/天。The traffic volume initial values corresponding to the N candidate roads obtained are N traffic volume initial values, where the N traffic volume initial values need to satisfy the traffic volume equilibrium model, that is, the sum of the N traffic volume initial values should be equal to the traffic volume prediction value starting from the first location and arriving at the second location. For example, there are a total of 3 candidate roads between the first location and the second location, and the traffic volume prediction value starting from the first location and arriving at the second location is 10,000 vehicles/day. When the traffic volume initial value of the first candidate road is 300 vehicles/day and the traffic volume initial value of the second candidate road is 600 vehicles/day, the traffic volume initial value of the third candidate road is 100 vehicles/day.
根据每条候选道路对应的交通量初始值,可以确定每条候选道路对应的第一预测通行时间。在N条候选道路的通行能力已定的情况下,根据每条候选道路对应的交通量初始值,可以确定每条候选道路对应的第一预测通行时间。例如,3条候选道路均为双向4车道公路,基于上述3条候选道路的交通量初始值,可以计算得到3个第一预测通行时间,比如第1条候选道路的第一预测通行时间为2小时,即从第一地点出发,沿第1条候选道路到达第二地点所需的通行时间为2小时。相应地,第2条候选道路的第一预测通行时间为4小时,第3条候选道路的第一预测通行时间为0.5小时,具体通行时间可以根据不同的计算方式确定不同的结果,此处不做穷举。According to the initial value of the traffic volume corresponding to each candidate road, the first predicted travel time corresponding to each candidate road can be determined. When the capacity of N candidate roads is determined, according to the initial value of the traffic volume corresponding to each candidate road, the first predicted travel time corresponding to each candidate road can be determined. For example, all three candidate roads are two-way four-lane roads. Based on the initial values of the traffic volume of the above three candidate roads, three first predicted travel times can be calculated. For example, the first predicted travel time of the first candidate road is 2 hours, that is, starting from the first location, the travel time required to reach the second location along the first candidate road is 2 hours. Correspondingly, the first predicted travel time of the second candidate road is 4 hours, and the first predicted travel time of the third candidate road is 0.5 hours. The specific travel time can determine different results according to different calculation methods, which are not exhaustive here.
利用预先获取的第一地点与第二地点之间的交通量预测值和N个第一预测通行时间,确定目标道路的第一交通量分配优化值。具体的,可以基于第一地点与第二地点之间的交通量预测值和N个第一预测通行时间构建用户均衡模型以使得整个公路网络(N条候选道路)的总通行时间最短,基于用户均衡模型对各个候选道路的交通量进行再分配,由此得到目标道路的第一交通量分配优化值。The first traffic volume distribution optimization value of the target road is determined by using the traffic volume prediction value between the first location and the second location and the N first predicted travel times obtained in advance. Specifically, a user equilibrium model can be constructed based on the traffic volume prediction value between the first location and the second location and the N first predicted travel times to minimize the total travel time of the entire highway network (N candidate roads), and the traffic volume of each candidate road is redistributed based on the user equilibrium model, thereby obtaining the first traffic volume distribution optimization value of the target road.
在一种实施方式中,利用候选道路对应的交通量初始值,确定N条候选道路对应的第一预测通行时间,包括利用以下公式(4)进行计算:In one embodiment, the first predicted travel time corresponding to the N candidate roads is determined by using the initial traffic volume value corresponding to the candidate roads, including using the following formula (4) for calculation:
其中,t(xa)表示第a条候选道路对应的第一预测通行时间,cf表示预定条件下的第a条候选道路的车辆通行时间,xa表示第a条候选道路对应的交通量初始值,C表示第a条候选道路的通行能力,α、β表示模型参数。Wherein, t( xa ) represents the first predicted travel time corresponding to the a-th candidate road, cf represents the vehicle travel time of the a-th candidate road under predetermined conditions, xa represents the initial value of the traffic volume corresponding to the a-th candidate road, C represents the travel capacity of the a-th candidate road, and α and β represent model parameters.
其中,预定条件下的第a条候选道路的车辆通行时间,可以根据车辆按照第a条候选道路对应的限速标准行驶确定对应的通行时间,或者也可以是在道路无通行车辆的理想状况下的确定对应的通行时间,可以通过相应路段的公路运营管理部门获取,此处不予限定。Among them, the vehicle travel time of the ath candidate road under predetermined conditions can be determined based on the vehicle traveling according to the speed limit standard corresponding to the ath candidate road, or it can be determined under ideal conditions where there are no passing vehicles on the road, and can be obtained through the highway operation management department of the corresponding section, which is not limited here.
候选道路路段的通行能力与道路的车道设计数相关,例如双向四车道的公路的通行能力相比于双向六车道的公路的通行能力较弱。The capacity of the candidate road section is related to the designed number of lanes of the road. For example, the capacity of a two-way four-lane highway is weaker than that of a two-way six-lane highway.
模型的路阻参数α和β可以根据车速与通行时间的关系,对各项参数进行非线性回归后获取,不同等级的公路对应的路阻参数不同。例如,通过参数标定确定的高速公路的α=0.25,β=2.2,而二级公路的α=1.64,β=2.17。The road resistance parameters α and β of the model can be obtained by performing nonlinear regression on various parameters based on the relationship between vehicle speed and travel time. Road resistance parameters corresponding to different levels of roads are different. For example, the α of the expressway determined by parameter calibration is 0.25, β is 2.2, while the α of the secondary road is 1.64, β is 2.17.
对于选定的候选道路而言,其自由流条件下的车辆通行时间、通行能力以及路阻参数均为定值,车辆通行时间与候选道路的交通量初始值直接相关。For the selected candidate roads, the vehicle travel time, traffic capacity and road resistance parameters under free flow conditions are all fixed values, and the vehicle travel time is directly related to the initial traffic volume of the candidate roads.
在一种实施方式中,利用预先获取的第一地点与第二地点之间的交通量预测值和N个第一预测通行时间,确定目标道路的第一交通量分配优化值,包括利用以下公式(5)进行计算:In one embodiment, the first traffic volume distribution optimization value of the target road is determined by using the traffic volume prediction value between the first location and the second location and the N first predicted travel times obtained in advance, including using the following formula (5) for calculation:
其中,Z表示N条候选道路对应车辆的总体通行时间,t(xa)表示第a条候选道路对应的第一预测通行时间,xa表示第a条候选道路对应的交通量初始值,A表示N条候选道路的集合。Wherein, Z represents the total travel time of vehicles corresponding to N candidate roads, t( xa ) represents the first predicted travel time corresponding to the a-th candidate road, xa represents the initial value of the traffic volume corresponding to the a-th candidate road, and A represents the set of N candidate roads.
此时,需满足第一地点和第二地点之间车流量平衡的约束条件,即:At this time, the constraint condition of traffic flow balance between the first location and the second location must be met, namely:
其中,qω为第一地点和第二地点间的分布交通量,即从第一地点出发并到达第二地点的交通量。为第一地点和第二地点间分配到第k条路径上的交通量。Among them, qω is the distributed traffic volume between the first location and the second location, that is, the traffic volume starting from the first location and arriving at the second location. is the traffic volume allocated to the kth path between the first location and the second location.
在一种实施方式中,如图8所示,方法还包括:In one embodiment, as shown in FIG8 , the method further includes:
S801:获取第一地点与第二地点之间的新增出行方式;S801: Acquire a new travel mode between a first location and a second location;
S802:利用新增出行方式对应的第二预测通行时间,确定新增出行方式对目标道路的第一交通量分配优化值的影响数量;S802: Determine the impact of the new travel mode on the first traffic volume distribution optimization value of the target road by using the second predicted travel time corresponding to the new travel mode;
S803:利用第一交通量分配优化值和影响数量,确定目标道路的第二交通量分配优化值。S803: Determine a second traffic volume distribution optimization value of the target road by using the first traffic volume distribution optimization value and the impact quantity.
其中,新增出行方式可以是与候选道路不同的出行方式,例如,在原候选道路为公路的情况下,新增出行方式可以为铁路出行方式、航空出行方式、轮船出行方式等,此处不予限定。Among them, the newly added travel mode can be a travel mode different from the candidate road. For example, when the original candidate road is a highway, the newly added travel mode can be a railway travel mode, an air travel mode, a ship travel mode, etc., which is not limited here.
新增出行方式可以转移部分原目标道路的交通量,在确定第一交通量分配优化值的基础上,进一步根据新增出行方式对目标道路的第一交通量分配优化值的影响数量,确定目标道路的第二交通量分配优化值。具体地,影响数量的大小与新增出行方式对应的第二预测通行时间相关,第二预测通行时间越短,则影响数量越大。The newly added travel mode can transfer part of the traffic volume of the original target road. On the basis of determining the first traffic volume allocation optimization value, the second traffic volume allocation optimization value of the target road is further determined according to the impact of the newly added travel mode on the first traffic volume allocation optimization value of the target road. Specifically, the size of the impact amount is related to the second predicted travel time corresponding to the newly added travel mode. The shorter the second predicted travel time, the greater the impact amount.
在一种实施方式中,利用新增出行方式对应的第二预测通行时间,确定新增出行方式对目标道路的第一交通量分配优化值的影响数量,包括利用以下公式(6)和公式(7)进行计算:In one embodiment, the second predicted travel time corresponding to the newly added travel mode is used to determine the impact of the newly added travel mode on the first traffic volume distribution optimization value of the target road, including using the following formula (6) and formula (7) for calculation:
x′a=xa·Pijk, 公式(6)x′ a = xa · Pijk , Formula (6)
其中,x′a表示新增出行方式对第a条候选道路的第一交通量分配优化值的影响数量,xa表示第a条候选道路的第一交通量分配优化值,Pijk表示由第i个第一地点到第j个第二地点的运输方式k的转移比例,Uijk表示由第i个第一地点到第j个第二地点的运输方式k的通行时间,n为大于等于1的正整数,e为自然对数的底数。Wherein, x′a represents the impact of the new travel mode on the first traffic volume allocation optimization value of the a-th candidate road, xa represents the first traffic volume allocation optimization value of the a-th candidate road, Pijk represents the transfer ratio of transportation mode k from the i-th first location to the j-th second location, Uijk represents the travel time of transportation mode k from the i-th first location to the j-th second location, n is a positive integer greater than or equal to 1, and e is the base of the natural logarithm.
如图9所示,在另一种实施方式中,本发明还提供了一种交通量预测装置,包括:As shown in FIG9 , in another embodiment, the present invention further provides a traffic volume prediction device, comprising:
交通量数据确定模块901,用于确定目标区域的第一交通量数据;Traffic volume
预测模块902,用于基于目标区域的历史相关数据,预测目标区域的第二交通量数据;历史相关数据包括影响目标区域交通量变化的数据;A prediction module 902 is used to predict second traffic volume data of the target area based on historical relevant data of the target area; the historical relevant data includes data that affects changes in traffic volume of the target area;
增长率确定模块903,用于根据第一交通量数据和第二交通量数据,确定目标区域的交通量增长率;A growth
流入流出数据确定模块904,基于交通量增长率,确定目标区域的预测流入数据及预测流出数据。The inflow and outflow
在一种实施方式中,交通量数据确定模块,包括:In one embodiment, the traffic volume data determination module includes:
参照数据获取子模块,用于获取目标区域的参照数据,参照数据包括目标区域的交调站采集的数据、收费站采集的数据以及手机信令数据中的至少一种;A reference data acquisition submodule, used to acquire reference data of a target area, the reference data including at least one of data collected by an exchange station of the target area, data collected by a toll station, and mobile phone signaling data;
第一交通量数据确定子模块,用于利用目标区域的参照数据确定目标区域的第一交通量数据。The first traffic volume data determining submodule is used to determine the first traffic volume data of the target area by using the reference data of the target area.
在一种实施方式中,预测模块,包括:In one embodiment, the prediction module includes:
目标年相关数据确定子模块,用于基于目标区域的历史相关数据,预测目标区域在目标年的相关数据;A target year related data determination submodule is used to predict the target area's related data in the target year based on the target area's historical related data;
第二交通量数据确定子模块,用于将目标年的相关数据输入预先构建的交通量预测模型,得到第二交通量数据。The second traffic volume data determination submodule is used to input the relevant data of the target year into a pre-built traffic volume prediction model to obtain the second traffic volume data.
在一种实施方式中,交通量预测模型的构建方式,包括:In one embodiment, the traffic volume prediction model is constructed by:
基于目标区域的历史相关数据,提取对应的年度交通影响因子;Based on the historical relevant data of the target area, extract the corresponding annual traffic impact factors;
基于年度交通影响因子以及对应的年度交通量数据进行计算,得到交通量预测模型。The traffic volume prediction model is obtained by calculation based on the annual traffic impact factors and the corresponding annual traffic volume data.
在一种实施方式中,流入流出数据确定模块,包括:In one embodiment, the inflow and outflow data determination module includes:
初始数据确定模块,用于确定目标区域的初始流入数据和初始流出数据;An initial data determination module, used to determine initial inflow data and initial outflow data of a target area;
预测流入数据确定模块,用于利用初始流入数据和交通量增长率,确定目标区域的预测流入数据;A predicted inflow data determination module, for determining predicted inflow data of a target area using initial inflow data and a traffic volume growth rate;
预测流出数据确定模块,用于利用初始流出数据和交通量增长率,确定目标区域的预测流出数据。The predicted outflow data determination module is used to determine the predicted outflow data of the target area by using the initial outflow data and the traffic volume growth rate.
如图10所示,在另一种实施例中,本发明还提供了一种车流量预测装置,包括:As shown in FIG. 10 , in another embodiment, the present invention further provides a vehicle flow prediction device, comprising:
车辆数据获取模块1001,用于获取离开第一地点的第一车辆数据和到达第二地点的第二车辆数据;The vehicle
车流量预测初始值确定模块1002,用于根据第一车辆数据和第二车辆数据,确定第一地点和第二地点之间的车流量预测初始值,车流量预测初始值包括受不同因素影响的第一车流量预测初始值和第二车流量预测初始值;A vehicle flow prediction initial
车流量预测优化值确定模块1003,用于利用第一车流量预测初始值和第二车流量预测初始值中的至少一种,确定第一地点和第二地点之间的车流量预测优化值。The vehicle flow prediction optimization
在一种实施方式中,第一车流量预测初始值的确定方式,包括:In one implementation, a method for determining the first vehicle flow prediction initial value includes:
获取第一车流量初始值,第一车流量初始值为从第一地点出发到达第二地点的车流量;Obtaining a first vehicle flow initial value, where the first vehicle flow initial value is the vehicle flow starting from the first location and arriving at the second location;
利用第一车辆数据、第二车辆数据以及第一车流量初始值,确定第一车流量预测初始值。The first vehicle data, the second vehicle data and the first vehicle flow initial value are used to determine the first vehicle flow prediction initial value.
如图11所示,在另一种实施例中,本发明还提供了一种道路交通量预测装置,包括:As shown in FIG. 11 , in another embodiment, the present invention further provides a road traffic volume prediction device, comprising:
交通量初始值获取模块1101,用于获取N条候选道路对应的交通量初始值;候选道路为第一地点与第二地点之间的道路,N为大于等于1的整数;交通量用于表征道路上的车流量;The traffic volume initial
第一预测通行时间确定模块1102,用于利用候选道路对应的交通量初始值,确定N条候选道路对应的第一预测通行时间,得到N个第一预测通行时间;The first predicted travel
第一交通量分配优化值确定模块1103,用于利用预先获取的第一地点与第二地点之间的交通量预测值和N个第一预测通行时间,确定目标道路的第一交通量分配优化值,目标道路为N条候选道路中的第i条候选道路,i为大于等于0且小于等于N的正整数。The first traffic volume distribution optimization
在一种实施方式中,道路交通量预测装置还包括:In one embodiment, the road traffic volume prediction device further includes:
新增出行方式获取模块,用于获取第一地点与第二地点之间的新增出行方式;A new travel mode acquisition module is added, used to acquire a new travel mode between a first location and a second location;
影响数量确定模块,用于利用新增出行方式对应的第二预测通行时间,确定新增出行方式对目标道路的第一交通量分配优化值的影响数量;An impact quantity determination module, used to determine the impact quantity of the newly added travel mode on the first traffic volume distribution optimization value of the target road by using the second predicted travel time corresponding to the newly added travel mode;
第二交通量分配优化值确定模块,用于利用第一交通量分配优化值和影响数量,确定目标道路的第二交通量分配优化值。The second traffic volume distribution optimization value determination module is used to determine the second traffic volume distribution optimization value of the target road by using the first traffic volume distribution optimization value and the impact quantity.
根据本公开的实施例,本公开还提供了一种电子设备、一种可读存储介质和一种计算机程序产品。According to an embodiment of the present disclosure, the present disclosure also provides an electronic device, a readable storage medium, and a computer program product.
图12示出了可以用来实施本公开的实施例的示例电子设备1200的示意性框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。FIG. 12 shows a schematic block diagram of an example
如图12所示,设备1200包括计算单元1201,其可以根据存储在只读存储器(ROM)1202中的计算机程序或者从存储单元1208加载到随机访问存储器(RAM)1203中的计算机程序,来执行各种适当的动作和处理。在RAM 1203中,还可存储设备1200操作所需的各种程序和数据。计算单元1201、ROM 1202以及RAM 1203通过总线1204彼此相连。输入/输出(I/O)接口1205也连接至总线1204。As shown in FIG12 , the
设备1200中的多个部件连接至I/O接口1205,包括:输入单元1206,例如键盘、鼠标等;输出单元1207,例如各种类型的显示器、扬声器等;存储单元1208,例如磁盘、光盘等;以及通信单元1209,例如网卡、调制解调器、无线通信收发机等。通信单元1209允许设备1200通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。A number of components in the
计算单元1201可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元1201的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元1201执行上文所描述的各个方法和处理,例如预测方法。例如,在一些实施例中,预测方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元1208。在一些实施例中,计算机程序的部分或者全部可以经由ROM 1202和/或通信单元1209而被载入和/或安装到设备1200上。当计算机程序加载到RAM 1203并由计算单元1201执行时,可以执行上文描述的预测方法的一个或多个步骤。备选地,在其他实施例中,计算单元1201可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行预测方法。The
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described above herein can be implemented in digital electronic circuit systems, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips (SOCs), load programmable logic devices (CPLDs), computer hardware, firmware, software, and/or combinations thereof. These various implementations may include: being implemented in one or more computer programs that can be executed and/or interpreted on a programmable system including at least one programmable processor, which can be a special purpose or general purpose programmable processor that can receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。The program code for implementing the method of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, a special-purpose computer, or other programmable data processing device, so that the program code, when executed by the processor or controller, implements the functions/operations specified in the flow chart and/or block diagram. The program code may be executed entirely on the machine, partially on the machine, partially on the machine and partially on a remote machine as a stand-alone software package, or entirely on a remote machine or server.
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present disclosure, a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, device, or equipment. A machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium. A machine-readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or equipment, or any suitable combination of the foregoing. A more specific example of a machine-readable storage medium may include an electrical connection based on one or more lines, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。To provide interaction with a user, the systems and techniques described herein can be implemented on a computer having: a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user; and a keyboard and pointing device (e.g., a mouse or trackball) through which the user can provide input to the computer. Other types of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and input from the user can be received in any form (including acoustic input, voice input, or tactile input).
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。The systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., a user computer with a graphical user interface or a web browser through which a user can interact with implementations of the systems and techniques described herein), or a computing system that includes any combination of such back-end components, middleware components, or front-end components. The components of the system may be interconnected by any form or medium of digital data communication (e.g., a communications network). Examples of communications networks include: a local area network (LAN), a wide area network (WAN), and the Internet.
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,也可以为分布式系统的服务器,或者是结合了区块链的服务器。A computer system may include a client and a server. The client and the server are generally remote from each other and usually interact through a communication network. The relationship of client and server is generated by computer programs running on respective computers and having a client-server relationship with each other. The server may be a cloud server, a server of a distributed system, or a server combined with a blockchain.
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。It should be understood that the various forms of processes shown above can be used to reorder, add or delete steps. For example, the steps recorded in this disclosure can be executed in parallel, sequentially or in different orders, as long as the desired results of the technical solutions disclosed in this disclosure can be achieved, and this document does not limit this.
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。The above specific implementations do not constitute a limitation on the protection scope of the present disclosure. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions can be made according to design requirements and other factors. Any modification, equivalent substitution and improvement made within the spirit and principle of the present disclosure shall be included in the protection scope of the present disclosure.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111233967.0A CN116071912A (en) | 2021-10-22 | 2021-10-22 | Method and device for determining road traffic distribution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111233967.0A CN116071912A (en) | 2021-10-22 | 2021-10-22 | Method and device for determining road traffic distribution |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116071912A true CN116071912A (en) | 2023-05-05 |
Family
ID=86178880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111233967.0A Pending CN116071912A (en) | 2021-10-22 | 2021-10-22 | Method and device for determining road traffic distribution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116071912A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118314748A (en) * | 2024-04-03 | 2024-07-09 | 特微乐行(广州)技术有限公司 | Intelligent traffic scheduling and optimization method based on high-speed cloud monitoring platform |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103854072A (en) * | 2014-03-17 | 2014-06-11 | 湖南工学院 | Processing method and system for path selection |
US20150354972A1 (en) * | 2013-02-01 | 2015-12-10 | Fujitsu Limited | Travel time prediction method and travel time prediction device |
CN109118789A (en) * | 2018-08-24 | 2019-01-01 | 交通运输部规划研究院 | Highway intermodulation station multi-source data fusion method and device |
CN112381470A (en) * | 2021-01-12 | 2021-02-19 | 深圳市城市交通规划设计研究中心股份有限公司 | Intelligent agent-based traffic flow distribution method, equipment and storage medium |
CN112767688A (en) * | 2020-12-27 | 2021-05-07 | 交通运输部规划研究院 | Regional road network freight car flow distribution method based on traffic observation data |
CN113053116A (en) * | 2021-03-17 | 2021-06-29 | 长安大学 | Urban road network traffic distribution method, system, equipment and storage medium |
-
2021
- 2021-10-22 CN CN202111233967.0A patent/CN116071912A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150354972A1 (en) * | 2013-02-01 | 2015-12-10 | Fujitsu Limited | Travel time prediction method and travel time prediction device |
CN103854072A (en) * | 2014-03-17 | 2014-06-11 | 湖南工学院 | Processing method and system for path selection |
CN109118789A (en) * | 2018-08-24 | 2019-01-01 | 交通运输部规划研究院 | Highway intermodulation station multi-source data fusion method and device |
CN112767688A (en) * | 2020-12-27 | 2021-05-07 | 交通运输部规划研究院 | Regional road network freight car flow distribution method based on traffic observation data |
CN112381470A (en) * | 2021-01-12 | 2021-02-19 | 深圳市城市交通规划设计研究中心股份有限公司 | Intelligent agent-based traffic flow distribution method, equipment and storage medium |
CN113053116A (en) * | 2021-03-17 | 2021-06-29 | 长安大学 | Urban road network traffic distribution method, system, equipment and storage medium |
Non-Patent Citations (1)
Title |
---|
盖春英, 裴玉龙: "基于公路网的路段交通量预测方法研究", 公路交通科技, no. 01, 28 February 2002 (2002-02-28) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118314748A (en) * | 2024-04-03 | 2024-07-09 | 特微乐行(广州)技术有限公司 | Intelligent traffic scheduling and optimization method based on high-speed cloud monitoring platform |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110059385B (en) | A Grid Dynamics Scenario Simulation Method and Terminal Equipment for Coupled Allometric Growth | |
CN108399468A (en) | It is a kind of based on vehicle when cost optimization operation Time segments division method | |
Tu et al. | Improving ridesplitting services using optimization procedures on a shareability network: A case study of Chengdu | |
CN114330106A (en) | Urban public traffic planning method | |
Ji et al. | Estimating transit route OD flow matrices from APC data on multiple bus trips using the IPF method with an iteratively improved base: Method and empirical evaluation | |
CN114048920A (en) | Site selection layout method, device, equipment and storage medium for charging facility construction | |
CN105809280A (en) | Prediction method for airport capacity demands | |
Li et al. | Knowledge transfer and adaptation for land-use simulation with a logistic cellular automaton | |
Chen et al. | STLP-GSM: a method to predict future locations of individuals based on geotagged social media data | |
Vishnu et al. | Road transportation network hazard sustainability and resilience: Correlations and comparisons | |
CN116933946A (en) | A rail transit OD passenger flow prediction method and system based on passenger flow direction structure | |
Saha et al. | Network model for rural roadway tolling with pavement deterioration and repair | |
Ma et al. | An overview of Hadoop applications in transportation big data | |
CN104821086B (en) | Method for positioning low-efficient road section combination in large-scale traffic network | |
Kayadelen et al. | Effects of maintenance, traffic and climate condition on International Roughness Index of flexible pavement | |
CN116071912A (en) | Method and device for determining road traffic distribution | |
Lai et al. | Information entropy evaluation model of bus-line reliability considering the combination of bus stops and bus travel time | |
Huang et al. | Analysing taxi customer-search behaviour using Copula-based joint model | |
Guo et al. | Fine-grained dynamic price prediction in ride-on-demand services: Models and evaluations | |
CN118190006A (en) | Path planning method and system based on geographic information knowledge graph | |
CN115936264A (en) | Single-day engineering quantity calculation method, staged engineering quantity prediction method and prediction device | |
CN116030617A (en) | Method and device for predicting traffic flow based on road OD data | |
CN116030616A (en) | Method and device for predicting traffic volume by using big data | |
CN116030616B (en) | A method and device for predicting traffic volume using big data | |
CN116030617B (en) | A method and device for predicting traffic flow based on highway OD data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |