CN116066977A - Method and device for training air conditioner operating parameter prediction model, electronic equipment, storage medium - Google Patents

Method and device for training air conditioner operating parameter prediction model, electronic equipment, storage medium Download PDF

Info

Publication number
CN116066977A
CN116066977A CN202111276995.0A CN202111276995A CN116066977A CN 116066977 A CN116066977 A CN 116066977A CN 202111276995 A CN202111276995 A CN 202111276995A CN 116066977 A CN116066977 A CN 116066977A
Authority
CN
China
Prior art keywords
air conditioner
prediction model
operation data
conditioner operation
parameter prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111276995.0A
Other languages
Chinese (zh)
Inventor
滕兆龙
魏伟
代传民
孙萍
马长鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Smart Technology R&D Co Ltd
Original Assignee
Qingdao Haier Smart Technology R&D Co Ltd
Haier Smart Home Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Smart Technology R&D Co Ltd, Haier Smart Home Co Ltd filed Critical Qingdao Haier Smart Technology R&D Co Ltd
Priority to CN202111276995.0A priority Critical patent/CN116066977A/en
Publication of CN116066977A publication Critical patent/CN116066977A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及空调技术领域,公开一种用于训练空调运行参数预测模型的方法,包括:将第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型;根据参考空调运行参数预测模型获取多个带有第二标签的第二空调运行数据样本;其中,带有表征空调异常运行的参数的第二空调运行数据样本多于带有表征空调正常运行的参数的第二空调运行数据样本;利用第二空调运行数据样本和第一空调运行数据样本对参考空调运行参数预测模型进行增量学习,获得的空调运行参数预测模型,提高了空调运行参数预测模型预测空调运行参数的准确率。本申请还公开一种用于训练空调运行参数预测模型的装置及电子设备、存储介质。

Figure 202111276995

The present application relates to the field of air-conditioning technology, and discloses a method for training an air-conditioning operating parameter prediction model, including: inputting the first air-conditioning operating data sample into a preset neural network model for training to obtain a reference air-conditioning operating parameter prediction model; The air conditioner operation parameter prediction model acquires a plurality of second air conditioner operation data samples with second labels; wherein, the second air conditioner operation data samples with parameters representing abnormal operation of the air conditioner are more than the first sample with parameters representing normal operation of the air conditioner The second air conditioner operation data sample; use the second air conditioner operation data sample and the first air conditioner operation data sample to carry out incremental learning on the reference air conditioner operation parameter prediction model, and the obtained air conditioner operation parameter prediction model improves the air conditioner operation parameter prediction model to predict air conditioner operation parameter accuracy. The application also discloses a device for training an air conditioner operating parameter prediction model, electronic equipment, and a storage medium.

Figure 202111276995

Description

用于训练空调运行参数预测模型的方法及装置、电子设备、存储介质Method and device for training air conditioner operating parameter prediction model, electronic equipment, storage medium

技术领域technical field

本申请涉及空调技术领域,例如涉及一种用于训练空调运行参数预测模型的方法及装置、电子设备、存储介质。The present application relates to the technical field of air conditioners, for example, to a method and device for training an air conditioner operating parameter prediction model, electronic equipment, and a storage medium.

背景技术Background technique

目前,随着空调在日常生活和工作中的广泛应用,人们对空调的运行状态越来越关注,为了避免空调长期处于故障运行状态导致机器损坏,需要实时了解空调的运行参数。相比使用传感器等测量工具直接测量空调的运行参数耗时耗力,使用空调运行参数预测模型更加方便快捷。At present, with the wide application of air conditioners in daily life and work, people pay more and more attention to the operation status of air conditioners. In order to avoid machine damage caused by long-term failure of air conditioners, it is necessary to know the operating parameters of air conditioners in real time. Compared with using measurement tools such as sensors to directly measure the operating parameters of the air conditioner, it is more convenient and faster to use the air conditioner operating parameter prediction model.

在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:In the process of implementing the embodiments of the present disclosure, it is found that at least the following problems exist in related technologies:

现有技术在获取空调运行参数预测模型时,通过将所有样本数据一次性输入预设的神经网络模型进行训练,获得空调运行参数预测模型。但是空调运行过程中处于正常运行状态的时间远多于处于异常运行状态的时间,导致在模型实际训练过程中空调故障运行时的数据样本数量远小于空调正常运行时的数据样本数量,从而导致训练出的模型难以准确预测空调异常运行时的参数。In the prior art, when obtaining an air conditioner operating parameter prediction model, all sample data is input into a preset neural network model for training at one time to obtain an air conditioner operating parameter prediction model. However, during the operation of the air conditioner, the time in the normal operation state is much longer than the time in the abnormal operation state. As a result, in the actual training process of the model, the number of data samples when the air conditioner is faulty is much smaller than the number of data samples when the air conditioner is in normal operation. The model is difficult to accurately predict the parameters of the abnormal operation of the air conditioner.

发明内容Contents of the invention

为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。In order to provide a basic understanding of some aspects of the disclosed embodiments, a brief summary is presented below. The summary is not intended to be an extensive overview nor to identify key/important elements or to delineate the scope of these embodiments, but rather serves as a prelude to the detailed description that follows.

本公开实施例提供了一种用于训练空调运行参数预测模型的方法及装置、电子设备、存储介质,以能够提高空调运行参数预测模型预测空调运行参数的准确率。Embodiments of the present disclosure provide a method and device for training an air conditioner operating parameter prediction model, electronic equipment, and a storage medium, so as to improve the accuracy of the air conditioner operating parameter prediction model in predicting the air conditioner operating parameters.

在一些实施例中,所述用于训练空调运行参数预测模型的方法包括:获取带有第一标签的第一空调运行数据样本,所述第一标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;将所述第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型;根据所述参考空调运行参数预测模型获取多个带有第二标签的第二空调运行数据样本,所述第二标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;其中,带有表征空调异常运行的参数的第二空调运行数据样本多于带有表征空调正常运行的参数的第二空调运行数据样本;利用所述第二空调运行数据样本和所述第一空调运行数据样本对所述参考空调运行参数预测模型进行增量学习,获得空调运行参数预测模型。In some embodiments, the method for training an air conditioner operation parameter prediction model includes: acquiring a first air conditioner operation data sample with a first label, where the first label is a parameter used to characterize the abnormal operation of the air conditioner or used To characterize the parameters of the normal operation of the air conditioner; input the first air conditioner operation data sample into the preset neural network model for training, and obtain a reference air conditioner operation parameter prediction model; obtain multiple models with the first The second air conditioner operating data sample with two tags, the second tag is a parameter used to characterize the abnormal operation of the air conditioner or a parameter used to characterize the normal operation of the air conditioner; wherein, the second air conditioner operating data with parameters characterizing the abnormal operation of the air conditioner There are more samples than the second air conditioner operation data samples with parameters representing the normal operation of the air conditioner; using the second air conditioner operation data samples and the first air conditioner operation data samples to perform incremental learning on the reference air conditioner operation parameter prediction model , to obtain the air conditioner operating parameter prediction model.

在一些实施例中,所述用于训练空调运行参数预测模型的装置包括:第一获取模块,被配置为获取带有第一标签的第一空调运行数据样本,所述第一标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;训练模块,被配置为将所述第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型;第二获取模块,被配置为根据所述参考空调运行参数预测模型获取多个带有第二标签的第二空调运行数据样本,所述第二标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;其中,带有表征空调异常运行的参数的第二空调运行数据样本多于带有表征空调正常运行的参数的第二空调运行数据样本;增量学习模块,被配置为利用所述第二空调运行数据样本和所述第一空调运行数据样本对所述参考空调运行参数预测模型进行增量学习,获得空调运行参数预测模型。In some embodiments, the device for training an air conditioner operation parameter prediction model includes: a first acquisition module configured to acquire a first air conditioner operation data sample with a first label, the first label is for A parameter characterizing the abnormal operation of the air conditioner or a parameter characterizing the normal operation of the air conditioner; the training module is configured to input the first air conditioner operation data sample into a preset neural network model for training, and obtain a reference air conditioner operation parameter prediction model; Two acquisition modules, configured to acquire a plurality of second air conditioner operation data samples with a second label according to the reference air conditioner operation parameter prediction model, the second label is a parameter used to characterize the abnormal operation of the air conditioner or is used to characterize The parameters of the normal operation of the air conditioner; wherein, the second air conditioner operation data samples with the parameters representing the abnormal operation of the air conditioner are more than the second air conditioner operation data samples with the parameters representing the normal operation of the air conditioner; the incremental learning module is configured to use The second air conditioner operation data sample and the first air conditioner operation data sample perform incremental learning on the reference air conditioner operation parameter prediction model to obtain an air conditioner operation parameter prediction model.

在一些实施例中,所述用于训练空调运行参数预测模型的装置包括:处理器和存储有程序指令的存储器,所述处理器被配置为在运行所述程序指令时,执行如上述的用于训练空调运行参数预测模型的方法。In some embodiments, the device for training an air conditioner operating parameter prediction model includes: a processor and a memory storing program instructions, and the processor is configured to execute the above-mentioned method when executing the program instructions. A method for training air conditioner operating parameter prediction models.

在一些实施例中,所述电子设备包括如上述的用于训练空调运行参数预测模型的装置。In some embodiments, the electronic device includes the above-mentioned device for training an air conditioner operating parameter prediction model.

在一些实施例中,所述存储介质,存储有程序指令,所述程序指令在运行时,执行如上述的用于训练空调运行参数预测模型的方法。In some embodiments, the storage medium stores program instructions, and when the program instructions are run, execute the above-mentioned method for training an air conditioner operating parameter prediction model.

本公开实施例提供的用于训练空调运行参数预测模型的方法及装置、电子设备、存储介质,可以实现以下技术效果:通过将第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型,根据参考空调运行参数预测模型获取多个带有第二标签的第二空调运行数据样本,第二标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;其中,带有表征空调异常运行的参数的第二空调运行数据样本多于带有表征空调正常运行的参数的第二空调运行数据样本;利用第二空调运行数据样本和第一空调运行数据样本对参考空调运行参数预测模型进行增量学习,获得空调运行参数预测模型。这样,通过将第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型,再利用带有表征空调异常运行的参数多于带有表征空调正常运行的参数的第二空调运行数据样本对参考空调运行参数预测模型进行增量学习,得到的空调运行参数预测模型,能够更加准确的对空调异常运行参数进行预测,使得能够提高利用空调运行参数预测模型对空调运行参数进行预测的准确率。The method and device, electronic equipment, and storage medium for training the air conditioner operating parameter prediction model provided by the embodiments of the present disclosure can achieve the following technical effects: by inputting the first air conditioner operating data sample into the preset neural network model for training, the obtained Referring to the air conditioner operation parameter prediction model, according to the reference air conditioner operation parameter prediction model, a plurality of second air conditioner operation data samples with a second label are obtained, and the second label is a parameter used to characterize the abnormal operation of the air conditioner or a parameter used to characterize the normal operation of the air conditioner parameters; wherein, the second air conditioner operating data samples with parameters representing the abnormal operation of the air conditioner are more than the second air conditioner operating data samples with parameters representing the normal operation of the air conditioner; using the second air conditioner operating data samples and the first air conditioner operating data samples The sample performs incremental learning on the reference air conditioner operating parameter prediction model to obtain the air conditioner operating parameter prediction model. In this way, by inputting the first air conditioner operation data sample into the preset neural network model for training, a reference air conditioner operation parameter prediction model is obtained, and then the first model with more parameters representing the abnormal operation of the air conditioner than the parameters representing the normal operation of the air conditioner is used. Two air conditioner operation data samples carry out incremental learning on the reference air conditioner operation parameter prediction model, and the obtained air conditioner operation parameter prediction model can more accurately predict the abnormal operation parameters of the air conditioner, so that the use of the air conditioner operation parameter prediction model can improve the accuracy of the air conditioner operation parameters. The accuracy of making predictions.

以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。The foregoing general description and the following description are exemplary and explanatory only and are not intended to limit the application.

附图说明Description of drawings

一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:One or more embodiments are exemplified by the corresponding drawings, and these exemplifications and drawings do not constitute a limitation to the embodiments, and elements with the same reference numerals in the drawings are shown as similar elements, The drawings are not limited to scale and in which:

图1是本公开实施例提供的一个用于训练空调运行参数预测模型的方法的示意图;FIG. 1 is a schematic diagram of a method for training an air conditioner operating parameter prediction model provided by an embodiment of the present disclosure;

图2是本公开实施例提供的另一个用于训练空调运行参数预测模型的方法的示意图;Fig. 2 is a schematic diagram of another method for training an air conditioner operating parameter prediction model provided by an embodiment of the present disclosure;

图3是本公开实施例提供的另一个用于训练空调运行参数预测模型的方法的示意图;Fig. 3 is a schematic diagram of another method for training an air conditioner operating parameter prediction model provided by an embodiment of the present disclosure;

图4是本公开实施例提供的另一个用于训练空调运行参数预测模型的方法的示意图;Fig. 4 is a schematic diagram of another method for training an air conditioner operating parameter prediction model provided by an embodiment of the present disclosure;

图5是本公开实施例提供的一个用于训练空调运行参数预测模型的装置的结构示意图;Fig. 5 is a schematic structural diagram of a device for training an air conditioner operating parameter prediction model provided by an embodiment of the present disclosure;

图6是本公开实施例提供的另一个用于训练空调运行参数预测模型的装置的结构示意图。Fig. 6 is a schematic structural diagram of another device for training an air conditioner operating parameter prediction model provided by an embodiment of the present disclosure.

具体实施方式Detailed ways

为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。In order to understand the characteristics and technical content of the embodiments of the present disclosure in more detail, the implementation of the embodiments of the present disclosure will be described in detail below in conjunction with the accompanying drawings. The attached drawings are only for reference and description, and are not intended to limit the embodiments of the present disclosure. In the following technical description, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the disclosed embodiments. However, one or more embodiments may be practiced without these details. In other instances, well-known structures and devices may be shown simplified in order to simplify the drawings.

本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的参数在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。The terms "first", "second" and the like in the description and claims of the embodiments of the present disclosure and the above drawings are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence. It should be understood that the parameters so used are interchangeable under appropriate circumstances so as to facilitate the embodiments of the disclosed embodiments described herein. Furthermore, the terms "comprising" and "having", as well as any variations thereof, are intended to cover a non-exclusive inclusion.

除非另有说明,术语“多个”表示两个或两个以上。Unless stated otherwise, the term "plurality" means two or more.

本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。In the embodiments of the present disclosure, the character "/" indicates that the preceding and following objects are an "or" relationship. For example, A/B means: A or B.

术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。The term "and/or" is an associative relationship describing objects, indicating that there can be three relationships. For example, A and/or B means: A or B, or, A and B, these three relationships.

术语“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。The term "correspondence" may refer to an association relationship or a binding relationship, and the correspondence between A and B means that there is an association relationship or a binding relationship between A and B.

结合图1所示,本公开实施例提供一种用于训练空调运行参数预测模型的方法,包括:As shown in FIG. 1 , an embodiment of the present disclosure provides a method for training an air conditioner operating parameter prediction model, including:

步骤S101,获取带有第一标签的第一空调运行数据样本,第一标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;Step S101, acquiring a first air conditioner operation data sample with a first label, where the first label is a parameter used to characterize the abnormal operation of the air conditioner or a parameter used to characterize the normal operation of the air conditioner;

步骤S102,将第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型;Step S102, inputting the first air conditioner operation data sample into a preset neural network model for training to obtain a reference air conditioner operation parameter prediction model;

步骤S103,根据参考空调运行参数预测模型获取多个带有第二标签的第二空调运行数据样本,第二标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;Step S103, acquiring a plurality of second air conditioner operation data samples with a second label according to the reference air conditioner operation parameter prediction model, where the second label is a parameter used to characterize the abnormal operation of the air conditioner or a parameter used to characterize the normal operation of the air conditioner;

步骤S104,利用第二空调运行数据样本和第一空调运行数据样本对参考空调运行参数预测模型进行增量学习,获得空调运行参数预测模型。Step S104, using the second air conditioner operation data sample and the first air conditioner operation data sample to perform incremental learning on the reference air conditioner operation parameter prediction model to obtain the air conditioner operation parameter prediction model.

采用本公开实施例提供的用于训练空调运行参数预测模型的方法,通过将第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型,利用带有表征空调异常运行的参数多于带有表征空调正常运行的参数的第二空调运行数据样本对参考空调运行参数预测模型进行增量学习,得到的空调运行参数预测模型,能够更加准确的对空调异常运行参数进行预测,使得能够提高利用空调运行参数预测模型对空调运行参数进行预测的准确率。Using the method for training the air conditioner operating parameter prediction model provided by the embodiments of the present disclosure, by inputting the first air conditioner operating data sample into the preset neural network model for training, a reference air conditioner operating parameter prediction model is obtained, and using The operating parameters are more than the second air conditioner operating data sample with parameters representing the normal operation of the air conditioner. The reference air conditioner operation parameter prediction model is incrementally learned, and the obtained air conditioner operation parameter prediction model can more accurately predict the abnormal operation parameters of the air conditioner. Prediction makes it possible to improve the accuracy rate of air conditioner operation parameter prediction by using the air conditioner operation parameter prediction model.

可选地,神经网络模型包括:卷积神经网络等。Optionally, the neural network model includes: a convolutional neural network and the like.

在一些实施例中,第一空调运行数据样本为第一预设时刻空调的冷凝器温度和冷凝器压力。第一空调运行数据样本带有的第一标签为对应第一预设时刻压缩机排气口的压力、压缩机排气温度、压缩机吸气口的压力和冷冻水温度,在第一预设时刻,若空调处于异常运行状态,则第一预设时刻压缩机排气口的压力、压缩机排气温度、压缩机吸气口的压力和冷冻水温度即为表征空调异常运行的参数;在第一预设时刻,若空调处于正常运行状态,则第一预设时刻压缩机排气口的压力、压缩机排气温度、压缩机吸气口的压力和冷冻水温度即为表征空调正常运行的参数。例如,第一预设时刻为8:00、8:01、8:02等,在各第一预设时刻获取空调的冷凝器温度和冷凝器压力,并获取压缩机排气口的压力、压缩机排气温度、压缩机吸气口的压力和冷冻水温度,即获得多个带第一标签的第一空调运行数据样本;将多个带第一标签的第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型。In some embodiments, the first air conditioner operating data sample is the condenser temperature and condenser pressure of the air conditioner at the first preset time. The first label attached to the first air conditioner operation data sample is the pressure at the discharge port of the compressor, the discharge temperature of the compressor, the pressure at the suction port of the compressor, and the temperature of the chilled water corresponding to the first preset moment. time, if the air conditioner is in an abnormal operation state, the pressure at the compressor exhaust port, the compressor discharge temperature, the compressor suction port pressure and the chilled water temperature at the first preset time are the parameters that characterize the abnormal operation of the air conditioner; At the first preset moment, if the air conditioner is in normal operation, the pressure at the compressor discharge port, the compressor discharge temperature, the pressure at the compressor suction port and the chilled water temperature at the first preset moment represent the normal operation of the air conditioner. parameters. For example, the first preset time is 8:00, 8:01, 8:02, etc. At each first preset time, the condenser temperature and condenser pressure of the air conditioner are obtained, and the pressure, compression The discharge temperature of the machine, the pressure of the suction port of the compressor, and the chilled water temperature, that is, to obtain multiple first air conditioner operation data samples with the first label; input multiple first air conditioner operation data samples with the first label into the preset The neural network model is trained to obtain the reference air conditioner operating parameter prediction model.

可选地,根据参考空调运行参数预测模型获取多个带有第二标签的第二空调运行数据样本,包括:获取参考空调运行参数预测模型的准确率;在准确率大于预设阈值的情况下,获取多个带有第二标签的第二空调运行数据样本。这样,在准确率大于预设阈值的情况下,参考空调运行参数预测模型训练完成,获取多个带有第二标签的第二空调运行数据样本,再利用第二空调运行数据样本对参考空调运行参数预测模型进行增量学习,得到空调运行参数预测模型,提高了空调运行参数预测模型预测空调运行参数的准确率。Optionally, acquiring a plurality of second air-conditioning operating data samples with a second label according to the reference air-conditioning operating parameter prediction model includes: obtaining the accuracy rate of the reference air-conditioning operating parameter prediction model; when the accuracy rate is greater than a preset threshold , to acquire a plurality of second air conditioner operation data samples with a second label. In this way, when the accuracy rate is greater than the preset threshold, the training of the reference air conditioner operation parameter prediction model is completed, and a plurality of second air conditioner operation data samples with the second label are obtained, and then the second air conditioner operation data samples are used to compare the reference air conditioner operation parameters. The parameter prediction model is incrementally learned to obtain the air conditioner operation parameter prediction model, which improves the accuracy of the air conditioner operation parameter prediction model in predicting the air conditioner operation parameters.

可选地,获取参考空调运行参数预测模型的准确率,包括:获取多个空调运行数据;获取各空调运行数据对应的测量结果;将各空调运行数据输入参考空调运行参数预测模型获得各空调运行数据对应的预测结果;分别将各空调运行数据的预测结果和各空调运行数据的测量结果进行比较,获得多个比较结果;比较结果用于表征预测结果与测量结果的差值是否在预设范围内;根据各比较结果获得参考空调运行参数预测模型的准确率。这样,根据各空调运行数据的预测结果和各空调运行数据的测量结果之间的比较结果能够更加准确地获取参考空调运行参数预测模型的准确率。Optionally, obtaining the accuracy rate of the reference air conditioner operation parameter prediction model includes: obtaining multiple air conditioner operation data; obtaining measurement results corresponding to each air conditioner operation data; inputting each air conditioner operation data into the reference air conditioner operation parameter prediction model to obtain each air conditioner operation The prediction results corresponding to the data; respectively compare the prediction results of each air conditioner operation data with the measurement results of each air conditioner operation data to obtain multiple comparison results; the comparison results are used to represent whether the difference between the prediction results and the measurement results is within the preset range According to each comparison result, the accuracy rate of the reference air conditioner operation parameter prediction model is obtained. In this way, the accuracy rate of the reference air conditioner operation parameter prediction model can be obtained more accurately according to the comparison result between the prediction results of each air conditioner operation data and the measurement results of each air conditioner operation data.

可选地,空调运行数据为第二预设时刻空调的冷凝器温度和冷凝器压力。在不同的第二预设时刻分别获取空调的冷凝器温度和冷凝器压力,即获取多个空调运行数据。Optionally, the air conditioner operating data is the condenser temperature and condenser pressure of the air conditioner at the second preset time. The condenser temperature and condenser pressure of the air conditioner are respectively obtained at different second preset times, that is, a plurality of air conditioner operating data are obtained.

可选地,空调运行数据对应的测量结果为:在对应的第二预设时刻对压缩机排气口的压力、压缩机排气温度、压缩机吸气口的压力和冷冻水温度的实际测量值。Optionally, the measurement results corresponding to the air conditioner operation data are: the actual measurement of the pressure at the discharge port of the compressor, the discharge temperature of the compressor, the pressure at the suction port of the compressor, and the temperature of the chilled water at the corresponding second preset time value.

可选地,空调运行数据对应的预测结果为:将多个空调运行数据输入参考空调运行参数预测模型得到的压缩机排气口的压力、压缩机排气温度、压缩机吸气口的压力和冷冻水温度的输出值。Optionally, the prediction result corresponding to the air conditioner operation data is: the pressure at the compressor discharge port, the compressor discharge temperature, the pressure at the compressor suction port and Output value for chilled water temperature.

可选地,根据各比较结果获得参考空调运行参数预测模型的准确率,包括:在比较结果为空调运行数据的预测结果与对应空调运行数据的测量结果的差值都在预设范围内的情况下,则确定参考空调运行参数预测模型预测准确;将参考空调运行参数预测模型预测准确的次数除以参考空调运行参数预测模型预测的总次数得到参考空调运行参数预测模型的准确率。Optionally, the accuracy rate of the reference air-conditioning operation parameter prediction model is obtained according to each comparison result, including: when the comparison result is that the difference between the prediction result of the air-conditioning operation data and the measurement result of the corresponding air-conditioning operation data is within a preset range , it is determined that the reference air conditioner operating parameter prediction model is accurate; the accuracy of the reference air conditioner operating parameter prediction model is obtained by dividing the number of accurate predictions by the reference air conditioner operation parameter prediction model by the total number of reference air conditioner operation parameter prediction models.

结合图2所示,本公开实施例提供另一种用于训练空调运行参数预测模型的方法,包括:In conjunction with what is shown in FIG. 2 , an embodiment of the present disclosure provides another method for training an air conditioner operating parameter prediction model, including:

步骤S201,获取带有第一标签的第一空调运行数据样本,第一标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;Step S201, acquiring a first air conditioner operation data sample with a first label, where the first label is a parameter used to characterize the abnormal operation of the air conditioner or a parameter used to characterize the normal operation of the air conditioner;

步骤S202,将第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型;Step S202, inputting the first air conditioner operation data sample into a preset neural network model for training to obtain a reference air conditioner operation parameter prediction model;

步骤S203,获取多个空调运行数据;Step S203, acquiring a plurality of air conditioner operating data;

步骤S204,获取各空调运行数据对应的测量结果;Step S204, acquiring measurement results corresponding to each air conditioner operating data;

步骤S205,将各空调运行数据输入参考空调运行参数预测模型获得各空调运行数据对应的预测结果;Step S205, input the operation data of each air conditioner into the reference air conditioner operation parameter prediction model to obtain the prediction results corresponding to each air conditioner operation data;

步骤S206,分别将各空调运行数据的预测结果和各空调运行数据的测量结果进行比较,获得多个比较结果;比较结果用于表征预测结果与测量结果的差值是否在预设范围内;Step S206, respectively comparing the prediction results of each air conditioner operation data with the measurement results of each air conditioner operation data to obtain multiple comparison results; the comparison results are used to indicate whether the difference between the prediction results and the measurement results is within a preset range;

步骤S207,根据各比较结果获得参考空调运行参数预测模型的准确率;Step S207, obtaining the accuracy rate of the reference air conditioner operation parameter prediction model according to each comparison result;

步骤S208,在准确率大于预设阈值的情况下,获取多个带有第二标签的第二空调运行数据样本;第二标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;Step S208, when the accuracy rate is greater than the preset threshold, obtain a plurality of second air conditioner operation data samples with a second label; the second label is a parameter used to characterize the abnormal operation of the air conditioner or a parameter used to characterize the normal operation of the air conditioner parameter;

步骤S209,利用第二空调运行数据样本和第一空调运行数据样本对参考空调运行参数预测模型进行增量学习,获得空调运行参数预测模型。Step S209, using the second air conditioner operation data sample and the first air conditioner operation data sample to perform incremental learning on the reference air conditioner operation parameter prediction model to obtain the air conditioner operation parameter prediction model.

这样,根据第一空调运行数据样本获取参考空调运行参数预测模型,根据参考空调运行参数预测模型获取多个空调运行数据的预测结果,从而获得各空调运行数据的预测结果和各空调运行数据的测量结果的比较结果,根据各比较结果获取多个带有第二标签的第二空调运行数据样本,利用带有表征空调异常运行数据的参数多于带有表征空调正常运行的参数的第二空调运行数据样本对参考空调运行参数预测模型进行增量学习,得到的空调运行参数预测模型,能够更加准确的对空调异常运行参数进行预测,使得能够提高利用空调运行参数预测模型对空调运行参数进行预测的准确率。In this way, the reference air conditioner operation parameter prediction model is obtained according to the first air conditioner operation data sample, and the prediction results of a plurality of air conditioner operation data are obtained according to the reference air conditioner operation parameter prediction model, thereby obtaining the prediction results of each air conditioner operation data and the measurement of each air conditioner operation data As a result of the comparison of the results, a plurality of second air-conditioning operation data samples with the second label are obtained according to each comparison result, and the second air-conditioning operation data samples with more parameters representing the abnormal operation data of the air conditioner are used than those with parameters representing the normal operation of the air conditioner The data samples carry out incremental learning on the reference air conditioner operation parameter prediction model, and the obtained air conditioner operation parameter prediction model can more accurately predict the abnormal operation parameters of the air conditioner, so that it can improve the ability to use the air conditioner operation parameter prediction model to predict the air conditioner operation parameters. Accuracy.

可选地,获取多个带有第二标签的第二空调运行数据样本,包括:根据参考空调运行参数预测模型的准确率确定带有第二标签的第二空调运行数据样本的总样本数量,确定带有表征空调异常运行的参数的第二空调运行数据样本数量;根据带有表征空调异常运行的参数的第二空调运行数据样本数量和总样本数量获取多个带有第二标签的第二空调运行数据样本。可选地,根据参考空调运行参数预测模型的准确率确定带有第二标签的第二空调运行数据样本的总样本数量,包括:根据参考空调运行参数预测模型的准确率获取增量比例;通过第一预设算法利用增量比例进行计算,获得带有第二标签的第二空调运行数据样本的总样本数量。这样,根据参考空调运行参数预测模型的准确率获取增量比例,根据增量比例获取获得带有第二标签的第二空调运行数据样本的总样本数量,利用总样本数量的第二空调运行数据样本对参考空调运行参数预测模型进行增量学习,得到的空调运行参数预测模型,能够提高利用空调运行参数预测模型对空调运行参数进行预测的准确率。Optionally, acquiring a plurality of second air-conditioning operation data samples with a second label includes: determining the total number of second air-conditioning operation data samples with a second label according to the accuracy of the reference air-conditioning operation parameter prediction model, Determine the number of samples of the second air-conditioning operation data with parameters representing the abnormal operation of the air conditioner; according to the number of samples of the second air-conditioning operation data with parameters representing the abnormal operation of the air conditioner and the total number of samples, obtain a plurality of second air-conditioning operation data with the second label Air conditioner operation data sample. Optionally, determining the total number of samples of the second air-conditioning operation data samples with the second label according to the accuracy rate of the reference air-conditioning operation parameter prediction model includes: obtaining the incremental ratio according to the accuracy rate of the reference air-conditioning operation parameter prediction model; The first preset algorithm uses the incremental ratio to perform calculations to obtain the total number of samples of the second air conditioner operating data samples with the second label. In this way, according to the accuracy rate of the reference air conditioner operating parameter prediction model to obtain the incremental ratio, according to the incremental ratio to obtain the total sample size of the second air conditioner operating data sample with the second label, the second air conditioner operating data using the total sample size The sample performs incremental learning on the reference air conditioner operation parameter prediction model, and the obtained air conditioner operation parameter prediction model can improve the accuracy of air conditioner operation parameter prediction using the air conditioner operation parameter prediction model.

可选地,参考空调运行参数预测模型的准确率和增量比例成正比。Optionally, the accuracy rate of the reference air conditioner operating parameter prediction model is directly proportional to the increment ratio.

可选地,通过计算F=E*(1-N),获得带有第二标签的第二空调运行数据样本的总样本数量;其中,F为带有第二标签的第二空调运行数据样本的总样本数量,E为带有第一标签的第一空调运行数据样本的总样本数量,N为增量比例。Optionally, by calculating F=E*(1-N), the total number of samples of the second air-conditioning operation data samples with the second label is obtained; wherein, F is the second air-conditioning operation data sample with the second label The total number of samples, E is the total number of samples of the first air-conditioning operation data sample with the first label, and N is the increment ratio.

可选地,准确率包括故障准确率和正常准确率,确定带有表征空调异常运行的参数的第二空调运行数据样本数量,包括:获取参考空调运行参数预测模型的故障准确率;根据参考空调运行参数预测模型的故障准确率获取参考空调运行参数预测模型的故障失败率;通过第二预设算法利用参考空调运行参数预测模型的故障失败率进行计算,获得带有表征空调异常运行的参数的第二空调运行数据样本数量。这样,根据参考空调运行参数预测模型的故障准确率获取参考空调运行参数预测模型的故障失败率,根据故障失败率获得带有表征空调异常运行的参数的第二空调运行数据样本数量,利用该样本数量的带有表征空调异常运行的参数的第二空调运行数据样本对参考空调运行参数预测模型进行增量学习,得到的空调运行参数预测模型,能够更加准确的对空调异常运行参数进行预测,使得能够提高利用空调运行参数预测模型对空调运行参数进行预测的准确率。Optionally, the accuracy rate includes a fault accuracy rate and a normal accuracy rate, and determining the number of second air conditioner operating data samples with parameters representing the abnormal operation of the air conditioner includes: obtaining the fault accuracy rate of the reference air conditioner operating parameter prediction model; The failure accuracy rate of the operating parameter prediction model is obtained from the failure failure rate of the reference air conditioner operation parameter prediction model; the second preset algorithm is used to calculate the failure rate of the reference air conditioner operation parameter prediction model, and the parameter with the abnormal operation of the air conditioner is obtained. The number of samples of the second air conditioner operation data. In this way, the failure rate of the reference air conditioner operation parameter prediction model is obtained according to the failure accuracy rate of the reference air conditioner operation parameter prediction model, and the number of second air conditioner operation data samples with parameters representing the abnormal operation of the air conditioner is obtained according to the failure failure rate. A large number of second air conditioner operating data samples with parameters representing the abnormal operation of the air conditioner carry out incremental learning on the reference air conditioner operating parameter prediction model, and the obtained air conditioner operating parameter prediction model can more accurately predict the abnormal operation parameters of the air conditioner, so that The accuracy rate of predicting the air conditioner operation parameters by using the air conditioner operation parameter prediction model can be improved.

可选地,在空调运行数据对应的测量结果和空调运行数据对应的预测结果之间的差值在预设范围内,且空调运行数据对应的测量结果为空调正常运行时测量,即空调未报故障,则参考空调运行数据预测模型预测空调正常运行参数正确。Optionally, the difference between the measurement result corresponding to the air conditioner operation data and the prediction result corresponding to the air conditioner operation data is within a preset range, and the measurement result corresponding to the air conditioner operation data is measured when the air conditioner is running normally, that is, the air conditioner does not report fault, then refer to the air conditioner operation data prediction model to predict the normal operation parameters of the air conditioner to be correct.

可选地,在空调运行数据对应的测量结果和空调运行数据对应的预测结果之间的差值在预设范围内,且空调运行数据对应的测量结果为空调异常运行时测量,即空调报故障,则参考空调运行数据预测模型预测空调异常运行参数正确。Optionally, the difference between the measurement result corresponding to the air conditioner operation data and the prediction result corresponding to the air conditioner operation data is within a preset range, and the measurement result corresponding to the air conditioner operation data is measured when the air conditioner is running abnormally, that is, the air conditioner reports a fault , then the abnormal operation parameters of the air conditioner are predicted to be correct with reference to the air conditioner operation data prediction model.

可选地,对处于预设的参数故障范围内的预测结果标记预测空调故障;对空调故障时的测量结果标记测量空调故障,获取参考空调运行参数预测模型的故障准确率,包括:获取标记有预测空调故障的预测结果的第一数量;获取预测结果与测量结果的差值处于预设范围内,且标记有预测空调故障的预测结果的第二数量;获取标记有测量空调故障的测量结果的第三数量;根据第一数量、第二数量和第三数量获取参考空调运行参数预测模型的故障准确率。Optionally, mark and predict the air conditioner failure for the prediction results within the preset parameter failure range; mark and measure the air conditioner failure for the measurement results when the air conditioner fails, and obtain the failure accuracy rate of the reference air conditioner operating parameter prediction model, including: obtaining the mark with The first number of prediction results for predicting air-conditioning failure; obtaining the difference between the prediction result and the measurement result is within a preset range, and marking the second number of prediction results for predicting air-conditioning failure; obtaining the measurement result marked for measuring air-conditioning failure The third quantity: Acquiring the fault accuracy rate of the reference air conditioner operation parameter prediction model according to the first quantity, the second quantity and the third quantity.

可选地,通过计算M=Nb÷(Na+Nc),获得参考空调运行参数预测模型的故障准确率;其中,M为参考空调运行参数预测模型的故障准确率,Na为标记有预测空调故障的预测结果的第一数量,Nb为预测结果与测量结果的差值在预设范围内,且标记有预测空调故障的预测结果的第二数量,Nc为标记有测量空调故障的测量结果的第三数量。Optionally, by calculating M=N b ÷ (N a +N c ), the fault accuracy rate of the reference air-conditioning operation parameter prediction model is obtained; wherein, M is the fault accuracy rate of the reference air-conditioning operation parameter prediction model, and N a is the mark There is the first number of prediction results for predicting air-conditioning failure, N b is the difference between the prediction result and the measurement result is within a preset range, and the second number of prediction results for predicting air-conditioning failure is marked, and N c is marked for measuring air-conditioning The third number of faulty measurements.

可选地,通过计算P=1-M,获得参考空调运行参数预测模型的故障失败率;其中,P为参考空调运行参数预测模型的故障失败率,M为参考空调运行参数预测模型的故障准确率。Optionally, by calculating P=1-M, the failure failure rate of the reference air conditioner operating parameter prediction model is obtained; wherein, P is the failure failure rate of the reference air conditioner operation parameter prediction model, and M is the failure accuracy of the reference air conditioner operation parameter prediction model Rate.

可选地,通过计算D2=D1*P,获得带有表征空调异常运行的参数的第二空调运行数据样本数量;其中,D2为带有表征空调异常运行的参数的第二空调运行数据样本数量,D1为带有表征空调异常运行的参数的第一空调运行数据样本数量,P为参考空调运行参数预测模型的故障失败率。Optionally, by calculating D 2 =D 1 *P, the number of samples of the second air conditioner operation data with parameters representing the abnormal operation of the air conditioner is obtained; wherein, D 2 is the second air conditioner operation with parameters representing the abnormal operation of the air conditioner The number of data samples, D1 is the number of first air conditioner operation data samples with parameters that characterize the abnormal operation of the air conditioner, and P is the failure rate of the reference air conditioner operation parameter prediction model.

可选地,通过计算G=F-D2,获得带有表征空调正常运行的参数的第二空调运行数据样本数量,其中,G为带有表征空调正常运行的参数的第二空调运行数据样本数量,D2为带有表征空调异常运行的参数的第二空调运行数据样本数量,F为带有第二标签的第二空调运行数据样本的总样本数量。Optionally, by calculating G=FD 2 , the number of samples of the second air conditioner operation data with parameters representing the normal operation of the air conditioner is obtained, wherein G is the number of samples of the second air conditioner operation data with parameters representing the normal operation of the air conditioner, D 2 is the number of second air conditioner operation data samples with parameters representing abnormal operation of the air conditioner, and F is the total number of samples of the second air conditioner operation data samples with the second label.

可选地,利用第二空调运行数据样本和第一空调运行数据样本对参考空调运行参数预测模型进行增量学习,获得空调运行参数预测模型,包括:将第二空调运行数据样本和第一空调运行数据样本进行数据融合,生成增量学习样本,将增量学习样本输入参考空调运行参数预测模型进行增量学习,获得空调运行参数预测模型。这样,增加了训练空调运行参数预测模型的空调运行数据样本,从而提高了空调运行参数预测模型预测空调运行参数的准确率。Optionally, using the second air conditioner operation data sample and the first air conditioner operation data sample to carry out incremental learning on the reference air conditioner operation parameter prediction model to obtain the air conditioner operation parameter prediction model, including: combining the second air conditioner operation data sample with the first air conditioner operation data sample The operating data samples are fused to generate incremental learning samples, and the incremental learning samples are input into the reference air conditioner operating parameter prediction model for incremental learning to obtain the air conditioner operating parameter prediction model. In this way, the air conditioner operation data samples for training the air conditioner operation parameter prediction model are increased, thereby improving the accuracy of the air conditioner operation parameter prediction model in predicting the air conditioner operation parameter.

结合图3所示,本公开实施例提供另一种用于训练空调运行参数预测模型的方法,包括:In conjunction with what is shown in FIG. 3 , an embodiment of the present disclosure provides another method for training an air conditioner operating parameter prediction model, including:

步骤S301,获取带有第一标签的第一空调运行数据样本,第一标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;Step S301, acquiring a first air conditioner operation data sample with a first label, where the first label is a parameter used to characterize the abnormal operation of the air conditioner or a parameter used to characterize the normal operation of the air conditioner;

步骤S302,将第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型;Step S302, inputting the first air conditioner operation data sample into a preset neural network model for training to obtain a reference air conditioner operation parameter prediction model;

步骤S303,获取参考空调运行参数预测模型的准确率;Step S303, obtaining the accuracy rate of the reference air conditioner operation parameter prediction model;

步骤S304,在准确率大于预设阈值的情况下,根据准确率确定带有第二标签的第二空调运行数据样本的总样本数量;Step S304, if the accuracy rate is greater than the preset threshold, determine the total number of samples of the second air-conditioning operation data samples with the second label according to the accuracy rate;

步骤S305,确定带有表征空调异常运行的参数的第二空调运行数据样本数量;Step S305, determining the number of second air conditioner operation data samples with parameters representing abnormal operation of the air conditioner;

步骤S306,根据带有表征空调异常运行的参数的第二空调运行数据样本数量和总样本数量获取多个带有第二标签的第二空调运行数据样本,第二标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;Step S306, according to the number of samples of the second air conditioner operation data and the total number of samples with parameters representing the abnormal operation of the air conditioner, a plurality of second air conditioner operation data samples with a second label are obtained, and the second label is used to represent the abnormal operation of the air conditioner Parameters or parameters used to characterize the normal operation of the air conditioner;

步骤S307,利用第二空调运行数据样本和第一空调运行数据样本对参考空调运行参数预测模型进行增量学习,获得空调运行参数预测模型。Step S307, using the second air conditioner operation data sample and the first air conditioner operation data sample to perform incremental learning on the reference air conditioner operation parameter prediction model to obtain the air conditioner operation parameter prediction model.

这样,根据第一空调运行数据样本获取参考空调运行参数预测模型,根据参考空调运行参数预测模型获取多个空调运行数据的预测结果,从而获得参考空调运行参数预测模型的准确率,在准确率大于预设阈值的情况下,参考空调运行参数预测模型训练完成,获取多个带有第二标签的第二空调运行数据样本,利用第二空调运行数据样本对参考空调运行参数预测模型进行增量学习,得到空调运行参数预测模型,提高了空调运行参数预测模型预测空调运行参数的准确率。In this way, the reference air conditioner operation parameter prediction model is obtained according to the first air conditioner operation data sample, and the prediction results of a plurality of air conditioner operation data are obtained according to the reference air conditioner operation parameter prediction model, thereby obtaining the accuracy rate of the reference air conditioner operation parameter prediction model. In the case of a preset threshold, the training of the reference air conditioner operating parameter prediction model is completed, a plurality of second air conditioner operating data samples with the second label are obtained, and the reference air conditioner operating parameter prediction model is incrementally learned by using the second air conditioner operating data samples , get the air conditioner operation parameter prediction model, improve the air conditioner operation parameter prediction model to predict the accuracy of air conditioner operation parameters.

可选地,获得多个比较结果后,还包括:在空调运行数据对应的预测结果与空调运行数据对应的测量结果差值不在预设范围内的情况下,对空调运行数据对应的预测结果进行修正;将修正后的预测结果和修正后的预测结果对应的空调运行数据输入参考空调运行参数预测模型进行训练。Optionally, after obtaining a plurality of comparison results, it also includes: when the difference between the prediction result corresponding to the air-conditioning operation data and the measurement result corresponding to the air-conditioning operation data is not within a preset range, performing an operation on the prediction result corresponding to the air-conditioning operation data Correction: inputting the corrected forecast result and the air conditioner operation data corresponding to the corrected forecast result into a reference air conditioner operation parameter prediction model for training.

可选地,对空调运行数据对应的预测结果进行修正,包括:将空调运行数据对应的预测结果替换为空调运行数据对应的测量结果。这样,在空调运行数据对应的预测结果与空调运行数据对应的测量结果差值不在预设范围内的情况下,将空调运行数据对应的预测结果替换为空调运行数据对应的测量结果,将替换后的预测结果和替换后的预测结果对应的空调运行数据输入参考空调运行参数预测模型再次进行训练,提高了参考空调预测模型的准确率。Optionally, correcting the prediction result corresponding to the air-conditioning operation data includes: replacing the prediction result corresponding to the air-conditioning operation data with the measurement result corresponding to the air-conditioning operation data. In this way, when the difference between the prediction result corresponding to the air-conditioning operation data and the measurement result corresponding to the air-conditioning operation data is not within the preset range, the prediction result corresponding to the air-conditioning operation data is replaced with the measurement result corresponding to the air-conditioning operation data, and the replaced The air-conditioning operation data corresponding to the prediction results and the replaced prediction results are input into the reference air-conditioning operation parameter prediction model for training again, which improves the accuracy of the reference air-conditioning prediction model.

结合图4所示,本公开实施例提供另一种用于训练空调运行参数预测模型的方法,包括:In conjunction with what is shown in FIG. 4 , an embodiment of the present disclosure provides another method for training an air conditioner operating parameter prediction model, including:

步骤S401,获取带有第一标签的第一空调运行数据样本,第一标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;Step S401, acquiring a first air conditioner operation data sample with a first label, where the first label is a parameter used to characterize the abnormal operation of the air conditioner or a parameter used to characterize the normal operation of the air conditioner;

步骤S402,将第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型;Step S402, inputting the first air conditioner operation data sample into a preset neural network model for training to obtain a reference air conditioner operation parameter prediction model;

步骤S403,获取多个空调运行数据;Step S403, acquiring a plurality of air conditioner operating data;

步骤S404,获取空调运行数据对应的测量结果;Step S404, obtaining the measurement results corresponding to the air conditioner operation data;

步骤S405,将各空调运行数据输入参考空调运行参数预测模型获得各空调运行数据对应的预测结果;Step S405, input the operation data of each air conditioner into the reference air conditioner operation parameter prediction model to obtain the prediction results corresponding to each air conditioner operation data;

步骤S406,判断空调运行数据对应的预测结果与空调运行数据对应的测量结果差值是否在预设范围内;在空调运行数据对应的预测结果与空调运行数据对应的测量结果差值不在预设范围内的情况下,执行步骤S407;在空调运行数据对应的预测结果与空调运行数据对应的测量结果差值在预设范围内的情况下,执行步骤S409;Step S406, judging whether the difference between the prediction result corresponding to the air conditioner operation data and the measurement result corresponding to the air conditioner operation data is within a preset range; if the difference between the prediction result corresponding to the air conditioner operation data and the measurement result corresponding to the air conditioner operation data is not within a preset range If the difference between the prediction result corresponding to the air-conditioning operation data and the measurement result corresponding to the air-conditioning operation data is within the preset range, execute step S409;

步骤S407,将空调运行数据对应的预测结果替换为空调运行数据对应的测量结果;然后执行步骤408;Step S407, replace the prediction result corresponding to the air conditioner operation data with the measurement result corresponding to the air conditioner operation data; then execute step 408;

步骤S408,将替换后的预测结果和替换后的预测结果对应的空调运行数据输入参考空调运行参数预测模型进行训练;然后返回执行步骤S405;Step S408, input the replaced prediction result and the air conditioner operation data corresponding to the replaced prediction result into the reference air conditioner operation parameter prediction model for training; then return to step S405;

步骤S409,根据各比较结果获得参考空调运行参数预测模型的准确率;然后执行步骤S410;Step S409, obtain the accuracy rate of the reference air conditioner operation parameter prediction model according to each comparison result; then execute step S410;

步骤S410,在准确率大于预设阈值的情况下,获取多个带有第二标签的第二空调运行数据样本,第二标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;Step S410, when the accuracy rate is greater than the preset threshold, obtain a plurality of second air conditioner operation data samples with a second label, the second label is a parameter used to characterize the abnormal operation of the air conditioner or a parameter used to characterize the normal operation of the air conditioner parameter;

步骤S411,利用第二空调运行数据样本和第一空调运行数据样本对参考空调运行参数预测模型进行增量学习,获得空调运行参数预测模型。Step S411 , using the second air conditioner operation data sample and the first air conditioner operation data sample to perform incremental learning on the reference air conditioner operation parameter prediction model to obtain the air conditioner operation parameter prediction model.

这样,根据第一空调运行数据样本获取参考空调运行参数预测模型,根据参考空调运行参数预测模型获取多个空调运行数据的预测结果,在空调运行数据对应的预测结果与空调运行数据对应的测量结果差值不在预设范围内的情况下,根据空调运行数据对应的测量结果对参考空调运行参数预测模型进行再次训练;在空调运行数据对应的预测结果与空调运行数据对应的测量结果差值在预设范围内的情况下,根据各比较结果获得参考空调运行参数预测模型的准确率,根据准确率获取多个带有第二标签的第二空调运行数据样本,利用带有表征空调异常运行数据的参数多于带有表征空调正常运行的参数的第二空调运行数据样本对参考空调运行参数预测模型进行增量学习,得到的空调运行参数预测模型,能够更加准确的对空调异常运行参数进行预测,使得能够提高利用空调运行参数预测模型对空调运行参数进行预测的准确率。In this way, the reference air conditioner operation parameter prediction model is obtained according to the first air conditioner operation data sample, and a plurality of air conditioner operation data prediction results are obtained according to the reference air conditioner operation parameter prediction model. The prediction results corresponding to the air conditioner operation data and the measurement results corresponding to the air conditioner operation data If the difference is not within the preset range, the reference air conditioner operation parameter prediction model is retrained according to the measurement results corresponding to the air conditioner operation data; In the case of setting the range, the accuracy rate of the reference air conditioner operation parameter prediction model is obtained according to the comparison results, and a plurality of second air conditioner operation data samples with the second label are obtained according to the accuracy rate, and the abnormal operation data of the air conditioner is used. The second air conditioner operating data sample with more parameters than the parameters representing the normal operation of the air conditioner performs incremental learning on the reference air conditioner operation parameter prediction model, and the obtained air conditioner operation parameter prediction model can more accurately predict the abnormal operation parameters of the air conditioner, The accuracy rate of predicting the air-conditioning operating parameters by using the air-conditioning operating parameter predicting model can be improved.

在一些实施例中,在时间段T内,对若干个空调采集若干次空调运行数据,将采集到的空调运行数据存储在数据库S中,在数据库中筛选出第一预设数量的空调异常运行状态的空调运行数据样本A和第二预设数量的空调正常运行状态的空调运行数据样本B,将A和B合成带有第一标签的第一空调运行数据样本C,将第一空调运行数据样本C输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型。获取参考空调运行参数预测模型的准确率;在该准确率大于预设阈值,例如90%,的情况下,根据该准确率获取增量比例,根据该增量比例获取带有第二标签的第二空调运行数据样本的总样本数量,确定带有表征空调异常运行的参数的第二空调运行数据样本数量;根据带有表征空调异常运行的参数的第二空调运行数据样本数量和总样本数量获取多个带有第二标签的第二空调运行数据样本D,利用第二空调运行数据样本D和第一空调运行数据样本C对参考空调运行参数预测模型进行增量学习,获得空调运行参数预测模型。这样,通过参考空调运行参数预测模型的准确率获取增量比例,根据增量比例获取带有第二标签的第二空调运行数据样本的总样本数量,从而获取总样本数量个带有第二标签的第二空调运行数据样本,利用第二空调运行数据样本和第一空调运行数据样本对参考空调运行参数预测模型进行增量学习,获得的空调运行参数预测模型,提高了空调运行参数预测模型预测空调运行参数的准确率。In some embodiments, within the time period T, air conditioner operation data is collected several times for several air conditioners, the collected air conditioner operation data is stored in the database S, and the first preset number of abnormal operation of the air conditioners is screened out in the database State air conditioner operation data sample A and the second preset number of air conditioner normal operation state air conditioner operation data samples B, A and B are synthesized into a first air conditioner operation data sample C with a first label, and the first air conditioner operation data Sample C is input to the preset neural network model for training to obtain a reference air conditioner operating parameter prediction model. Obtain the accuracy rate of the reference air conditioner operating parameter prediction model; when the accuracy rate is greater than a preset threshold, such as 90%, obtain the incremental ratio according to the accuracy rate, and obtain the second label with the second label according to the incremental ratio. Second, the total number of samples of air-conditioning operation data samples, determine the number of second air-conditioning operation data samples with parameters that characterize the abnormal operation of the air-conditioner; obtain according to the number of samples of the second air-conditioning operation data and the total number of samples with parameters that characterize the abnormal operation of the air-conditioner A plurality of second air conditioner operation data samples D with a second label, using the second air conditioner operation data sample D and the first air conditioner operation data sample C to carry out incremental learning on the reference air conditioner operation parameter prediction model to obtain the air conditioner operation parameter prediction model . In this way, by referring to the accuracy of the air conditioner operating parameter prediction model to obtain the incremental ratio, according to the incremental ratio to obtain the total number of samples of the second air conditioner operating data samples with the second label, thereby obtaining the total number of samples with the second label The second air conditioner operating data sample, using the second air conditioner operating data sample and the first air conditioner operating data sample to carry out incremental learning on the reference air conditioner operating parameter prediction model, the obtained air conditioner operating parameter prediction model improves the air conditioner operating parameter prediction model. Accuracy of air conditioner operating parameters.

结合图5所示,本公开实施例提供一种用于训练空调运行参数预测模型的装置,包括第一获取模块501、训练模块502、第二获取模块503和增量学习模块504。第一获取模块501被配置为获取带有第一标签的第一空调运行数据样本,第一标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;训练模块502被配置为将第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型;第二获取模块503被配置为根据参考空调运行参数预测模型获取多个带有第二标签的第二空调运行数据样本,第二标签为用于表征空调异常运行的参数或用于表征空调正常运行的参数;其中,带有表征空调异常运行的参数的第二空调运行数据样本多于带有表征空调正常运行的参数的第二空调运行数据样本;增量学习模块504被配置为利用第二空调运行数据样本和第一空调运行数据样本对参考空调运行参数预测模型进行增量学习,获得空调运行参数预测模型。As shown in FIG. 5 , an embodiment of the present disclosure provides an apparatus for training an air conditioner operating parameter prediction model, including a first acquisition module 501 , a training module 502 , a second acquisition module 503 and an incremental learning module 504 . The first acquisition module 501 is configured to acquire a first air conditioner operating data sample with a first label, the first label is a parameter for characterizing abnormal operation of the air conditioner or a parameter for characterizing normal operation of the air conditioner; the training module 502 is configured as Input the first air conditioner operation data sample into a preset neural network model for training to obtain a reference air conditioner operation parameter prediction model; the second acquisition module 503 is configured to obtain a plurality of second tags with the second label according to the reference air conditioner operation parameter prediction model Two air conditioner operation data samples, the second tag is a parameter used to characterize the abnormal operation of the air conditioner or a parameter used to characterize the normal operation of the air conditioner; wherein, there are more second air conditioner operation data samples with parameters representing the abnormal operation of the air conditioner than those with The second air-conditioning operation data sample of the parameters of the normal operation of the air conditioner; the incremental learning module 504 is configured to use the second air-conditioning operation data sample and the first air-conditioning operation data sample to perform incremental learning on the reference air-conditioning operation parameter prediction model to obtain the air-conditioning operation Parameter prediction model.

采用本公开实施例提供的用于训练空调运行参数预测模型的装置,通过将第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型,利用带有表征空调异常运行的参数多于带有表征空调正常运行的参数的第二空调运行数据样本对参考空调运行参数预测模型进行增量学习,得到的空调运行参数预测模型,能够更加准确的对空调异常运行参数进行预测,使得能够提高利用空调运行参数预测模型对空调运行参数进行预测的准确率。Using the device for training the air conditioner operating parameter prediction model provided by the embodiment of the present disclosure, by inputting the first air conditioner operating data sample into the preset neural network model for training, a reference air conditioner operating parameter prediction model is obtained, and the model with the characteristic of air conditioner abnormality is used The operating parameters are more than the second air conditioner operating data sample with parameters representing the normal operation of the air conditioner. The reference air conditioner operation parameter prediction model is incrementally learned, and the obtained air conditioner operation parameter prediction model can more accurately predict the abnormal operation parameters of the air conditioner. Prediction makes it possible to improve the accuracy rate of air conditioner operation parameter prediction by using the air conditioner operation parameter prediction model.

可选地,第三获取模型被配置为通过以下方式实现根据参考空调运行参数预测模型获取多个带有第二标签的第二空调运行数据样本:获取参考空调运行参数预测模型的准确率;在准确率大于预设阈值的情况下,获取多个带有第二标签的第二空调运行数据样本。Optionally, the third acquisition model is configured to acquire a plurality of second air-conditioner operation data samples with the second label according to the reference air-conditioner operation parameter prediction model in the following manner: obtain the accuracy rate of the reference air-conditioner operation parameter prediction model; If the accuracy rate is greater than the preset threshold, a plurality of second air conditioner operation data samples with the second label are acquired.

可选地,第三获取模型被配置为通过以下方式获取参考空调运行参数预测模型的准确率:获取多个空调运行数据;获取各空调运行数据对应的测量结果;将各空调运行数据输入参考空调运行参数预测模型获得各空调运行数据对应的预测结果;分别将各空调运行数据的预测结果和各空调运行数据的测量结果进行比较,获得多个比较结果;比较结果用于表征预测结果与测量结果的差值是否在预设范围内;根据各比较结果获得参考空调运行参数预测模型的准确率。Optionally, the third acquisition model is configured to acquire the accuracy of the reference air conditioner operating parameter prediction model in the following manner: acquire a plurality of air conditioner operating data; acquire measurement results corresponding to each air conditioner operating data; input each air conditioner operating data into the reference air conditioner The operation parameter prediction model obtains the prediction results corresponding to the operation data of each air conditioner; respectively compares the prediction results of each air conditioner operation data with the measurement results of each air conditioner operation data to obtain multiple comparison results; the comparison results are used to represent the prediction results and measurement results Whether the difference is within the preset range; according to each comparison result, the accuracy rate of the reference air-conditioning operation parameter prediction model is obtained.

可选地,第三获取模型被配置为通过以下方式获取多个带有第二标签的第二空调运行数据样本:根据参考空调运行参数预测模型的准确率确定带有第二标签的第二空调运行数据样本的总样本数量,确定带有表征空调异常运行的参数的第二空调运行数据样本数量;根据带有表征空调异常运行的参数的第二空调运行数据样本数量和总样本数量获取多个带有第二标签的第二空调运行数据样本。Optionally, the third acquisition model is configured to acquire a plurality of second air conditioner operating data samples with the second label in the following manner: determine the second air conditioner with the second label according to the accuracy rate of the reference air conditioner operation parameter prediction model The total number of samples of the operation data samples, determine the number of second air conditioner operation data samples with parameters representing the abnormal operation of the air conditioner; obtain multiple A second air conditioner operating data sample with a second label.

可选地,用于训练空调运行参数预测模型的装置还包括修正模块。修正模型被配置为获得多个比较结果后,在空调运行数据对应的预测结果与空调运行数据对应的测量结果差值不在预设范围内的情况下,对空调运行数据对应的预测结果进行修正;将修正后的预测结果和修正后的预测结果对应的空调运行数据输入参考空调运行参数预测模型进行训练。Optionally, the device for training an air conditioner operating parameter prediction model further includes a correction module. The correction model is configured to correct the prediction result corresponding to the air conditioner operation data when the difference between the prediction result corresponding to the air conditioner operation data and the measurement result corresponding to the air conditioner operation data is not within a preset range after obtaining multiple comparison results; The corrected prediction result and the air conditioner operation data corresponding to the corrected prediction result are input into the reference air conditioner operation parameter prediction model for training.

可选地,修正模块被配置为通过以下方式实现对空调运行数据对应的预测结果进行修正:将空调运行数据对应的预测结果替换为空调运行数据对应的测量结果。Optionally, the correction module is configured to correct the prediction result corresponding to the air-conditioning operation data by replacing the prediction result corresponding to the air-conditioning operation data with the measurement result corresponding to the air-conditioning operation data.

结合图6所示,本公开实施例提供一种用于训练空调运行参数预测模型的装置,包括处理器(processor)600和存储器(memory)601。可选地,该装置还可以包括通信接口(Communication Interface)602和总线603。其中,处理器600、通信接口602、存储器601可以通过总线603完成相互间的通信。通信接口602可以用于信息传输。处理器600可以调用存储器601中的逻辑指令,以执行上述实施例的用于训练空调运行参数预测模型的方法。As shown in FIG. 6 , an embodiment of the present disclosure provides an apparatus for training an air conditioner operating parameter prediction model, including a processor (processor) 600 and a memory (memory) 601 . Optionally, the device may further include a communication interface (Communication Interface) 602 and a bus 603. Wherein, the processor 600 , the communication interface 602 , and the memory 601 can communicate with each other through the bus 603 . The communication interface 602 can be used for information transmission. The processor 600 can call the logic instructions in the memory 601 to execute the method for training the air conditioner operating parameter prediction model of the above-mentioned embodiment.

此外,上述的存储器601中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。In addition, the above logic instructions in the memory 601 may be implemented in the form of software function units and when sold or used as an independent product, may be stored in a computer-readable storage medium.

存储器601作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器601中的程序指令/模块,从而执行功能应用以及参数处理,即实现上述实施例中用于训练空调运行参数预测模型的方法。The memory 601, as a computer-readable storage medium, can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure. The processor 100 executes the function application and parameter processing by running the program instructions/modules stored in the memory 601 , that is, implements the method for training the air conditioner operating parameter prediction model in the above embodiments.

存储器601可包括存储程序区和存储参数区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储参数区可存储根据终端设备的使用所创建的参数等。此外,存储器601可以包括高速随机存取存储器,还可以包括非易失性存储器。The memory 601 may include a program storage area and a parameter storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the parameter storage area may store parameters created according to the use of the terminal device, etc. In addition, the memory 601 may include a high-speed random access memory, and may also include a non-volatile memory.

采用本公开实施例提供的用于训练空调运行参数预测模型的装置,通过将第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型,再利用带有表征空调异常运行的参数多于带有表征空调正常运行的参数的第二空调运行数据样本对参考空调运行参数预测模型进行增量学习,得到的空调运行参数预测模型,能够更加准确的对空调异常运行参数进行预测,使得能够提高利用空调运行参数预测模型对空调运行参数进行预测的准确率。Using the device for training the air conditioner operating parameter prediction model provided by the embodiments of the present disclosure, by inputting the first air conditioner operating data sample into the preset neural network model for training, a reference air conditioner operating parameter prediction model is obtained, and then using The second air conditioner operation data sample with more parameters representing the normal operation of the air conditioner than the second air conditioner operation data sample carries out incremental learning on the reference air conditioner operation parameter prediction model, and the obtained air conditioner operation parameter prediction model can more accurately predict the abnormal operation parameters of the air conditioner Prediction is performed, so that the accuracy rate of predicting the air conditioner operation parameters by using the air conditioner operation parameter prediction model can be improved.

本公开实施例提供了一种电子设备,包含上述的用于训练空调运行参数预测模型的装置。该电子设备通过将第一空调运行数据样本输入预设的神经网络模型进行训练,获得参考空调运行参数预测模型,再利用带有表征空调异常运行的参数多于带有表征空调正常运行的参数的第二空调运行数据样本对参考空调运行参数预测模型进行增量学习,得到的空调运行参数预测模型,能够更加准确的对空调异常运行参数进行预测,使得能够提高利用空调运行参数预测模型对空调运行参数进行预测的准确率。An embodiment of the present disclosure provides an electronic device, including the above-mentioned apparatus for training an air conditioner operating parameter prediction model. The electronic device trains by inputting the first air conditioner operation data sample into a preset neural network model to obtain a reference air conditioner operation parameter prediction model, and then utilizes a model with more parameters representing abnormal operation of the air conditioner than parameters representing normal operation of the air conditioner. The second air conditioner operation data sample performs incremental learning on the reference air conditioner operation parameter prediction model, and the obtained air conditioner operation parameter prediction model can more accurately predict the abnormal operation parameters of the air conditioner, making it possible to improve the use of the air conditioner operation parameter prediction model for air conditioner operation. The prediction accuracy of parameters.

可选地,电子设备包括:计算机或服务器等。Optionally, the electronic device includes: a computer or a server.

本公开实施例提供了一种存储介质,存储有程序指令,所述程序指令在运行时,执行上述用于训练空调运行参数预测模型的方法。An embodiment of the present disclosure provides a storage medium, which stores program instructions, and when the program instructions are run, execute the above-mentioned method for training an air conditioner operating parameter prediction model.

本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于训练空调运行参数预测模型的方法。An embodiment of the present disclosure provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the The computer executes the above method for training an air conditioner operating parameter prediction model.

上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。The above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.

本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。The technical solutions of the embodiments of the present disclosure can be embodied in the form of software products, which are stored in a storage medium and include one or more instructions to enable a computer device (which may be a personal computer, a server, or a network equipment, etc.) to perform all or part of the steps of the method described in the embodiments of the present disclosure. The aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc. A medium that can store program code, or a transitory storage medium.

以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。The above description and drawings sufficiently illustrate the embodiments of the present disclosure to enable those skilled in the art to practice them. Other embodiments may incorporate structural, logical, electrical, procedural, and other changes. The examples merely represent possible variations. Individual components and functions are optional unless explicitly required, and the order of operations may vary. Portions and features of some embodiments may be included in or substituted for those of other embodiments. Also, the terms used in the present application are used to describe the embodiments only and are not used to limit the claims. As used in the examples and description of the claims, the singular forms "a", "an" and "the" are intended to include the plural forms as well unless the context clearly indicates otherwise . Similarly, the term "and/or" as used in this application is meant to include any and all possible combinations of one or more of the associated listed ones. Additionally, when used in this application, the term "comprise" and its variants "comprises" and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these. Without further limitations, an element defined by the statement "comprising a ..." does not exclude the presence of additional identical elements in the process, method or apparatus comprising said element. Herein, what each embodiment focuses on may be the difference from other embodiments, and the same and similar parts of the various embodiments may refer to each other. For the method, product, etc. disclosed in the embodiment, if it corresponds to the method part disclosed in the embodiment, then the relevant part can refer to the description of the method part.

本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can appreciate that the units and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed by hardware or software may depend on the specific application and design constraints of the technical solution. Said artisans may implement the described functions using different methods for each particular application, but such implementation should not be regarded as exceeding the scope of the disclosed embodiments. The skilled person can clearly understand that for the convenience and brevity of the description, the specific working process of the above-described system, device and unit can refer to the corresponding process in the foregoing method embodiment, which will not be repeated here.

本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In the embodiments disclosed herein, the disclosed methods and products (including but not limited to devices, equipment, etc.) can be implemented in other ways. For example, the device embodiments described above are only illustrative. For example, the division of the units may only be a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined Or it can be integrated into another system, or some features can be ignored, or not implemented. In addition, the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms. The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to implement this embodiment. In addition, each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.

附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to embodiments of the disclosure. In this regard, each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions. In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved. In the descriptions corresponding to the flowcharts and block diagrams in the accompanying drawings, the operations or steps corresponding to different blocks may also occur in a different order than that disclosed in the description, and sometimes there is no specific agreement between different operations or steps. order. For example, two consecutive operations or steps may, in fact, be performed substantially concurrently, or they may sometimes be performed in the reverse order, depending upon the functionality involved. Each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts, can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Claims (10)

1. A method for training an air conditioner operating parameter prediction model, comprising:
acquiring a first air conditioner operation data sample with a first tag, wherein the first tag is a parameter for representing abnormal operation of an air conditioner or a parameter for representing normal operation of the air conditioner;
inputting the first air conditioner operation data sample into a preset neural network model for training to obtain a reference air conditioner operation parameter prediction model;
acquiring a plurality of second air conditioner operation data samples with second labels according to the reference air conditioner operation parameter prediction model, wherein the second labels are parameters used for representing abnormal operation of the air conditioner or parameters used for representing normal operation of the air conditioner; wherein, the second air conditioner operation data sample with the parameter for representing the abnormal operation of the air conditioner is more than the second air conditioner operation data sample with the parameter for representing the normal operation of the air conditioner;
and performing incremental learning on the reference air conditioner operation parameter prediction model by using the second air conditioner operation data sample and the first air conditioner operation data sample to obtain an air conditioner operation parameter prediction model.
2. The method of claim 1, wherein obtaining a plurality of second air conditioner operation data samples with second tags according to the reference air conditioner operation parameter prediction model comprises:
Acquiring the accuracy of the reference air conditioner operation parameter prediction model;
and under the condition that the accuracy rate is larger than a preset threshold value, acquiring a plurality of second air conditioner operation data samples with second labels.
3. The method of claim 2, wherein obtaining the accuracy of the reference air conditioner operating parameter prediction model comprises:
acquiring a plurality of air conditioner operation data; obtaining a measurement result corresponding to each air conditioner operation data;
inputting the air conditioner operation data into the reference air conditioner operation parameter prediction model to obtain a prediction result corresponding to the air conditioner operation data;
respectively comparing the predicted result of each air conditioner operation data with the measured result of each air conditioner operation data to obtain a plurality of comparison results; the comparison result is used for representing whether the difference value between the prediction result and the measurement result is within a preset range;
and obtaining the accuracy of the reference air conditioner operation parameter prediction model according to each comparison result.
4. The method of claim 2, wherein obtaining a plurality of second air conditioner operation data samples with second tags comprises:
determining the total sample number of second air conditioner operation data samples with second labels according to the accuracy rate, and determining the second air conditioner operation data sample number with parameters representing abnormal operation of the air conditioner;
And obtaining a plurality of second air conditioner operation data samples with second labels according to the second air conditioner operation data sample number with parameters representing abnormal operation of the air conditioner and the total sample number.
5. The method of claim 3, wherein after obtaining the plurality of comparison results, further comprising:
correcting the predicted result corresponding to the air conditioner operation data under the condition that the difference value between the predicted result corresponding to the air conditioner operation data and the measured result corresponding to the air conditioner operation data is not in a preset range;
and inputting the corrected predicted result and the air conditioner operation data corresponding to the corrected predicted result into the reference air conditioner operation parameter prediction model for training.
6. The method of claim 5, wherein correcting the predicted result corresponding to the air conditioner operation data comprises:
and replacing the predicted result corresponding to the air conditioner operation data with the measured result corresponding to the air conditioner operation data.
7. An apparatus for training an air conditioner operating parameter prediction model, comprising:
the first acquisition module is configured to acquire a first air conditioner operation data sample with a first label, wherein the first label is a parameter for representing abnormal operation of the air conditioner or a parameter for representing normal operation of the air conditioner;
The training module is configured to input the first air conditioner operation data sample into a preset neural network model for training to obtain a reference air conditioner operation parameter prediction model;
the second acquisition module is configured to acquire a plurality of second air conditioner operation data samples with second labels according to the reference air conditioner operation parameter prediction model, wherein the second labels are parameters used for representing abnormal operation of the air conditioner or parameters used for representing normal operation of the air conditioner; wherein, the second air conditioner operation data sample with the parameter for representing the abnormal operation of the air conditioner is more than the second air conditioner operation data sample with the parameter for representing the normal operation of the air conditioner;
and the increment learning module is configured to perform increment learning on the reference air conditioner operation parameter prediction model by using the second air conditioner operation data sample and the first air conditioner operation data sample to obtain an air conditioner operation parameter prediction model.
8. An apparatus for training an air conditioner operating parameter prediction model comprising a processor and a memory storing program instructions, wherein the processor is configured, when executing the program instructions, to perform the method for training an air conditioner operating parameter prediction model of any one of claims 1 to 6.
9. An electronic device comprising the apparatus for training an air conditioner operation parameter prediction model as claimed in claim 8.
10. A storage medium storing program instructions which, when executed, perform the method for training an air conditioner operating parameter prediction model of any one of claims 1 to 6.
CN202111276995.0A 2021-10-29 2021-10-29 Method and device for training air conditioner operating parameter prediction model, electronic equipment, storage medium Pending CN116066977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111276995.0A CN116066977A (en) 2021-10-29 2021-10-29 Method and device for training air conditioner operating parameter prediction model, electronic equipment, storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111276995.0A CN116066977A (en) 2021-10-29 2021-10-29 Method and device for training air conditioner operating parameter prediction model, electronic equipment, storage medium

Publications (1)

Publication Number Publication Date
CN116066977A true CN116066977A (en) 2023-05-05

Family

ID=86168511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111276995.0A Pending CN116066977A (en) 2021-10-29 2021-10-29 Method and device for training air conditioner operating parameter prediction model, electronic equipment, storage medium

Country Status (1)

Country Link
CN (1) CN116066977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118836554A (en) * 2024-07-29 2024-10-25 深圳市佳冷环境科技有限公司 Central air conditioner safety control method and system
WO2025112746A1 (en) * 2023-11-30 2025-06-05 比亚迪股份有限公司 Air conditioner control method and related device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025112746A1 (en) * 2023-11-30 2025-06-05 比亚迪股份有限公司 Air conditioner control method and related device
CN118836554A (en) * 2024-07-29 2024-10-25 深圳市佳冷环境科技有限公司 Central air conditioner safety control method and system

Similar Documents

Publication Publication Date Title
CN112101662B (en) Device health status and life cycle detection method, storage medium and electronic device
CN111508216B (en) Intelligent early warning method for dam safety monitoring data
US7779467B2 (en) N grouping of traffic and pattern-free internet worm response system and method using N grouping of traffic
CN110489314B (en) Model anomaly detection method and device, computer equipment and storage medium
CN111104736B (en) Abnormal data detection method, device, medium and equipment based on time sequence
KR101960755B1 (en) Method and apparatus of generating unacquired power data
CN112884199A (en) Method and device for predicting faults of hydropower station equipment, computer equipment and storage medium
EP3584657B1 (en) Risk assessment device, risk assessment method, and risk assessment program
CN116066977A (en) Method and device for training air conditioner operating parameter prediction model, electronic equipment, storage medium
CN112380073B (en) Fault position detection method and device and readable storage medium
CN110134913B (en) Data analysis method, data analysis device and recording medium
CN112684400A (en) Method and system for monitoring electric energy meter operation error data of small electric quantity distribution area
WO2020166236A1 (en) Work efficiency evaluating method, work efficiency evaluating device, and program
TW202016783A (en) Behavior marking model training system and method
CN112700131A (en) AB test method and device based on artificial intelligence, computer equipment and medium
CN117194201A (en) Health degree evaluation and observation method and device for service system
CN117235664A (en) Fault diagnosis method, system and computer equipment for distribution communication equipment
JP2016021241A (en) Guarantee cost estimation based on calculation of the number of expected product failures
CN111306051B (en) Probe type state monitoring and early warning method, device and system for oil transfer pump unit
EP1630635A2 (en) Method and apparatus for improved fault detection in power generation equipment
TWI773883B (en) Factory evaluation device, factory evaluation method, and factory evaluation program
CN113834185B (en) Control method and device for air conditioner and server
CN108363024B (en) Method and device for positioning fault point of charging pile
CN117707050B (en) Cloud computing-based numerical control machine tool real-time monitoring and data analysis system and method
CN117872166B (en) Method and device for detecting thermal runaway of energy storage battery and electronic equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20250325

Address after: 266101 Haier Road, Laoshan District, Qingdao, Qingdao, Shandong Province, No. 1

Applicant after: QINGDAO HAIER SMART TECHNOLOGY R&D Co.,Ltd.

Country or region after: China

Address before: 266101 Haier Road, Laoshan District, Qingdao, Qingdao, Shandong Province, No. 1

Applicant before: QINGDAO HAIER SMART TECHNOLOGY R&D Co.,Ltd.

Country or region before: China

Applicant before: Haier Smart Home Co., Ltd.

TA01 Transfer of patent application right