CN116051423A - 基于空间频域滤波的激光散斑衬比血流成像方法及系统 - Google Patents
基于空间频域滤波的激光散斑衬比血流成像方法及系统 Download PDFInfo
- Publication number
- CN116051423A CN116051423A CN202310206847.4A CN202310206847A CN116051423A CN 116051423 A CN116051423 A CN 116051423A CN 202310206847 A CN202310206847 A CN 202310206847A CN 116051423 A CN116051423 A CN 116051423A
- Authority
- CN
- China
- Prior art keywords
- speckle
- frequency domain
- signal
- fourier transform
- fast fourier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 57
- 238000001914 filtration Methods 0.000 title claims abstract description 48
- 230000017531 blood circulation Effects 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 13
- 238000012545 processing Methods 0.000 claims abstract description 11
- 230000003068 static effect Effects 0.000 claims description 43
- 238000012935 Averaging Methods 0.000 claims description 14
- 230000001427 coherent effect Effects 0.000 claims description 9
- 230000009466 transformation Effects 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 4
- 101100391182 Dictyostelium discoideum forI gene Proteins 0.000 claims description 2
- 239000008280 blood Substances 0.000 claims 2
- 210000004369 blood Anatomy 0.000 claims 2
- 238000004364 calculation method Methods 0.000 abstract description 8
- 238000004458 analytical method Methods 0.000 abstract description 4
- 238000005286 illumination Methods 0.000 abstract description 3
- 230000002829 reductive effect Effects 0.000 abstract description 3
- 238000002059 diagnostic imaging Methods 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 210000003743 erythrocyte Anatomy 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000002583 angiography Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0261—Measuring blood flow using optical means, e.g. infrared light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7228—Signal modulation applied to the input signal sent to patient or subject; demodulation to recover the physiological signal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/725—Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
- A61B5/7257—Details of waveform analysis characterised by using transforms using Fourier transforms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
- G06T2207/20056—Discrete and fast Fourier transform, [DFT, FFT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
- G06T2207/30104—Vascular flow; Blood flow; Perfusion
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Cardiology (AREA)
- Hematology (AREA)
- Mathematical Physics (AREA)
- Image Processing (AREA)
Abstract
本发明公开了基于空间频域滤波的激光散斑衬比血流成像方法及系统,涉及生物组织医学成像领域。该方法包括:S1,图像采集步骤;S2,二维快速傅里叶变换步骤;S3,空间频域滤波步骤;S4,二维快速傅里叶逆变换步骤;S5,时域处理步骤;S6,调制步骤。本发明通过空间频域滤波提取散斑图像中的背景信号,抑制光照背景的不均匀性;相比于一维快速傅里叶变换,利用二维快速傅里叶变换分析法来分离散斑信号和背景信号,有效降低计算复杂度的同时提高计算速度;利用空间频域滤波和时域叠加平均散斑信号计算深度调制衬比值,有效提高LSCI成像的衬比度和信噪比,也因此进一步提升了成像的动态范围。
Description
技术领域
本发明涉及生物组织医学成像领域,具体涉及空间频域滤波的激光散斑衬比血流成像方法及系统。
背景技术
激光散斑起源于相干激光被散射后的随机相干叠加过程。相干光的随机干涉形成了明暗变化的散斑图案,散斑图样随时间或者空间变化的统计特性包含了散射颗粒运动的相关信息,因此,通过分析散斑光强的时间和空间的统计特性,可以对散斑颗粒(比如血红细胞)的运动速度进行评估。LSCI(laser speckle contrast imaging,激光散斑衬比成像)利用散斑的光强统计量来提取二维血流速度分布图。散斑强度的统计特性分析包括一阶统计和二阶统计,其中一阶统计主要描述了单个像素点所对应的散斑强度的涨落,包括散斑强度的标准偏差和平均值,以及标准偏差和均值的比值,即使用“衬比值”来描述由强度变化所引起的散斑模糊程度,并根据散斑模糊程度推导散射粒子的运动速度。表示如下:
根据LSCI的基本原理,要实现高质量LSCI成像的关键步骤是如何利用激光散斑图像的空间和统计特性来提取血管中散射粒子(比如血红细胞)的运动信息,从而实现血流衬比成像。传统的LSCI算法以衬比值来估计血流的相对速度,只能做到相对测量;基于强度涨落调制效应,文献(M. Y. Wang, W. J. Mao, C. Z. Guan, G. P. Feng, H. S. Tan, D.G. Han, and Y. G. Zeng, "Full-field functional optical angiography," OpticsLetters 42(3), 635-638 (2017).),文献(Z. Yaguang, W. Mingyi, F. Guangping, L.Xianjun, and Y. Guojian, "Laser speckle imaging based on intensityfluctuation modulation," Optics letters ,38(8), 1313-1315 (2013).),文献(W.Mingyi, Z. Yaguang, L. Xianjun, L. Xuanlong, F. Guanping, H. Dingan, and Y.Guojian, "Full-field optical micro-angiography," Applied Physics Letters 104(5), 053704 (2014).)和文献(F. L. Zhang, M. Y. Wang, D. A. Han, H. S. Tan, G.J. Yang, and Y. G. Zeng, "In vivo full-field functional opticalhemocytometer," J. Biophotonics 11(2), e201700039 (2018).) 提出了基于强度涨落调制(LSCI-IFM)和调制深度(LSCI-MD)的全场光学血流成像技术,将静态散斑信号看作直流信号,将动态散斑信号看作交流信号,根据动态散射信号和静态散射信号在频谱分布的差异,在时间域上分离高频红细胞信号和低频背景组织信号,然后用红细胞信号和背景信号的强度之比(调制深度MD)作为成像参数重构血流图像,能够有效地实现微血管造影成像。但是,还是只能做到相对测量。此外,LSCI-IFM、LSCI-MD是以单点扫描遍历的方式获取二维散斑图像信号,整体计算效率较慢。随机的噪声没有经过空间域和时间域的平均处理,在成像动态范围上无法实现本质上提升,存在对比度低,噪声严重的问题。
发明申请《一种基于能量调制的激光散斑血流成像方法及装置》(202211105024.4)公开了一种方法,依据血红细胞和组织的光学散射特性差异,即不同结构、形态、化学构成的细胞对光子的吸收系数、散射系数存在差异性,从而对光子能量的吸收、损耗、转移有所差异,其成像单元在时域,处理装置是频谱能量计算单元;其理论基础是血流区域和组织区域在能量分布上的差异来区分血流信号和背景组织信号;该方法侧重于量化血流的生化信息,帮助医生或生命科学研究人员对生化指标进行评判;然而,和LSCI-IFM、LSCI-MD类似,这种方法在成像效果上依然存在一定的缺陷。由于生物组织结构与临床应用环境的复杂性,LSCI成像会受到各种不利因素的影响,比如偏移噪声和随机噪声会降低LSCI成像信噪比;照射激光束光强非均匀分布或者被测物体表面的反射往往会使血流成像背景出现不均匀现象;静态散斑的存在不仅会降低LSCI成像信噪比和对比度,还会对血流信息的提取产生干扰,降低衬比度K值的精度,增加血流估计误差,导致成像的动态范围不足。
发明内容
本发明的目的在于解决现有技术中,计算效率较慢、动态范围上无法实现本质提升、对比度低和噪声严重的问题。
本发明解决其技术问题所采用的技术方案是:基于空间频域滤波的激光散斑衬比血流成像方法,包括:
其中,是第n帧激光散斑图像光强分布,是第n帧散斑图像的背景信号,是第n帧散斑图像的动态散斑信号,是散射干涉强度分布的调制函数,表示任意空间分布的散射粒子由于运动引入的频移分量,表示随着空间和时间t随机变化的干涉散射光之间的相位差。
其中,FFT表示二维快速傅里叶变换。
本发明还提供了基于空间频域滤波的激光散斑衬比血流成像系统,包括:
与现有技术相比,本发明具有如下优点:
(1)通过空间频域滤波提取散斑图像中的背景信号,以抑制光照背景的不均匀性;
(2)相比于一维快速傅里叶变换,利用二维快速傅里叶变换分析法来分离散斑信号和背景信号,可以有效降低计算复杂度的同时提高计算速度;
(3)利用空间频域滤波和时域叠加平均散斑信号计算深度调制衬比值,可以有效提高LSCI成像的衬比度和信噪比,也因此进一步提升了成像的动态范围。
以下结合附图及实施例对本发明作进一步详细说明,但本发明不局限于实施例。
附图说明
图1为本发明实施例的基于空间频域滤波的激光散斑衬比血流成像方法的流程图;
图2为本发明实施例的基于空间频域滤波的激光散斑衬比血流成像方法的详细流程图;
图3为本发明实施例的基于空间频域滤波的激光散斑衬比血流成像系统的结构框图。
具体实施方式
参见图1所示,为本发明实施例的基于空间频域滤波的激光散斑衬比血流成像方法的流程图,一种基于空间频域滤波的激光散斑衬比血流成像方法,包括:S1图像采集步骤;S2二维快速傅里叶变换步骤;S3空间频域滤波步骤;S4二维快速傅里叶逆变换步骤;S5时域处理步骤;S6调制步骤。
参见图2所示,为本发明实施例的基于空间频域滤波的激光散斑衬比血流成像方法的详细流程图。
其中,是第n帧激光散斑图像光强分布,是第n帧散斑图像的背景信号,是第n帧散斑图像的动态散斑信号,是散射干涉强度分布的调制函数,表示任意空间分布的散射粒子由于运动引入的频移分量,表示随着空间和时间t随机变化的干涉散射光之间的相位差。
其中,FFT表示二维快速傅里叶变换。
参见图3所示,为本发明实施例的基于空间频域滤波的激光散斑衬比血流成像系统的结构框图,包括:
上述系统可用于执行上述实施例提供的方法,具备相应的功能和有益效果。
可见,本发明提出的基于空间频域滤波的激光散斑衬比血流成像方法及系统,通过空间频域滤波提取散斑图像中的背景信号,抑制光照背景的不均匀性;利用二维快速傅里叶变换分析法来分离散斑信号和背景信号,有效降低计算复杂度的同时提高计算速度;利用空间频域滤波和时域叠加平均散斑信号计算深度调制衬比值,有效提高LSCI成像的衬比度和信噪比,也因此进一步提升了成像的动态范围。
以上仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (8)
1.基于空间频域滤波的激光散斑衬比血流成像方法,其特征在于,包括:
8.一种基于空间频域滤波的激光散斑衬比血流成像系统,其特征在于,包括:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310206847.4A CN116051423B (zh) | 2023-03-07 | 2023-03-07 | 基于空间频域滤波的激光散斑衬比血流成像方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310206847.4A CN116051423B (zh) | 2023-03-07 | 2023-03-07 | 基于空间频域滤波的激光散斑衬比血流成像方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116051423A true CN116051423A (zh) | 2023-05-02 |
CN116051423B CN116051423B (zh) | 2023-06-20 |
Family
ID=86133295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310206847.4A Active CN116051423B (zh) | 2023-03-07 | 2023-03-07 | 基于空间频域滤波的激光散斑衬比血流成像方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116051423B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116309195A (zh) * | 2023-05-26 | 2023-06-23 | 华侨大学 | 基于三维傅里叶变换的全场激光散斑血流成像方法及系统 |
CN116385447A (zh) * | 2023-06-07 | 2023-07-04 | 佛山科学技术学院 | 一种甲襞白细胞的监测方法、装置、设备及介质 |
CN116784817A (zh) * | 2023-08-18 | 2023-09-22 | 华侨大学 | 基于散射偏差因子的激光散斑衬比血流成像方法及系统 |
CN118230082A (zh) * | 2024-05-23 | 2024-06-21 | 华侨大学 | 基于二维主成分分析的激光散斑衬比血流成像方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104173038A (zh) * | 2014-08-29 | 2014-12-03 | 上海交通大学 | 基于频域激光散斑成像的血流速度测量方法 |
CN109124615A (zh) * | 2018-09-06 | 2019-01-04 | 佛山科学技术学院 | 一种可选区高动态激光散斑血流成像装置及方法 |
CN112617789A (zh) * | 2020-07-28 | 2021-04-09 | 上海大学 | 激光散斑血流成像方法及系统 |
US20210177283A1 (en) * | 2019-12-16 | 2021-06-17 | Covidien Lp | Determining blood flow using laser speckle imaging |
-
2023
- 2023-03-07 CN CN202310206847.4A patent/CN116051423B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104173038A (zh) * | 2014-08-29 | 2014-12-03 | 上海交通大学 | 基于频域激光散斑成像的血流速度测量方法 |
CN109124615A (zh) * | 2018-09-06 | 2019-01-04 | 佛山科学技术学院 | 一种可选区高动态激光散斑血流成像装置及方法 |
US20210177283A1 (en) * | 2019-12-16 | 2021-06-17 | Covidien Lp | Determining blood flow using laser speckle imaging |
CN112617789A (zh) * | 2020-07-28 | 2021-04-09 | 上海大学 | 激光散斑血流成像方法及系统 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116309195A (zh) * | 2023-05-26 | 2023-06-23 | 华侨大学 | 基于三维傅里叶变换的全场激光散斑血流成像方法及系统 |
CN116309195B (zh) * | 2023-05-26 | 2023-08-29 | 华侨大学 | 基于三维傅里叶变换的全场激光散斑血流成像方法及系统 |
CN116385447A (zh) * | 2023-06-07 | 2023-07-04 | 佛山科学技术学院 | 一种甲襞白细胞的监测方法、装置、设备及介质 |
CN116385447B (zh) * | 2023-06-07 | 2023-11-24 | 佛山科学技术学院 | 一种甲襞白细胞的监测方法、装置、设备及介质 |
CN116784817A (zh) * | 2023-08-18 | 2023-09-22 | 华侨大学 | 基于散射偏差因子的激光散斑衬比血流成像方法及系统 |
CN116784817B (zh) * | 2023-08-18 | 2023-11-21 | 华侨大学 | 基于散射偏差因子的激光散斑衬比血流成像方法及系统 |
CN118230082A (zh) * | 2024-05-23 | 2024-06-21 | 华侨大学 | 基于二维主成分分析的激光散斑衬比血流成像方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN116051423B (zh) | 2023-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116051423B (zh) | 基于空间频域滤波的激光散斑衬比血流成像方法及系统 | |
EP2486539B1 (en) | Method and system for obtaining a first signal for analysis to characterize at least one periodic component thereof | |
EP2300983B1 (en) | System and method for producing an optically sectioned image using both structured and uniform illumination | |
CN105147274A (zh) | 一种从可见光谱段人脸视频信号中提取心率的方法 | |
US10664685B2 (en) | Methods, systems, and devices for optical sectioning | |
WO2015103566A2 (en) | Spatial frequency domain imaging using custom patterns | |
CN110101362B (zh) | 一种关于oct和octa的图像噪声去除的方法 | |
JP2013506525A (ja) | フォトプレチスモグラフィーを実行するための方法及びシステム | |
CN108042126B (zh) | 一种改进的激光散斑衬比血流成像方法 | |
CN115581445B (zh) | 一种基于能量调制的激光散斑血流成像方法及装置 | |
CN106419890B (zh) | 一种基于时空调制的血流速度测量装置及方法 | |
Gökdağ et al. | Image denoising using 2-D wavelet algorithm for Gaussian-corrupted confocal microscopy images | |
Morales-Vargas et al. | Adaptive processing for noise attenuation in laser speckle contrast imaging | |
CN116309195B (zh) | 基于三维傅里叶变换的全场激光散斑血流成像方法及系统 | |
CN117809207A (zh) | 一种无人机非接触式人员心率及呼吸频率检测方法及系统 | |
Duncan et al. | Spatio-temporal algorithms for processing laser speckle imaging data | |
Yu et al. | Randomized channel subsampling method for efficient ultrafast ultrasound imaging | |
Yang et al. | A high-efficiency acquisition method of LED multispectral images using Gray code based square wave frequency division modulation | |
Thompson et al. | Experimental comparison of perfusion imaging systems using multi-exposure laser speckle, single-exposure laser speckle, and full-field laser Doppler | |
CN114246570B (zh) | 峰值信噪比和皮尔森相关系数融合的近红外心率检测方法 | |
Shah et al. | Comparison of noise removal algorithms on Optical Coherence Tomography (OCT) image | |
CN102599910A (zh) | 磁共振动态成像方法及系统 | |
Khullar et al. | Wavelet-based denoising and independent component analysis for improving multi-group inference in fMRI data | |
Xu et al. | Image quality improvement via spatial deconvolution<? xpp qa?> in optical tomography: time-series imaging | |
Hongwei et al. | Adaptive wavelet transformation for speckle reduction in optical coherence tomography images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |