CN116027152A - 一种强气流强振动坏境下线路绝缘子性能状态测评方法 - Google Patents

一种强气流强振动坏境下线路绝缘子性能状态测评方法 Download PDF

Info

Publication number
CN116027152A
CN116027152A CN202211598965.6A CN202211598965A CN116027152A CN 116027152 A CN116027152 A CN 116027152A CN 202211598965 A CN202211598965 A CN 202211598965A CN 116027152 A CN116027152 A CN 116027152A
Authority
CN
China
Prior art keywords
voltage
line insulator
airflow
upper computer
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211598965.6A
Other languages
English (en)
Inventor
黄林
周利军
符安志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202211598965.6A priority Critical patent/CN116027152A/zh
Publication of CN116027152A publication Critical patent/CN116027152A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

本申请示出了一种强气流强振动坏境下线路绝缘子性能状态测评方法,首先搭建了一种强气流强振动坏境下线路绝缘子性能状态测评平台;基于测评平台,针对线路绝缘子进行强气流、强振动运行环境模拟,并开展雷电冲击试验;计算线路绝缘子暂态特性电压U的理论计算值;基于U的理论计算值和测量值,采用粒子群优化算法进行优化建模,得到优化后的线路绝缘子暂态特性电压Ub,并计算线路绝缘子的性能状态测评因子β;最后依据β进行线路绝缘子性能状态测评。本发明可以有效的模拟线路绝缘子遭受强气流、强振动的环境工况;通过雷电冲击试验,可解析化评估强气流强振动环境下线路绝缘子性能状态,并提出检修意见,提升电网系统供电稳定性。

Description

一种强气流强振动坏境下线路绝缘子性能状态测评方法
技术领域
本发明涉及绝缘子性能测评领域,特别是一种强气流强振动坏境下线路绝缘子性能状态测评方法。
背景技术
线路绝缘子在输电线路系统中起着支撑和绝缘的作用,一端与输电导体连接,另一端与输电杆塔横担连接。在线路绝缘子服役过程中,由于工频泄漏电流、雷电冲击的作用,其性能将逐渐劣化。然而,线路绝缘子的性能状态直接关系到电力系统的安全稳定运行。
此外,110kV及以上的输电杆塔一般高度在30米以上,线路绝缘子会受到气流的作用而摆动或者振动。强气流、强振动环境下,线路绝缘子的放电路径存在显著的不确定性。因此,针对强气流强振动环境下线路绝缘子的性能测评具有重要意义。
目前国内外对于线路绝缘子很少有考虑线路绝缘子在强气流、强振动环境下的相关研究,主要局限于漏电流检测,未见有针对雷电冲击下的性能测评方法研究,尤其是考虑强气流、强振动因素影响下的性能测评。因此本发明专利搭建了一个强气流强振动坏境下线路绝缘子性能状态测评平台,并基于此平台提出了一种强气流强振动坏境下线路绝缘子性能状态测评方法,可准确的针对强气流、强振动环境下的线路绝缘子进行性能测评,并提出检修意见,进一步提高电网系统供电可靠性。
发明内容
为了准确的解析化评估强气流强振动坏境下线路绝缘子性能状态,本发明提供一种强气流强振动坏境下线路绝缘子性能状态测评方法。实现本发明目的的技术方案如下:
第一步:搭建了一个强气流强振动坏境下线路绝缘子性能状态测评平台,所述平台包括:上位机(1)、雷电冲击控制器(2)、雷电冲击发生器(3)、雷电冲击发生器接地极(31)、高压开关(41)、环境模拟试验箱(5)、高压实验电极一(51)、线路绝缘子(6)、高压实验电极二(52)、接地开关(42)、接地电缆(7)、接地网(71)、高精度分压器(8)、分压器接地极(81)、电流测试线圈(9)、实验数据采集单元(10)、无线数据处理传输模块1(11)、气流控制器(12)、气流发生器(13)、气流流速测量仪(14)、无线数据处理传输模块2(15)、振动控制模块(16)、高频振动模拟与测量平台(17);
所述雷电冲击控制器(2)输入端与上位机(1)相连,雷电冲击控制器(2)输出端与雷电冲击发生器(3)的输入端相连,高压开关(41)的左右两端分别与高压实验电极一(51)、雷电冲击发生器(3)的输出端连接,线路绝缘子(6)的上下两端分别与高压实验电极一(51)、高压实验电极二(52)固定连接,接地开关(42)的上下两端分别与高压实验电极二(52)、接地电缆(7)相连,接地电缆(7)与接地网(71)相连;
所述雷电冲击发生器(3)的接地端与雷电冲击发生器接地极(31)相连;
所述高精度分压器(8)的输入端与高压实验电极一(51)相连,高精度分压器(8)的接地端与分压器接地极(81)相连;所述电流测试线圈(9)套接在接地电缆(7)上;所述高精度分压器(8)的输出端与实验数据采集单元(10)的输入端相连;所述电流测试线圈(9)的输出端与实验数据采集单元(10)的输入端相连;
所述实验数据采集单元(10)的输出端与无线数据处理传输模块1(11)的输入端相连;所述无线数据处理传输模块1(11)与上位机(1)无线连接;
所述气流控制器(12)的输入端与上位机(1)连接,气流控制器(12)输出端与气流发生器(13)连接;所述气流流速测量仪(14)的输出端与无线数据处理传输模块2(15)连接;所述无线数据处理传输模块2(15)与上位机(1)无线连接;
所述振动控制模块(16)的输入端与上位机(1)连接,振动控制模块(16)的输出端与高频振动模拟与测量平台(17)相连;所述高压实验电极二(52)固定在高频振动模拟与测量平台(17)上;
所述高压实验电极一(51)、线路绝缘子(6)、高压实验电极二(52)、高频振动模拟与测量平台(17)、气流发生器(13)、气流流速测量仪(14)固定在环境模拟试验箱(5)内部;所述气流发生器(13)的气流流出平面(131)与线路绝缘子(6)轴向方向垂直;
第二步:基于搭建的强气流强振动坏境下线路绝缘子性能状态测评平台,提出了一种强气流强振动坏境下线路绝缘子性能状态测评方法,包括以下步骤:
S1:在上位机(1)设定气流流速Va,上位机(1)通过控制气流控制器(12)控制气流发生器(13)的转速n从0开始均匀增加;同时气流流速测量仪(14)实时测量环境模拟试验箱(5)内的气流流速v,无线数据处理传输模块2(15)将气流流速测量仪(14)测量结果无线传输至上位机(1),上位机(1)对气流流速v进行判断,若满足|Va-v|<E,则保持气流发生器(13)的转速n不变;
S2:在上位机(1)设定线路绝缘子振动频率为fa、振动幅值为Aa,上位机(1)通过控制振动控制模块(16),控制高频振动模拟与测量平台(17)开始工作,产生振动频率为fa、振动幅值为Aa的振动;
S3:在上位机(1)设定雷电压U1,闭合高压开关(41)、接地开关(42);
S4:上位机(1)通过控制雷电冲击控制器(2),控制雷电冲击发生器(3)产生雷电压至高压试验电极一(51),实验数据采集单元(10)通过电流测试线圈(9)测量接地电缆(7)上的电流值为Ir,同时实验数据采集单元(10)通过高精度分压器(8)测量线路绝缘子(6)的电压值Ur
S5:实验数据采集单元(10)的采集数据经无线数据处理传输模块1(11)无线传输至上位机(1),判断Ir是否满足Ir>Iε;若满足,则上位机(1)设定的雷电压幅值减小ΔU,重复步骤S4-S5;若不满足,则记录此时的Ur,同时断开高压开关(41)、接地开关(42),转至步骤S6;
S6:改变上位机(1)设定的线路绝缘子振动频率,重复Q-1次步骤S2-S5,产生Q组测量数据;
所述上位机(1)设定的线路绝缘子振动频率的范围为[fa,fd],间隔H均匀取值;
所述H的值为(fd-fa)/(Q-1);
S7:计算线路绝缘子(6)的暂态特性电压U的理论计算值:
Figure BDA0003997940360000031
式(1)中,f为线路绝缘子(6)的振动频率,f0为工频,v为气流流速,φ为线路绝缘子(6)轴向方向与水平方向的夹角;δ、γ为高斯误差系数,x为积分变量;
S8:采用粒子群优化算法对公式(1)进行优化建模,得出使线路绝缘子(6)的暂态特性电压的理论计算值和测量值之间误差最小的一组γ、δ值,具体步骤为:
1)、生成具有均匀分布的粒子和速度的初始总体,设置停止条件;
2)、按照式(2)计算目标函数值:
Figure BDA0003997940360000032
式(2)中O(δ,γ)表示目标函数,Uri为第i组实验中线路绝缘子(6)的电压实测值,Ui为第i组实验中线路绝缘子(6)的暂态特性电压的理论计算值,Q为测量数据组数;
3)、更新每个粒子的个体历史最优位置与整个群体的最优位置;
4)、更新每个粒子的速度和位置;
5)、若满足停止条件,则停止搜索,输出搜索结果,否则返回第2)步;
6)、得出使绝缘气体特征电流计算值和测量值误差最小的γ0,δ0值;
S9:将S8中得出的使误差最小γ0,δ0值代入公式(1)得到优化后的线路绝缘子(6)的暂态特性电压Ub的理论计算公式:
Figure BDA0003997940360000041
S10:基于优化后的线路绝缘子(6)的暂态特性电压Ub计算线路绝缘子(6)的性能状态测评因子β:
Figure BDA0003997940360000042
式(4)中Ub为优化后的线路绝缘子(6)的暂态特性电压,Us为优化后的线路绝缘子(6)的暂态特性电压基准值;
S11:基于β进行线路绝缘子(6)的性能状态测评,当β∈[1,+∞)时,表明线路绝缘子(6)性能状态正常;当β∈(0,1)时,表明线路绝缘子(6)状态异常,需要检修。
本发明的有益效果在于:
1)搭建了考虑强气流、强振动因素的绝缘子性能测评平台,该平台可以有效的模拟线路绝缘子遭受强气流、强振动的环境工况;
2)可通过上位机完成智能化的操作与控制,采集与传输数据方便且高效;
3)通过雷电冲击试验,可解析化评估强气流、强振动环境下线路绝缘子性能状态,并提出检修意见,进一步提高电网系统安全稳定性。
附图说明
为了更清楚的说明申请的技术方案,下面将对实施例中所需要使用的附图作简单的介绍,显而易见地,对于本领域的普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请示出的一种强气流强振动坏境下线路绝缘子性能状态测评平台示意图;
具体实施方式
下面结合附图对本发明的具体实施方式进一步说明。一种强气流强振动坏境下线路绝缘子性能状态测评方法具体实施方式包括以下步骤:
第一步:搭建了一个强气流强振动坏境下线路绝缘子性能状态测评平台,所述平台包括:上位机(1)、雷电冲击控制器(2)、雷电冲击发生器(3)、雷电冲击发生器接地极(31)、高压开关(41)、环境模拟试验箱(5)、高压实验电极一(51)、线路绝缘子(6)、高压实验电极二(52)、接地开关(42)、接地电缆(7)、接地网(71)、高精度分压器(8)、分压器接地极(81)、电流测试线圈(9)、实验数据采集单元(10)、无线数据处理传输模块1(11)、气流控制器(12)、气流发生器(13)、气流流速测量仪(14)、无线数据处理传输模块2(15)、振动控制模块(16)、高频振动模拟与测量平台(17);
所述雷电冲击控制器(2)输入端与上位机(1)相连,雷电冲击控制器(2)输出端与雷电冲击发生器(3)的输入端相连,高压开关(41)的左右两端分别与高压实验电极一(51)、雷电冲击发生器(3)的输出端连接,线路绝缘子(6)的上下两端分别与高压实验电极一(51)、高压实验电极二(52)固定连接,接地开关(42)的上下两端分别与高压实验电极二(52)、接地电缆(7)相连,接地电缆(7)与接地网(71)相连;
所述雷电冲击发生器(3)的接地端与雷电冲击发生器接地极(31)相连;
所述高精度分压器(8)的输入端与高压实验电极一(51)相连,高精度分压器(8)的接地端与分压器接地极(81)相连;所述电流测试线圈(9)套接在接地电缆(7)上;所述高精度分压器(8)的输出端与实验数据采集单元(10)的输入端相连;所述电流测试线圈(9)的输出端与实验数据采集单元(10)的输入端相连;
所述实验数据采集单元(10)的输出端与无线数据处理传输模块1(11)的输入端相连;所述无线数据处理传输模块1(11)与上位机(1)无线连接;
所述气流控制器(12)的输入端与上位机(1)连接,气流控制器(12)输出端与气流发生器(13)连接;所述气流流速测量仪(14)的输出端与无线数据处理传输模块2(15)连接;所述无线数据处理传输模块2(15)与上位机(1)无线连接;
所述振动控制模块(16)的输入端与上位机(1)连接,振动控制模块(16)的输出端与高频振动模拟与测量平台(17)相连;所述高压实验电极二(52)固定在高频振动模拟与测量平台(17)上;
所述高压实验电极一(51)、线路绝缘子(6)、高压实验电极二(52)、高频振动模拟与测量平台(17)、气流发生器(13)、气流流速测量仪(14)固定在环境模拟试验箱(5)内部;所述气流发生器(13)的气流流出平面(131)与线路绝缘子(6)轴向方向垂直;
第二步:基于搭建的强气流强振动坏境下线路绝缘子性能状态测评平台,提出了一种强气流强振动坏境下线路绝缘子性能状态测评方法,包括以下步骤:
S1:在上位机(1)设定气流流速Va,上位机(1)通过控制气流控制器(12)控制气流发生器(13)的转速n从0开始均匀增加;同时气流流速测量仪(14)实时测量环境模拟试验箱(5)内的气流流速v,无线数据处理传输模块2(15)将气流流速测量仪(14)测量结果无线传输至上位机(1),上位机(1)对气流流速v进行判断,若满足|Va-v|<E,则保持气流发生器(13)的转速n不变;
S2:在上位机(1)设定线路绝缘子振动频率为fa、振动幅值为Aa,上位机(1)通过控制振动控制模块(16),控制高频振动模拟与测量平台(17)开始工作,产生振动频率为fa、振动幅值为Aa的振动;
S3:在上位机(1)设定雷电压U1,闭合高压开关(41)、接地开关(42);
S4:上位机(1)通过控制雷电冲击控制器(2),控制雷电冲击发生器(3)产生雷电压至高压试验电极一(51),实验数据采集单元(10)通过电流测试线圈(9)测量接地电缆(7)上的电流值为Ir,同时实验数据采集单元(10)通过高精度分压器(8)测量线路绝缘子(6)的电压值Ur
S5:实验数据采集单元(10)的采集数据经无线数据处理传输模块1(11)无线传输至上位机(1),判断Ir是否满足Ir>Iε;若满足,则上位机(1)设定的雷电压幅值减小ΔU,重复步骤S4-S5;若不满足,则记录此时的Ur,同时断开高压开关(41)、接地开关(42),转至步骤S6;
S6:改变上位机(1)设定的线路绝缘子振动频率,重复Q-1次步骤S2-S5,产生Q组测量数据;
所述上位机(1)设定的线路绝缘子振动频率的范围为[fa,fd],间隔H均匀取值;
所述H的值为(fd-fa)/(Q-1);
S7:计算线路绝缘子(6)的暂态特性电压U的理论计算值:
Figure BDA0003997940360000061
式(1)中,f为线路绝缘子(6)的振动频率,f0为工频,v为气流流速,φ为线路绝缘子(6)轴向方向与水平方向的夹角;δ、γ为高斯误差系数,x为积分变量;
S8:采用粒子群优化算法对公式(1)进行优化建模,得出使线路绝缘子(6)的暂态特性电压的理论计算值和测量值之间误差最小的一组γ、δ值,具体步骤为:
1)、生成具有均匀分布的粒子和速度的初始总体,设置停止条件;
2)、按照式(2)计算目标函数值:
Figure BDA0003997940360000062
式(2)中O(δ,γ)表示目标函数,Uri为第i组实验中线路绝缘子(6)的电压实测值,Ui为第i组实验中线路绝缘子(6)的暂态特性电压的理论计算值,Q为测量数据组数;
3)、更新每个粒子的个体历史最优位置与整个群体的最优位置;
4)、更新每个粒子的速度和位置;
5)、若满足停止条件,则停止搜索,输出搜索结果,否则返回第2)步;
6)、得出使绝缘气体特征电流计算值和测量值误差最小的γ0,δ0值;
S9:将S8中得出的使误差最小γ0,δ0值代入公式(1)得到优化后的线路绝缘子(6)的暂态特性电压Ub的理论计算公式:
Figure BDA0003997940360000071
S10:基于优化后的线路绝缘子(6)的暂态特性电压Ub计算线路绝缘子(6)的性能状态测评因子β:
Figure BDA0003997940360000072
式(4)中Ub为优化后的线路绝缘子(6)的暂态特性电压,Us为优化后的线路绝缘子(6)的暂态特性电压基准值;
S11:基于β进行线路绝缘子(6)的性能状态测评,当β∈[1,+∞)时,表明线路绝缘子(6)性能状态正常;当β∈(0,1)时,表明线路绝缘子(6)状态异常,需要检修。

Claims (1)

1.一种强气流强振动坏境下线路绝缘子性能状态测评方法,其特征在于,首先搭建了一个测评平台,所述平台包括:上位机(1)、雷电冲击控制器(2)、雷电冲击发生器(3)、雷电冲击发生器接地极(31)、高压开关(41)、环境模拟试验箱(5)、高压实验电极一(51)、线路绝缘子(6)、高压实验电极二(52)、接地开关(42)、接地电缆(7)、接地网(71)、高精度分压器(8)、分压器接地极(81)、电流测试线圈(9)、实验数据采集单元(10)、无线数据处理传输模块1(11)、气流控制器(12)、气流发生器(13)、气流流速测量仪(14)、无线数据处理传输模块2(15)、振动控制模块(16)、高频振动模拟与测量平台(17);
所述雷电冲击控制器(2)输入端与上位机(1)相连,雷电冲击控制器(2)输出端与雷电冲击发生器(3)的输入端相连,高压开关(41)的左右两端分别与高压实验电极一(51)、雷电冲击发生器(3)的输出端连接,线路绝缘子(6)的上下两端分别与高压实验电极一(51)、高压实验电极二(52)固定连接,接地开关(42)的上下两端分别与高压实验电极二(52)、接地电缆(7)相连,接地电缆(7)与接地网(71)相连;
所述雷电冲击发生器(3)的接地端与雷电冲击发生器接地极(31)相连;
所述高精度分压器(8)的输入端与高压实验电极一(51)相连,高精度分压器(8)的接地端与分压器接地极(81)相连;所述电流测试线圈(9)套接在接地电缆(7)上;所述高精度分压器(8)的输出端与实验数据采集单元(10)的输入端相连;所述电流测试线圈(9)的输出端与实验数据采集单元(10)的输入端相连;
所述实验数据采集单元(10)的输出端与无线数据处理传输模块1(11)的输入端相连;所述无线数据处理传输模块1(11)与上位机(1)无线连接;
所述气流控制器(12)的输入端与上位机(1)连接,气流控制器(12)输出端与气流发生器(13)连接;所述气流流速测量仪(14)的输出端与无线数据处理传输模块2(15)连接;所述无线数据处理传输模块2(15)与上位机(1)无线连接;
所述振动控制模块(16)的输入端与上位机(1)连接,振动控制模块(16)的输出端与高频振动模拟与测量平台(17)相连;所述高压实验电极二(52)固定在高频振动模拟与测量平台(17)上;
所述高压实验电极一(51)、线路绝缘子(6)、高压实验电极二(52)、高频振动模拟与测量平台(17)、气流发生器(13)、气流流速测量仪(14)固定在环境模拟试验箱(5)内部;
所述气流发生器(13)的气流流出平面(131)与线路绝缘子(6)轴向方向垂直;
一种强气流强振动坏境下线路绝缘子性能状态测评方法,包括以下步骤:
S1:在上位机(1)设定气流流速Va,上位机(1)通过控制气流控制器(12)控制气流发生器(13)的转速n从0开始均匀增加;同时气流流速测量仪(14)实时测量环境模拟试验箱(5)内的气流流速v,无线数据处理传输模块2(15)将气流流速测量仪(14)测量结果无线传输至上位机(1),上位机(1)对气流流速v进行判断,若满足|Va-v|<E,则保持气流发生器(13)的转速n不变;
S2:在上位机(1)设定线路绝缘子振动频率为fa、振动幅值为Aa,上位机(1)通过控制振动控制模块(16),控制高频振动模拟与测量平台(17)开始工作,产生振动频率为fa、振动幅值为Aa的振动;
S3:在上位机(1)设定雷电压U1,闭合高压开关(41)、接地开关(42);
S4:上位机(1)通过控制雷电冲击控制器(2),控制雷电冲击发生器(3)产生雷电压至高压试验电极一(51),实验数据采集单元(10)通过电流测试线圈(9)测量接地电缆(7)上的电流值为Ir,同时实验数据采集单元(10)通过高精度分压器(8)测量线路绝缘子(6)的电压值Ur
S5:实验数据采集单元(10)的采集数据经无线数据处理传输模块1(11)无线传输至上位机(1),判断Ir是否满足Ir>Iε;若满足,则上位机(1)设定的雷电压幅值减小ΔU,重复步骤S4-S5;若不满足,则记录此时的Ur,同时断开高压开关(41)、接地开关(42),转至步骤S6;
S6:改变上位机(1)设定的线路绝缘子振动频率,重复Q-1次步骤S2-S5,产生Q组测量数据;
所述上位机(1)设定的线路绝缘子振动频率的范围为[fa,fd],间隔H均匀取值;
所述H的值为(fd-fa)/(Q-1);
S7:计算线路绝缘子(6)的暂态特性电压U的理论计算值:
Figure FDA0003997940350000021
式(1)中,f为线路绝缘子(6)的振动频率,f0为工频,v为气流流速,
Figure FDA0003997940350000022
为线路绝缘子(6)轴向方向与水平方向的夹角;δ、γ为高斯误差系数,x为积分变量;
S8:采用粒子群优化算法对公式(1)进行优化建模,得出使线路绝缘子(6)的暂态特性电压的理论计算值和测量值之间误差最小的一组γ、δ值,具体步骤为:
1)、生成具有均匀分布的粒子和速度的初始总体,设置停止条件;
2)、按照式(2)计算目标函数值:
Figure FDA0003997940350000031
式(2)中O(δ,γ)表示目标函数,Uri为第i组实验中线路绝缘子(6)的电压实测值,Ui为第i组实验中线路绝缘子(6)的暂态特性电压的理论计算值,Q为测量数据组数;
3)、更新每个粒子的个体历史最优位置与整个群体的最优位置;
4)、更新每个粒子的速度和位置;
5)、若满足停止条件,则停止搜索,输出搜索结果,否则返回第2)步;
6)、得出使绝缘气体特征电流计算值和测量值误差最小的γ0,δ0值;
S9:将S8中得出的使误差最小γ0,δ0值代入公式(1)得到优化后的线路绝缘子(6)的暂态特性电压Ub的理论计算公式:
Figure FDA0003997940350000032
S10:基于优化后的线路绝缘子(6)的暂态特性电压Ub计算线路绝缘子(6)的性能状态测评因子β:
Figure FDA0003997940350000033
式(4)中Ub为优化后的线路绝缘子(6)的暂态特性电压,Us为优化后的线路绝缘子(6)的暂态特性电压基准值;
S11:基于β进行线路绝缘子(6)的性能状态测评,当β∈[1,+∞)时,表明线路绝缘子(6)性能状态正常;当β∈(0,1)时,表明线路绝缘子(6)状态异常,需要检修。
CN202211598965.6A 2022-12-14 2022-12-14 一种强气流强振动坏境下线路绝缘子性能状态测评方法 Pending CN116027152A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211598965.6A CN116027152A (zh) 2022-12-14 2022-12-14 一种强气流强振动坏境下线路绝缘子性能状态测评方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211598965.6A CN116027152A (zh) 2022-12-14 2022-12-14 一种强气流强振动坏境下线路绝缘子性能状态测评方法

Publications (1)

Publication Number Publication Date
CN116027152A true CN116027152A (zh) 2023-04-28

Family

ID=86078564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211598965.6A Pending CN116027152A (zh) 2022-12-14 2022-12-14 一种强气流强振动坏境下线路绝缘子性能状态测评方法

Country Status (1)

Country Link
CN (1) CN116027152A (zh)

Similar Documents

Publication Publication Date Title
CN102454544B (zh) 调整风力涡轮机功率参数的系统和方法
CN112858814B (zh) 一种考虑极端湿度百分比的避雷器损坏程度评估方法
CN103399241B (zh) 基于温升与负荷关系的配电变压器故障诊断系统及方法
CN105301413B (zh) 电机驱动器母线电解电容寿命评估方法
CN110361610B (zh) 变压器绕组径向变形测试系统及其测试评估方法
CN112881938B (zh) 一种严重高温环境下避雷器寿命指征试验评估方法
CN110865269A (zh) 一种基于粒子群算法的输电线路绕击跳闸率测评方法
CN110865266B (zh) 一种十字型接地装置的输电线路耐雷水平试验方法
CN113589063B (zh) 一种多重雷击作用下避雷器阀片压敏特性测评系统及方法
CN109061462A (zh) 一种高压断路器触头烧蚀故障评估方法
CN114740303B (zh) 一种无线无源高压开关柜的故障监测系统
CN110749810A (zh) 一种调相机绝缘故障预测方法及系统
CN101509950A (zh) 一种输电线路潜供电弧仿真模拟装置及方法
CN115906554A (zh) 基于有限元仿真的变压器温升试验准确度保障方法及系统
CN112684274B (zh) 一种不同空气含水量下避雷器可靠性状态评估方法
CN108896852B (zh) 一种公共接入点短路容量在线测量方法及系统
CN112285424B (zh) 一种船载电子设备基座接触电阻和雷电流监测系统、方法
CN116027152A (zh) 一种强气流强振动坏境下线路绝缘子性能状态测评方法
CN110285748B (zh) 基于带冠叶片耦合特征的叶尖间隙标定测量系统及方法
CN106772200B (zh) 基于对地电容电流的cvt计量误差异常评估方法及系统
CN101975662B (zh) 一种符合iec61400-13标准的风电机组载荷测试系统
CN115932502A (zh) 一种湿热环境下开关柜内环氧树脂穿墙套管绝缘状态评估方法
CN110412353B (zh) 一种基于功率损耗的光伏电站三相变压器阻抗计算方法
CN111273632A (zh) 基于rtds测试数据的svg控制器参数辨识方法
CN115833089A (zh) 基于串联补偿电阻的风电系统次同步振荡风险评估方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination