CN116068915B - High-fidelity distributed simulation device and method for spacecraft GNC system - Google Patents
High-fidelity distributed simulation device and method for spacecraft GNC system Download PDFInfo
- Publication number
- CN116068915B CN116068915B CN202310212685.5A CN202310212685A CN116068915B CN 116068915 B CN116068915 B CN 116068915B CN 202310212685 A CN202310212685 A CN 202310212685A CN 116068915 B CN116068915 B CN 116068915B
- Authority
- CN
- China
- Prior art keywords
- simulation
- real
- simulated
- module
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 214
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000033001 locomotion Effects 0.000 claims abstract description 60
- 238000005259 measurement Methods 0.000 claims abstract description 41
- 238000012544 monitoring process Methods 0.000 claims abstract description 25
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 11
- 230000000007 visual effect Effects 0.000 claims description 25
- 238000013519 translation Methods 0.000 claims description 22
- 238000004891 communication Methods 0.000 claims description 16
- 230000007246 mechanism Effects 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 8
- 238000007667 floating Methods 0.000 claims description 5
- 239000000835 fiber Substances 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims 2
- 238000013459 approach Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 238000007726 management method Methods 0.000 description 11
- 239000013307 optical fiber Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域technical field
本发明涉及航天器地面仿真技术领域,特别涉及一种航天器GNC系统高仿真度分布式仿真装置与方法。The invention relates to the technical field of spacecraft ground simulation, in particular to a high-fidelity distributed simulation device and method for a spacecraft GNC system.
背景技术Background technique
航天工业是一项高风险、高投入、高产出的技术密集型工业,是一个国家综合实力的重要体现。由于航天器的研发周期长、成本高、工艺复杂,对于航天器位姿控制的现实成本极高且不可重复,因此必须采取航天器地面仿真技术对于航天器位姿控制问题进行分析研究。航天器地面仿真系统对于提高航天器的可靠性、降低成本和风险具有重要的意义。The aerospace industry is a high-risk, high-input, high-output technology-intensive industry and an important manifestation of a country's comprehensive strength. Due to the long development cycle, high cost, and complex process of spacecraft, the actual cost of spacecraft pose control is extremely high and cannot be repeated. Therefore, it is necessary to use spacecraft ground simulation technology to analyze and study the problem of spacecraft pose control. The spacecraft ground simulation system is of great significance to improve the reliability of the spacecraft and reduce the cost and risk.
而目前现有的航天器姿轨控系统地面仿真系统大都存在数据仿真位姿信息不直观、物理仿真无法模拟平动的三个自由度,进而仿真效果不佳的问题,具体如下:At present, most of the existing ground simulation systems of spacecraft attitude and orbit control systems have the problems that the data simulation pose information is not intuitive, and the physical simulation cannot simulate the three degrees of freedom of translation, and the simulation effect is not good. The details are as follows:
何朝斌在《空间飞行器姿轨控系统地面仿真验证方法研究》中提出了一种具有十二自由度的依赖于某卫星的任务需求而提出的姿轨控试验地面仿真验证系统,给出了地面仿真系统由动力学仿真与GNC系统、运动系统、测量系统、监控综合系统四个子系统组成及各主要子系统的功能,并根据具体任务的不同,设计了相应的地面仿真验证试验方案,也针对深空探测等具有较长的运行周期的问题,为降低仿真时间,提高仿真的效率,研究了基于时间缩比的半物理仿真系统超实时仿真方案。但该方案中的动力学仿真与GNC系统的动力学仿真,是根据GNC输出的控制力矩进行动力学解算的,得出的位姿信息为单纯的数字仿真,相比于物理仿真,不够贴近实际系统,同时卫星的位姿信息只能以曲线图的形式从监控综合系统中看到,并不够直观。He Chaobin proposed a ground simulation verification system for attitude and orbit control tests with 12 degrees of freedom that depends on the mission requirements of a satellite in "Study on Ground Simulation and Verification Method for Space Vehicle Attitude and Orbit Control System". The system consists of four subsystems including dynamic simulation and GNC system, motion system, measurement system, and integrated monitoring system, and the functions of each main subsystem. According to different specific tasks, the corresponding ground simulation verification test plan is designed, and it is also aimed at deep In order to reduce the simulation time and improve the efficiency of the simulation, the ultra-real-time simulation scheme of the semi-physical simulation system based on time scaling is studied. However, the dynamics simulation in this scheme and the dynamics simulation of the GNC system are calculated based on the control torque output by the GNC, and the obtained pose information is a pure digital simulation, which is not close enough to the physical simulation. In the actual system, at the same time, the position and attitude information of the satellite can only be seen from the integrated monitoring system in the form of a graph, which is not intuitive enough.
发明名称为基于多自由度运动模拟器的多航天器姿轨控地面全物理仿真系统(申请号为CN202210259531.7),该系统包括多自由度双星伴飞模拟器、台上姿轨控制系统、相对导航系统、无线数据通信系统、视景演示系统和地面综合监控系统,采用两台哑铃型气浮台模拟追踪星和目标星的姿态运动,从而实现平面两个自由度和姿态三个自由度的运动模拟,能够达到高精度仿真的目的,为小卫星伴飞控制方案验证提供了可靠的平台。但该仿真方法无法实现沿高度方向的平动模拟。The title of the invention is a multi-spacecraft attitude and orbit control ground full physical simulation system based on a multi-degree-of-freedom motion simulator (application number is CN202210259531.7). Compared with the navigation system, wireless data communication system, visual presentation system and ground integrated monitoring system, two dumbbell-shaped air bearing platforms are used to simulate the attitude movement of the tracking star and the target star, so as to realize two degrees of freedom in the plane and three degrees of freedom in the attitude The motion simulation can achieve the purpose of high-precision simulation and provide a reliable platform for the verification of small satellite companion flight control scheme. However, this simulation method cannot realize the translational simulation along the height direction.
发明名称为基于增强现实的航天器地面模拟仿真方法(申请号为:CN201611037572.2),该方案中的地面全物理模拟系统由三轴气浮台,以及设置在三轴气浮台上的星载计算机、敏感器、执行器和挠性模拟器组成,能物理模拟卫星姿态的三个自由度,且在仿真的同时能够看到航天器实际运动的场景,并且实现分布式全物理仿真,提高挠性的模拟程度,扩大所模拟的振型的范围,提高所模拟的频率的范围。但该仿真方法无法模拟平动的三个自由度。The title of the invention is augmented reality-based spacecraft ground simulation method (application number: CN201611037572.2). Composed of on-board computer, sensor, actuator and flexible simulator, it can physically simulate the three degrees of freedom of the satellite attitude, and can see the actual movement scene of the spacecraft while simulating, and realize distributed full-physics simulation, improving The simulation degree of flexibility expands the range of simulated mode shapes and increases the range of simulated frequencies. However, this simulation method cannot simulate the three degrees of freedom of translation.
因此,亟待一种可以仿真卫星的六自由度运动的仿真方法。Therefore, there is an urgent need for a simulation method that can simulate the six-degree-of-freedom motion of the satellite.
发明内容Contents of the invention
本发明提供了一种航天器GNC系统高仿真度分布式仿真装置与方法,以用于解决现有的航天器姿轨控系统地面仿真系统大都存在数据仿真位姿信息不直观、半物理仿真不贴近事实情况,全物理仿真大多数都不能仿真完全六个自由度,进而仿真效果不佳的技术问题。The invention provides a high-fidelity distributed simulation device and method of a spacecraft GNC system, which is used to solve the problem that most of the existing ground simulation systems of spacecraft attitude and orbit control systems have data simulation pose information that is not intuitive, and semi-physical simulation is not intuitive. Close to the facts, most of the full physical simulations cannot simulate all six degrees of freedom, and thus the technical problems of poor simulation results.
本发明一方面实施例提供一种航天器GNC系统高仿真度分布式仿真装置,包括:测量系统、GNC系统、姿态动力学全物理仿真系统、轨道动力学数字仿真系统、运动系统、综合监控系统和VR/MR视觉模拟系统,其中,待仿真卫星设备安装在所述运动系统上,其中,所述运动系统包括平动模块和转动模块,所述待仿真卫星设备安装在所述转动模块上,所述转动模块安装在所述平动模块上;所述测量系统分别与所述待仿真卫星设备和所述GNC系统连接;所述GNC系统与所述姿态动力学全物理仿真系统和所述轨道动力学数字仿真系统连接;所述姿态动力学全物理仿真系统和所述轨道动力学数字仿真系统均与所述运动系统连接;所述综合监控系统分别与所述测量系统、所述轨道动力学数字仿真系统、所述运动系统和VR/MR视觉模拟系统连接;所述测量系统用于获取所述待仿真卫星设备的实时位姿值,与预设卫星位姿值作差得到偏差值,并将所述偏差值作为所述GNC系统的输入;所述GNC系统用于根据控制算法处理所述偏差值,得到控制力与控制力矩,并将所述控制力矩作为所述姿态动力学全物理仿真系统的输入,将所述控制力作为所述轨道动力学数字仿真系统的输入;所述姿态动力学全物理仿真系统用于根据所述控制力矩进行自由转动,以测得所述待仿真卫星设备的实时姿态信息,并将所述实时姿态信息传递给所述运动系统;所述轨道动力学数字仿真系统用于处理所述控制力获得所述待仿真卫星设备的实时位置信息,并将所述实时位置信息传递给所述运动系统;所述运动系统用于根据所述实时位置信息进行三个自由度的平动,根据所述实时姿态信息模拟所述待仿真卫星设备的俯仰、偏航、滚转三个自由度的转动;所述综合监控系统用于接收和显示所述姿态动力学全物理仿真系统、所述轨道动力学数字仿真系统、所述运动系统和所述VR/MR视觉模拟系统的当前位姿与状态信息,并为所述VR/MR视觉模拟系统提供所述实时姿态信息和所述实时位置信息;所述VR/MR视觉模拟系统用于根据所述实时姿态信息和所述实时位置信息模拟并显示所述待仿真卫星设备对应的实时三维模型。An embodiment of the present invention provides a high-fidelity distributed simulation device for a spacecraft GNC system, including: a measurement system, a GNC system, a full physical simulation system for attitude dynamics, a digital simulation system for orbital dynamics, a motion system, and an integrated monitoring system. and a VR/MR visual simulation system, wherein the satellite equipment to be simulated is installed on the motion system, wherein the motion system includes a translation module and a rotation module, and the satellite equipment to be simulated is installed on the rotation module, The rotation module is installed on the translation module; the measurement system is respectively connected with the satellite equipment to be simulated and the GNC system; the GNC system is connected with the attitude dynamics full physical simulation system and the orbit The dynamics digital simulation system is connected; the full physical simulation system of the attitude dynamics and the orbital dynamics digital simulation system are connected with the motion system; the integrated monitoring system is respectively connected with the measurement system and the orbital dynamics The digital simulation system, the motion system and the VR/MR visual simulation system are connected; the measurement system is used to obtain the real-time pose value of the satellite equipment to be simulated, and make a difference with the preset satellite pose value to obtain a deviation value, and Using the deviation value as the input of the GNC system; the GNC system is used to process the deviation value according to the control algorithm to obtain the control force and the control torque, and use the control torque as the full physical simulation of the attitude dynamics The input of the system, the control force is used as the input of the digital simulation system of orbital dynamics; the full physical simulation system of attitude dynamics is used to freely rotate according to the control torque, so as to measure the satellite equipment to be simulated real-time attitude information, and transmit the real-time attitude information to the motion system; the orbital dynamics digital simulation system is used to process the control force to obtain the real-time position information of the satellite equipment to be simulated, and transmit the The real-time position information is transmitted to the motion system; the motion system is used to perform three-degree-of-freedom translation according to the real-time position information, and simulate the pitch, yaw, Rotation of three degrees of freedom of rolling; the integrated monitoring system is used to receive and display the full physical simulation system of attitude dynamics, the digital simulation system of orbital dynamics, the motion system and the VR/MR visual simulation The current pose and state information of the system, and provide the real-time pose information and the real-time position information for the VR/MR visual simulation system; the VR/MR visual simulation system is used to The real-time position information is used to simulate and display the real-time three-dimensional model corresponding to the satellite equipment to be simulated.
进一步地,在本发明的一个实施例中,所述测量系统采用惯导设备或视觉测量获取所述待仿真卫星设备的实时位姿值。Further, in an embodiment of the present invention, the measurement system acquires the real-time pose value of the satellite device to be simulated by using inertial navigation equipment or visual measurement.
进一步地,在本发明的一个实施例中,所述平动模块利用沿三轴方向正交安装的直线导轨机械结构,以及根据所述待仿真卫星设备的实时位置信息进行三个自由度的平动,以仿真所述待仿真卫星设备的相对平动。Further, in an embodiment of the present invention, the translation module uses a linear guide mechanical structure installed orthogonally along the three axes, and performs three-degree-of-freedom translation according to the real-time position information of the satellite equipment to be simulated. to simulate the relative translation of the satellite equipment to be simulated.
进一步地,在本发明的一个实施例中,所述转动模块根据所述待仿真卫星设备的实时姿态信息模拟所述待仿真卫星设备的俯仰、偏航、滚转三个自由度的转动。Further, in an embodiment of the present invention, the rotation module simulates the rotation of the three degrees of freedom of the satellite device to be simulated in pitch, yaw and roll according to the real-time attitude information of the satellite device to be simulated.
进一步地,在本发明的一个实施例中,所述VR/MR视觉模拟系统通过VR/MR设备显示所述待仿真卫星设备对应的实时三维模型。Further, in an embodiment of the present invention, the VR/MR visual simulation system displays a real-time three-dimensional model corresponding to the satellite device to be simulated through a VR/MR device.
进一步地,在本发明的一个实施例中,所述测量系统、所述GNC系统、所述姿态动力学全物理仿真系统、所述轨道动力学数字仿真系统、所述运动系统、所述综合监控系统和所述VR/MR视觉模拟系统彼此之间均采用光纤反射内存卡组成的光纤网络进行通信。Further, in one embodiment of the present invention, the measurement system, the GNC system, the full physical simulation system for attitude dynamics, the digital simulation system for orbital dynamics, the motion system, and the comprehensive monitoring Both the system and the VR/MR visual simulation system communicate with each other through an optical fiber network composed of optical fiber reflection memory cards.
进一步地,在本发明的一个实施例中,所述姿态动力学全物理仿真系统包括三轴气浮台、执行机构模块、姿态测量模块、平衡调整模块、通讯模块、管理控制模块和电源模块,其中,Further, in one embodiment of the present invention, the attitude dynamics full-physics simulation system includes a three-axis air bearing platform, an actuator module, an attitude measurement module, a balance adjustment module, a communication module, a management control module and a power supply module, in,
所述三轴气浮台包括气浮球轴承和仪表平台,用于利用所述气浮球轴承将所述仪表平台浮起,并能够绕三轴实现趋近无摩擦的自由转动;The three-axis air-bearing table includes an air-floating ball bearing and an instrument platform, which is used to float the instrument platform by using the air-floating ball bearing, and can realize free rotation around three axes without friction;
所述执行机构模块包括飞轮机构和喷气机构,安装在所述仪表平台上,用于调节所述三轴气浮台的姿态;The actuator module includes a flywheel mechanism and an air injection mechanism, which are installed on the instrument platform and are used to adjust the attitude of the three-axis air bearing platform;
所述姿态测量模块,用于利用光纤陀螺对所述三轴气浮台的姿态角和角速度进行实时测量,以获得所述实时姿态信息;The attitude measurement module is used to use a fiber optic gyroscope to measure the attitude angle and angular velocity of the three-axis air bearing table in real time, so as to obtain the real-time attitude information;
所述平衡调整模块,用于对所述三轴气浮台的质心与转动惯量调整;The balance adjustment module is used to adjust the center of mass and moment of inertia of the three-axis air bearing table;
所述管理控制模块,用于根据所述通讯模块接收的控制力矩控制所述执行机构模块施加相应的力矩,并通过所述通讯模块向所述运动系统发送所述实时姿态信息;The management control module is used to control the actuator module to apply a corresponding torque according to the control torque received by the communication module, and send the real-time posture information to the motion system through the communication module;
所述电源模块,用于为所述三轴气浮台、所述执行机构模块、所述姿态测量模块、所述平衡调整模块、所述通讯模块和所述管理控制模块供电。The power supply module is used to supply power to the three-axis air bearing platform, the actuator module, the attitude measurement module, the balance adjustment module, the communication module and the management control module.
本发明另一方面实施例提供一种航天器GNC系统高仿真度分布式仿真方法,包括:Another embodiment of the present invention provides a high-fidelity distributed simulation method for a spacecraft GNC system, including:
步骤S1,将所述待仿真卫星设备安装在所述转动模块上,启动所述航天器GNC系统高仿真度分布式仿真装置,并保证每个系统正常运行且时间一致;Step S1, install the satellite equipment to be simulated on the rotating module, start the high-fidelity distributed simulation device of the spacecraft GNC system, and ensure that each system is running normally and the time is consistent;
步骤S2,利用所述测量系统测量安装在所述转动模块上的待仿真卫星设备的当前位姿值,并与所述待仿真卫星设备的预设卫星位姿值作差,将得到偏差值输入至所述GNC系统中;Step S2, use the measurement system to measure the current pose value of the satellite device to be simulated installed on the rotating module, and make a difference with the preset satellite pose value of the satellite device to be simulated, and input the deviation value into the GNC system;
步骤S3,使所述GNC系统接收所述偏差值,根据控制算法计算控制力矩和控制力,将所述控制力矩和所述控制力分别输入至所述姿态动力学全物理仿真系统和所述轨道动力学数字仿真系统中;Step S3, make the GNC system receive the deviation value, calculate the control torque and control force according to the control algorithm, and input the control torque and the control force into the attitude dynamics full physical simulation system and the track respectively In the dynamic digital simulation system;
步骤S4,使所述姿态动力学全物理仿真系统接收所述控制力矩,通过所述飞轮机构和所述喷气机构对所述三轴气浮台施加对应的控制力矩,通过所述光纤陀螺测量所述三轴气浮台的姿态角和角速度,以求解所述实时姿态信息,并将其输入至所述运动系统中;Step S4, make the attitude dynamics full-physics simulation system receive the control torque, apply the corresponding control torque to the three-axis air bearing platform through the flywheel mechanism and the air jet mechanism, and measure the Attitude angle and angular velocity of the three-axis air bearing platform to solve the real-time attitude information and input it into the motion system;
步骤S5,使所述轨道动力学数字仿真系统接收并处理所述控制力,求得所述待仿真卫星设备的实时位置信息,并将其输入至所述运动系统;Step S5, making the orbit dynamics digital simulation system receive and process the control force, obtain the real-time position information of the satellite equipment to be simulated, and input it into the motion system;
步骤S6,使所述运动系统接收所述实时姿态信息和所述实时位置信息,并根据所述实时姿态信息和所述实时位置信息使所述待仿真卫星设备进行平动和转动达到预设位置和预设姿态;Step S6, making the motion system receive the real-time attitude information and the real-time position information, and make the satellite equipment to be simulated perform translation and rotation to reach a preset position according to the real-time attitude information and the real-time position information and preset posture;
步骤S7,更新所述待仿真卫星设备的实时位姿值;Step S7, updating the real-time pose value of the satellite device to be simulated;
步骤S8,利用所述综合监控系统接收所述测量系统、所述姿态动力学全物理仿真系统、所述轨道动力学数字仿真系统和所述运动系统的当前位姿与状态信息,并将其以曲线图的形式展示;Step S8, using the integrated monitoring system to receive the current pose and state information of the measurement system, the attitude dynamics full-physics simulation system, the orbit dynamics digital simulation system and the motion system, and convert them to Display in the form of a graph;
步骤S9,利用所述VR/MR视觉模拟系统接收所述实时姿态信息和所述实时位置信息,以构建所述待仿真卫星设备对应的实时三维模型;Step S9, using the VR/MR visual simulation system to receive the real-time attitude information and the real-time position information to construct a real-time three-dimensional model corresponding to the satellite equipment to be simulated;
步骤S10,迭代执行所述步骤S2至所述步骤S9,直到仿真结束,将所述航天器GNC系统高仿真度分布式仿真装置关机,所述待仿真卫星设备归位。Step S10, iteratively execute the step S2 to the step S9 until the simulation ends, shut down the high-fidelity distributed simulation device of the spacecraft GNC system, and return the satellite equipment to be simulated.
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and easy to understand from the following description of the embodiments in conjunction with the accompanying drawings, wherein:
图1为根据本发明一个实施例的航天器GNC系统高仿真度分布式仿真装置的结构示意图;Fig. 1 is a schematic structural diagram of a high-fidelity distributed simulation device for a spacecraft GNC system according to an embodiment of the present invention;
图2为根据本发明一个实施例的姿态动力学全物理仿真系统的结构示意图;Fig. 2 is a structural schematic diagram of an attitude dynamics full-physics simulation system according to an embodiment of the present invention;
图3为根据本发明一个实施例的VR/MR视觉模拟系统的结构示意图;FIG. 3 is a schematic structural diagram of a VR/MR visual simulation system according to an embodiment of the present invention;
图4为根据本发明一个实施例的航天器GNC系统高仿真度分布式仿真方法的流程图。FIG. 4 is a flow chart of a distributed simulation method for a high-fidelity GNC system of a spacecraft according to an embodiment of the present invention.
附图标记说明:Explanation of reference signs:
10-航天器GNC系统高仿真度分布式仿真装置、100-测量系统、200-GNC系统、300-姿态动力学全物理仿真系统、301-三轴气浮台、302-执行机构模块、303-姿态测量模块、304-平衡调整模块、305-通讯模块、306-管理控制模块、307-电源模块、400-轨道动力学数字仿真系统、500-运动系统、600-综合监控系统、700-VR/MR视觉模拟系统、701-观摩模块、7011-显示单元、7012-文件管理单元、7013-数据传输单元和702-云端储存器。10-Spacecraft GNC system high-fidelity distributed simulation device, 100-Measurement system, 200-GNC system, 300-Attitude dynamics full physical simulation system, 301-Three-axis air bearing platform, 302-Actuator module, 303- Attitude measurement module, 304-balance adjustment module, 305-communication module, 306-management control module, 307-power supply module, 400-track dynamics digital simulation system, 500-motion system, 600-integrated monitoring system, 700-VR/ MR visual simulation system, 701-observation module, 7011-display unit, 7012-file management unit, 7013-data transmission unit and 702-cloud storage.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary and are intended to explain the present invention and should not be construed as limiting the present invention.
下面参照附图描述根据本发明实施例提出的航天器GNC系统高仿真度分布式仿真装置及方法,首先将参照附图描述根据本发明实施例提出的航天器GNC系统高仿真度分布式仿真装置。The following describes the high-fidelity distributed simulation device and method for the spacecraft GNC system proposed according to the embodiments of the present invention with reference to the accompanying drawings. First, the high-fidelity distributed simulation device for the spacecraft GNC system proposed according to the embodiments of the present invention will be described with reference to the accompanying drawings .
图1是本发明一个实施例的航天器GNC系统高仿真度分布式仿真装置的结构示意图。FIG. 1 is a schematic structural diagram of a high-fidelity distributed simulation device for a spacecraft GNC system according to an embodiment of the present invention.
如图1所示,该航天器GNC系统高仿真度分布式仿真装置10包括:测量系统100、GNC系统200、姿态动力学全物理仿真系统300、轨道动力学数字仿真系统400、运动系统500、综合监控系统600和VR/MR视觉模拟系统700。As shown in FIG. 1 , the high-fidelity distributed
其中,待仿真卫星设备安装在运动系统500上,其中,运动系统500包括平动模块和转动模块,待仿真卫星设备安装在转动模块上,转动模块安装在平动模块上;测量系统100分别与待仿真卫星设备和GNC系统200连接;GNC系统200与姿态动力学全物理仿真系统300和轨道动力学数字仿真系统400连接,姿态动力学全物理仿真系统300和轨道动力学数字仿真系统400均与运动系统500连接;综合监控系统600分别与测量系统100、轨道动力学数字仿真系统400、运动系统500和VR/MR视觉模拟系统700连接。Wherein, the satellite equipment to be simulated is installed on the
进一步地,在本发明的一个实施例中,测量系统100采用惯导设备或视觉测量获取待仿真卫星设备的实时位姿值,并与预设卫星位姿值作差得到偏差值,将偏差值作为GNC系统200的输入,构成闭环控制系统。Further, in one embodiment of the present invention, the
具体地,测量系统100采用惯导设备或视觉测量对安装在转台上的卫星设备的位姿进行测量,并与预设卫星位姿值作差送至GNC系统200,使其作为GNC系统200的输入,构成闭环控制系统,同时将偏差值送至综合监控系统600将偏差值显示在监控界面上,实现实时可视化。Specifically, the
进一步地,在本发明的一个实施例中,GNC系统200用于根据控制算法处理偏差值,得到控制力与控制力矩,并分别将控制力矩作为姿态动力学全物理仿真系统300的输入,将控制力作为轨道动力学数字仿真系统400的输入。Further, in an embodiment of the present invention, the
具体地,GNC系统200即卫星的制导(Guidance)、导航(Navigation)与控制(Control)系统,负责具体的导航、制导与控制计算,接收测量系统100测量到的卫星当前位姿与卫预设卫星位姿值之间的偏差值作为输入,根据控制算法计算控制力和控制力矩,并输出控制力矩作为姿态动力学全物理仿真系统的输入,输出控制力作为轨道动力学数字仿真系统的输入。Specifically, the
进一步地,在本发明的一个实施例中,姿态动力学全物理仿真系300统包括三轴气浮台301、执行机构模块302、姿态测量模块303、平衡调整模块304、通讯模块305、管理控制模块306和电源模块307。Further, in one embodiment of the present invention, the attitude dynamics full
具体地,如图2所示,三轴气浮台301包括气浮球轴承和仪表平台,利用气浮球轴承将仪表平台浮起,并使得仪表平台能够绕三轴实现趋近无摩擦的自由转动;执行机构模块302采用“飞轮+喷气推力器”的组合方案,即包括飞轮机构和喷气机构,两种执行机构相结合安装在仪表平台上,作为气浮台姿态调节的执行器;姿态测量模块303利用高精度光纤陀螺对三轴气浮台进行姿态角和角速度实时测量,以获得实时姿态信息;平衡调整模块304主要用于对三轴气浮台的质心与转动惯量调整,并配有转动惯量测量模块,以实现全物理仿真系统对于卫星质量特性的模拟;管理控制模块306作为姿态动力学全物理仿真系统300的控制单元,用于根据通讯模块305接收的GNC系统200输出的控制力矩控制执行机构模块302施加相应的力矩,并通过通讯模块305向运动系统500发送姿态测量模块303测量到的实时姿态信息;电源模块307用于为三轴气浮台301、执行机构模块302、姿态测量模块303、平衡调整模块304、通讯模块305和管理控制模块306供电。Specifically, as shown in Figure 2, the three-axis air bearing table 301 includes an air-floating ball bearing and an instrument platform, and uses the air-floating ball bearing to float the instrument platform, and enables the instrument platform to achieve near-frictionless freedom around three axes. Rotation; the
进一步地,在本发明的一个实施例中,轨道动力学数字仿真系统400用于处理控制力获得待仿真卫星设备的实时位置信息,并将实时位置信息传递给运动系统。Further, in one embodiment of the present invention, the orbital dynamics
具体地,轨道动力学数字仿真系统400为单纯的数字模拟系统,其接收GNC系统200输出的控制力作为输入,计算出卫星的实时位置信息,作为输出传递给运动系统500。Specifically, the orbit dynamics
进一步地,在本发明的一个实施例中,运动系统500中的平动模块为一平动的平台,通过沿三轴方向正交安装的直线导轨机械结构,根据实时位置信息进行三个自由度的平动,以仿真待仿真卫星设备的相对平动;转动模块为一三轴转台,其根据实时姿态信息模拟待仿真卫星设备的俯仰、偏航、滚转三个自由度的转动;三轴转台安装在平动平台上,使安装在转台上的设备可以做沿X、Y、Z三个方向平动,俯仰、偏航、滚转三个方向的转动,总计六自由度的运动。运动系统500接收姿态动力学全物理仿真系统300和轨道动力学数字仿真系统400输出的实时姿态信息和实时位置信息作为输入,并根据输入使安装在转台上的待仿真卫星设备运动到指定的位置和姿态。Further, in one embodiment of the present invention, the translation module in the
进一步地,在本发明的一个实施例中,综合监控系统600用于显示各系统的当前位姿与状态信息,并为VR/MR视觉模拟系统提供待仿真卫星设备的实时姿态信息和实时位置信息。Further, in one embodiment of the present invention, the
具体地,综合监控系统600负责为用户显示各分系统的当前位姿与状态信息,具体地,显示姿态动力学全物理仿真系统300、轨道动力学数字仿真系统400、VR/MR视觉模拟系统700和运动系统500的当前状态信息,以及运动系统500、姿态动力学全物理仿真系统300和轨道动力学数字仿真系统400获得的实时位姿值、实时姿态信息和实时位置信息,以为用户提供一个对各子系统进行直接操作的渠道,并为VR/MR视觉模拟系统提供卫星的位姿信息,还具有运行保护,错误处理等功能。Specifically, the
进一步地,在本发明的一个实施例中,VR/MR视觉模拟系统700用于接收待仿真卫星设备的实时姿态信息和实时位置信息,通过VR/MR设备显示待仿真卫星设备对应的实时三维模型。Further, in one embodiment of the present invention, the VR/MR
具体地,VR/MR视觉模拟系统700其接收综合监控系统600提供的待仿真卫星设备的实时姿态信息和实时位置信息,通过VR或MR设备在用户眼前显示一个包含卫星、地球、背景星空等的三维模型,卫星模型的位置与姿态都与接收到的待仿真卫星设备的实时姿态信息和实时位置信息相同,可以使用户更加直接地观察到卫星的控制效果,该功能可以用于现场试验和观摩与远程观摩中。Specifically, the VR/MR
进一步地,如图3所示,VR/MR视觉模拟系统700由与若干的观摩模块701和云端储存器702组成,观摩模块701由显示单元7011、文件管理单元7012和数据传输单元7013构成,观摩模块701与云端储存器702之间通过互联网相互连接。其中,对于单个观摩模块701而言,根据单个用户的需求可选择基于VR头显或基于MR头显,当针对于多个观摩模块701来说,可以根据多个用户的不同需求有均采用基于VR头显或均采用基于MR头显或基于VR头显和基于MR头显组合使用的三种方案,VR头显方案更适用于远程观摩,MR头显方案更适用于现场试验和观摩,在显示卫星运行画面的同时也能观测到实际地面仿真设备的运行情况。观摩模块701中的显示单元7011、文件管理单元7012和数据传输单元7013则以程序的形式运行在对应的VR/MR设备上,显示单元7011用于根据获取的模拟卫星实时姿轨数据显示3D的卫星运行画面;文件管理单元7012用于在VR/MR设备的储存空间中保存生成的卫星运行模拟3D动画,以便于后续重复观看;数据传输单元7013用于通过互联网从云端储存器读取实时的模拟卫星姿轨数据。Further, as shown in FIG. 3 , the VR/MR
进一步地,在本发明的一个实施例中,测量系统100、GNC系统200、姿态动力学全物理仿真系统300、轨道动力学数字仿真系统400、运动系统500、综合监控系统600和VR/MR视觉模拟系统700彼此之间均采用光纤反射内存卡组成的光纤网络进行通信。Further, in one embodiment of the present invention,
具体地,姿态动力学全物理仿真系统300为全物理仿真部分,其余系统为半物理仿真部分,本发明实施例为全物理仿真与半物理仿真相结合的地面仿真实验设备。在实际情况中,全物理仿真部分和半物理仿真部分的仪器可以不位于同一实验场地内,甚至之间可能存在较大的空间间隔,为了避免长距离通讯带来的延迟对系统的时统性造成影响,以及在硬实时条件下,保证大数据量通信,本发明实施例在各系统之间采用光纤反射内存卡组成光纤网络,用于数据交互与指令控制。Specifically, the attitude dynamics full-
除地面仿真系统通常具备的在地面以较低成本检查卫星设备运行情况与验证卫星控制算法效果的功能外,还可以接收实际在轨卫星的姿态与轨道数据,根据实际数据对本发明实施例的各系统参数进行校正,使得本发明实施例能够在地面对实际在轨卫星的轨道与姿态进行高度近似的仿真。在在轨卫星数据准确可靠,本发明实施例各系统的精确度良好的情况下,可将经校正的本地面仿真系统看做实际在轨卫星的地面备份。在在轨卫星发生运行出现故障、发回数据出现异常、离开观测区等情况时,可利用对应的地面仿真系统进行故障排除、异常再现、轨道姿态估计。In addition to the functions of checking the operation of satellite equipment and verifying the effect of satellite control algorithms on the ground at a relatively low cost that the ground simulation system usually possesses, it can also receive the attitude and orbit data of the actual on-orbit satellite, and analyze each of the embodiments of the present invention according to the actual data. The system parameters are corrected, so that the embodiment of the present invention can perform a highly approximate simulation on the ground for the orbit and attitude of the actual satellite in orbit. When the satellite data on orbit is accurate and reliable, and the accuracy of each system in the embodiment of the present invention is good, the corrected local ground simulation system can be regarded as the ground backup of the actual satellite on orbit. When the in-orbit satellite has a fault in operation, an abnormality in the returned data, or leaves the observation area, the corresponding ground simulation system can be used for troubleshooting, abnormal reproduction, and orbital attitude estimation.
综上,根据本发明实施例提出的航天器GNC系统高仿真度分布式仿真装置,同时具有基于直线导轨机械结构和三轴转台的半物理六维地面仿真系统和基于三轴气浮台的全物理地面仿真系统两种仿真系统的优势,即在保证可以仿真卫星的六自由度运动的同时,还尽量的贴近实际;使用了VR/MR技术,可以观察到卫星的运行轨道和姿态,直观的判断卫星控制算法的控制效果;使用了光线反射内存技术,在半物理系统与全物理系统距离较远的情况下,仍能保证时间对准;可以通过根据实际在轨卫星的姿态与轨道数据对于系统参数的反复校正,在地面对实际在轨卫星的轨道与姿态进行高度近似的仿真。In summary, the high-fidelity distributed simulation device of the spacecraft GNC system proposed according to the embodiment of the present invention has a semi-physical six-dimensional ground simulation system based on a linear guide mechanical structure and a three-axis turntable and a full-scale simulation system based on a three-axis air bearing table. The physical ground simulation system has the advantages of the two simulation systems, that is, while ensuring that the six-degree-of-freedom movement of the satellite can be simulated, it is also as close to reality as possible; using VR/MR technology, the orbit and attitude of the satellite can be observed, intuitively Judging the control effect of the satellite control algorithm; using the light reflection memory technology, the time alignment can still be guaranteed when the semi-physical system and the full-physical system are far away; Repeated correction of system parameters, and highly approximate simulation of the orbit and attitude of the actual satellite in orbit on the ground.
其次参照附图描述根据本发明实施例提出的航天器GNC系统高仿真度分布式仿真方法。Next, the distributed simulation method with high simulation degree of the spacecraft GNC system proposed according to the embodiment of the present invention will be described with reference to the accompanying drawings.
图4是本发明一个实施例的航天器GNC系统高仿真度分布式仿真方法的流程图。Fig. 4 is a flow chart of a high-fidelity distributed simulation method for a spacecraft GNC system according to an embodiment of the present invention.
如图4所示,该航天器GNC系统高仿真度分布式仿真方法包括以下步骤:As shown in Figure 4, the high-fidelity distributed simulation method of the spacecraft GNC system includes the following steps:
在步骤S1中,将待仿真卫星设备安装在转动模块上,启动航天器GNC系统高仿真度分布式仿真装置,并保证每个系统正常运行且时间一致。In step S1, install the satellite equipment to be simulated on the rotating module, start the high-fidelity distributed simulation device of the spacecraft GNC system, and ensure that each system runs normally and the time is consistent.
在步骤S2中,利用测量系统测量安装在转动模块上的待仿真卫星设备的当前位姿值,并与待仿真卫星设备的预设卫星位姿值作差,将得到偏差值输入至GNC系统中。In step S2, use the measurement system to measure the current pose value of the satellite equipment to be simulated installed on the rotating module, and make a difference with the preset satellite pose value of the satellite equipment to be simulated, and input the deviation value into the GNC system .
在步骤S3中,使GNC系统接收偏差值,根据控制算法计算控制力矩和控制力,将控制力矩和控制力分别输入至姿态动力学全物理仿真系统和轨道动力学数字仿真系统中。In step S3, the GNC system receives the deviation value, calculates the control torque and control force according to the control algorithm, and inputs the control torque and control force into the full physical simulation system of attitude dynamics and the digital simulation system of orbital dynamics respectively.
在步骤S4中,使姿态动力学全物理仿真系统接收控制力矩,通过飞轮机构和喷气机构对三轴气浮台施加对应的控制力矩,通过光纤陀螺测量三轴气浮台的姿态角和角速度,以求解实时姿态信息,并将其输入至运动系统中。In step S4, the attitude dynamics full-physics simulation system receives the control torque, applies the corresponding control torque to the three-axis air bearing platform through the flywheel mechanism and the jet mechanism, and measures the attitude angle and angular velocity of the three-axis air bearing platform through the fiber optic gyroscope, To solve the real-time attitude information and input it into the motion system.
在步骤S5中,使轨道动力学数字仿真系统接收并处理控制力,求得待仿真卫星设备的实时位置信息,并将其输入至运动系统。In step S5, the orbital dynamics digital simulation system receives and processes the control force, obtains the real-time position information of the satellite equipment to be simulated, and inputs it into the motion system.
在步骤S6中,使运动系统接收实时姿态信息和实时位置信息,并根据实时姿态信息和实时位置信息使待仿真卫星设备进行平动和转动达到预设位置和预设姿态。In step S6, the motion system is made to receive real-time attitude information and real-time position information, and according to the real-time attitude information and real-time position information, the satellite equipment to be simulated is translated and rotated to reach a preset position and a preset attitude.
在步骤S7中,更新待仿真卫星设备的实时位姿值。如有实际在轨卫星的返回位姿值,则根据该数据对各系统的参数进行校正。In step S7, the real-time pose value of the satellite device to be simulated is updated. If there is the returned position and attitude value of the actual in-orbit satellite, the parameters of each system are corrected according to the data.
在步骤S8中,利用综合监控系统接收测量系统、姿态动力学全物理仿真系统、轨道动力学数字仿真系统和运动系统的当前位姿与状态信息,并将其以曲线图的形式展示。In step S8, the current pose and status information of the measurement system, attitude dynamics full-physics simulation system, orbital dynamics digital simulation system and motion system are received by the integrated monitoring system, and displayed in the form of graphs.
在步骤S9中,利用VR/MR视觉模拟系统接收实时姿态信息和实时位置信息,以构建待仿真卫星设备对应的实时三维模型。In step S9, the VR/MR visual simulation system is used to receive real-time attitude information and real-time position information to construct a real-time three-dimensional model corresponding to the satellite equipment to be simulated.
在步骤S10中,迭代执行步骤S2至步骤S9,直到仿真结束,将航天器GNC系统高仿真度分布式仿真装置关机,待仿真卫星设备归位。In step S10, step S2 to step S9 are executed iteratively until the simulation ends, the high-fidelity distributed simulation device of the spacecraft GNC system is shut down, and the simulated satellite equipment is to be returned to its original position.
需要说明的是,前述对航天器GNC系统高仿真度分布式仿真装置实施例的解释说明也适用于该实施例的方法,此处不再赘述。It should be noted that the foregoing explanations for the embodiment of the high-fidelity distributed simulation device for the spacecraft GNC system are also applicable to the method of this embodiment, and will not be repeated here.
根据本发明实施例提出的航天器GNC系统高仿真度分布式仿真方法,同时具有基于直线导轨机械结构和三轴转台的半物理六维地面仿真系统和基于三轴气浮台的全物理地面仿真系统两种仿真系统的优势,即在保证可以仿真卫星的六自由度运动的同时,还尽量的贴近实际;使用了VR/MR技术,可以观察到卫星的运行轨道和姿态,直观的判断卫星控制算法的控制效果;使用了光线反射内存技术,在半物理系统与全物理系统距离较远的情况下,仍能保证时间对准;可以通过根据实际在轨卫星的姿态与轨道数据对于系统参数的反复校正,在地面对实际在轨卫星的轨道与姿态进行高度近似的仿真。The high-fidelity distributed simulation method of the spacecraft GNC system proposed according to the embodiment of the present invention has a semi-physical six-dimensional ground simulation system based on a linear guide mechanical structure and a three-axis turntable and a full-physical ground simulation system based on a three-axis air bearing table. The advantages of the two simulation systems of the system are that while ensuring the six-degree-of-freedom motion of the satellite can be simulated, it is also as close to reality as possible; using VR/MR technology, the orbit and attitude of the satellite can be observed, and the satellite control can be intuitively judged The control effect of the algorithm; the light reflection memory technology is used, and the time alignment can still be guaranteed when the semi-physical system and the full-physical system are far away; the system parameters can be adjusted according to the attitude and orbit data of the actual satellite in orbit. Repeated corrections are performed on the ground to simulate the orbit and attitude of the actual satellite in orbit with a high degree of approximation.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise specifically defined.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, those skilled in the art can make the above-mentioned The embodiments are subject to changes, modifications, substitutions and variations.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310212685.5A CN116068915B (en) | 2023-03-08 | 2023-03-08 | High-fidelity distributed simulation device and method for spacecraft GNC system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310212685.5A CN116068915B (en) | 2023-03-08 | 2023-03-08 | High-fidelity distributed simulation device and method for spacecraft GNC system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116068915A CN116068915A (en) | 2023-05-05 |
CN116068915B true CN116068915B (en) | 2023-06-09 |
Family
ID=86176999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310212685.5A Active CN116068915B (en) | 2023-03-08 | 2023-03-08 | High-fidelity distributed simulation device and method for spacecraft GNC system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116068915B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116661335B (en) * | 2023-07-27 | 2023-10-13 | 哈尔滨工业大学 | Spacecraft attitude control physical simulation system with tracking and aiming device and evaluation method thereof |
CN117234696B (en) * | 2023-11-13 | 2024-01-19 | 北京控制工程研究所 | Determination method and device for multitasking execution strategy of high-frequency GNC system |
CN119796545B (en) * | 2025-03-12 | 2025-05-30 | 中国人民解放军军事科学院国防科技创新研究院 | Satellite motion state three-dimensional simulation system and method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2491101A1 (en) * | 2003-12-30 | 2005-06-30 | Canadian Space Agency | Zero-g emulating testbed for spacecraft control system |
CN102997935A (en) * | 2012-11-30 | 2013-03-27 | 北京控制工程研究所 | Autonomous global navigation chart (GNC) simulation test system based on optical and inertial combined measurement |
CN103970032A (en) * | 2014-05-16 | 2014-08-06 | 中国人民解放军装备学院 | Satellite platform and mechanical arm cooperation simulator |
CN104298128A (en) * | 2014-09-29 | 2015-01-21 | 哈尔滨工业大学 | Ground simulation method for spacecraft navigation guidance technology |
CN106773777A (en) * | 2016-11-23 | 2017-05-31 | 哈尔滨工业大学 | Spacecraft ground analog simulation method based on augmented reality |
CN108873920A (en) * | 2018-06-15 | 2018-11-23 | 上海卫星工程研究所 | Filled Spacecraft attitude dynamics full physical simulation pilot system and method |
WO2022073140A1 (en) * | 2020-10-11 | 2022-04-14 | Macdonald, Dettwiler And Associates Inc. | Systems and methods for designing, testing, and validating a robotic system |
CN114625027A (en) * | 2022-03-16 | 2022-06-14 | 哈尔滨工业大学 | Multi-spacecraft attitude and orbit control ground full-physical simulation system based on multi-degree-of-freedom motion simulator |
-
2023
- 2023-03-08 CN CN202310212685.5A patent/CN116068915B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2491101A1 (en) * | 2003-12-30 | 2005-06-30 | Canadian Space Agency | Zero-g emulating testbed for spacecraft control system |
CN102997935A (en) * | 2012-11-30 | 2013-03-27 | 北京控制工程研究所 | Autonomous global navigation chart (GNC) simulation test system based on optical and inertial combined measurement |
CN103970032A (en) * | 2014-05-16 | 2014-08-06 | 中国人民解放军装备学院 | Satellite platform and mechanical arm cooperation simulator |
CN104298128A (en) * | 2014-09-29 | 2015-01-21 | 哈尔滨工业大学 | Ground simulation method for spacecraft navigation guidance technology |
CN106773777A (en) * | 2016-11-23 | 2017-05-31 | 哈尔滨工业大学 | Spacecraft ground analog simulation method based on augmented reality |
CN108873920A (en) * | 2018-06-15 | 2018-11-23 | 上海卫星工程研究所 | Filled Spacecraft attitude dynamics full physical simulation pilot system and method |
WO2022073140A1 (en) * | 2020-10-11 | 2022-04-14 | Macdonald, Dettwiler And Associates Inc. | Systems and methods for designing, testing, and validating a robotic system |
CN114625027A (en) * | 2022-03-16 | 2022-06-14 | 哈尔滨工业大学 | Multi-spacecraft attitude and orbit control ground full-physical simulation system based on multi-degree-of-freedom motion simulator |
Non-Patent Citations (3)
Title |
---|
基于代码自动生成的空间交会GNC系统仿真平台;胡海霞;刘洁;涂俊峰;;空间控制技术与应用(04);全文 * |
基于分布式智能执行机构的航天器姿态协同控制;李文星等;《哈尔滨工程大学学报》;第第43卷卷(第第5期期);全文 * |
航天器全物理仿真技术;张新邦等;《航天控制》;第第33卷卷(第第5期期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN116068915A (en) | 2023-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116068915B (en) | High-fidelity distributed simulation device and method for spacecraft GNC system | |
CN101726296B (en) | Space robot vision measurement, path planning, GNC integrated simulation system | |
CN103344256B (en) | A laboratory test method for multi-field star sensors | |
CN107390545B (en) | Unmanned aerial vehicle and simulation training system of load thereof | |
CN104501835B (en) | The ground system test and method that a kind of space-oriented application heterogeneity IMU is initially aligned | |
US11312506B2 (en) | Autonomous quadcopter piloting controller and debugger | |
CN111679592B (en) | Spacecraft pursuit and escape game closed-loop semi-physical simulation system and method | |
Lu et al. | Real-time simulation system for UAV based on Matlab/Simulink | |
CN114625027B (en) | A ground-based full-physics simulation system for multi-spacecraft attitude and orbit control based on a multi-degree-of-freedom motion simulator | |
CN103245364B (en) | Method for testing dynamic performance of star sensor | |
US20200301427A1 (en) | Modular autonomous drone | |
US11455336B2 (en) | Quadcopter hardware characterization and simulation | |
CN105737848B (en) | System-level star sensor star viewing system and star viewing method | |
Cho et al. | A 5-dof experimental platform for spacecraft rendezvous and docking | |
CN102288199A (en) | Ground testing method of star sensor | |
CN106200614A (en) | A kind of spacecraft appearance control test system and method using the true moment of control-moment gyro | |
US20200302026A1 (en) | Quadcopter artificial intelligence controller and quadcopter simulator | |
CN114166251A (en) | Space non-cooperative target relative navigation ground verification system | |
CN117806185A (en) | Space gravitational wave detection satellite formation physical simulation verification device | |
CN118584991A (en) | Fault injection method for multi-mode abnormal data simulation of satellite attitude control system | |
CN104155969B (en) | A kind of zero momentum wheel friction suppresses and offsets checking system | |
US10297168B1 (en) | Dynamically tilting flat table to impart a time-varying gravity-induced acceleration on a floating spacecraft simulator | |
US20200302822A1 (en) | Quadcopter sensor noise and camera noise recording and simulation | |
CN113916263A (en) | Remote automatic calibration system and method of three-axis inertial group based on RTX real-time system and reflective memory | |
CN113885352B (en) | Mars EDL whole-process autonomous GNC mathematical simulation verification system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |