CN116018834A - 终端、无线通信方法以及基站 - Google Patents
终端、无线通信方法以及基站 Download PDFInfo
- Publication number
- CN116018834A CN116018834A CN202080104367.1A CN202080104367A CN116018834A CN 116018834 A CN116018834 A CN 116018834A CN 202080104367 A CN202080104367 A CN 202080104367A CN 116018834 A CN116018834 A CN 116018834A
- Authority
- CN
- China
- Prior art keywords
- information
- srs
- transmission
- codebook
- dci
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004891 communication Methods 0.000 title claims description 59
- 238000000034 method Methods 0.000 title claims description 35
- 230000005540 biological transmission Effects 0.000 claims abstract description 148
- 238000005259 measurement Methods 0.000 claims description 31
- 238000012545 processing Methods 0.000 description 60
- 230000011664 signaling Effects 0.000 description 27
- 238000010295 mobile communication Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 16
- 230000009977 dual effect Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 238000007726 management method Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 238000013507 mapping Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 230000007774 longterm Effects 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- GVVPGTZRZFNKDS-JXMROGBWSA-N geranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-JXMROGBWSA-N 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 108700026140 MAC combination Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 208000037918 transfusion-transmitted disease Diseases 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开的一方式所涉及的终端具有:控制单元,基于在下行链路控制信息(Downlink Control Information(DCI))中包含的特定的字段,决定上行链路发送设定指示状态(Uplink Transmission Configuration Indication state(UL TCI状态));以及发送单元,应用基于所述UL TCI状态而被决定的预编码,发送基于码本的上行链路共享信道。根据本公开的一方式,能够适当地控制PUSCH发送。
Description
技术领域
本公开涉及下一代移动通信系统中的终端、无线通信方法以及基站。
背景技术
在通用移动通讯系统(Universal Mobile Telecommunications System(UMTS))网络中,以进一步的高速数据速率、低延迟等为目的,长期演进(Long Term Evolution(LTE))被规范化(非专利文献1)。此外,以LTE(第三代合作伙伴计划(Third GenerationPartnership Project(3GPP))版本(Release(Rel.))8、9)的进一步的大容量、高度化等为目的,LTE-Advanced(3GPP Rel.10-14)被规范化。
还正在研究LTE的后续系统(例如,也称为第五代移动通信系统(5th generationmobile communication system(5G))、5G+(plus)、第六代移动通信系统(6th generationmobile communication system(6G))、新无线(New Radio(NR))、3GPP Rel.15以后等)。
现有技术文献
非专利文献
非专利文献1:3GPP TS 36.300V8.12.0“Evolved Universal Terrestrial RadioAccess(E-UTRA)and Evolved Universal Terrestrial Radio Access Network(E-UTRAN);Overall Description;Stage 2(Release 8)”,2010年4月
发明内容
发明要解决的课题
在NR中,作为用于上行链路(UL)的波束(预编码)指示方法,正在研究使用UL发送设定指示状态(Transmission Configuration Indication state(TCI状态))。
然而,关于在被导入UL TCI状态的情况下如何控制UE所使用的UL波束,尚未进行研究。如果关于该控制不明确,则存在抑制通信吞吐量的增大的担忧。
因此,本公开的目的之一在于提供能够适当地控制PUSCH发送的终端、无线通信方法以及基站。
用于解决课题的手段
本公开的一方式所涉及的终端具有:控制单元,基于在下行链路控制信息(Downlink Control Information(DCI))中包含的特定的字段,决定上行链路发送设定指示状态(Uplink Transmission Configuration Indication state(UL TCI状态));以及发送单元,应用基于所述UL TCI状态而被决定的预编码,发送基于码本的上行链路共享信道。
发明效果
根据本公开的一方式,能够适当地控制PUSCH发送。
附图说明
图1是示出第一实施方式中的天线端口数字段与天线端口数的对应关系的一例的图。
图2是示出用于激活第一实施方式的控制的发送方案(scheme)的设定的一例的图。
图3示出在TS 38.212V16.2.0中记载的表7.3.1.1.2-29。
图4A以及图4B是示出与第二实施方式所涉及的空间关系信息指示相关的表的一例的图。
图5A以及图5B是示出与第二实施方式所涉及的空间关系信息指示相关的表的一例的图。
图6是示出一实施方式所涉及的无线通信系统的概略结构的一例的图。
图7是示出一实施方式所涉及的基站的结构的一例的图。
图8是示出一实施方式所涉及的用户终端的结构的一例的图。
图9是示出一实施方式所涉及的基站以及用户终端的硬件结构的一例的图。
具体实施方式
(TCI、空间关系、QCL)
在NR中正在研究:UE基于发送设定指示状态(Transmission ConfigurationIndication state(TCI状态)),控制信号以及信道的至少一者(也可以表述为信号/信道。在本公开中,“A/B”也可以同样地被替换为“A以及B的至少一者”)的接收处理(例如,接收、解映射、解调、解码的至少一个)、发送处理(例如,发送、映射、预编码、调制、编码的至少一个)等。
TCI状态也可以表示被应用于下行链路的信号/信道的状态。与被应用于上行链路的信号/信道的TCI状态相当的状态也可以被表述为空间关系(spatial relation)。
TCI状态是指与信号/信道的准共址(Quasi-Co-Location(QCL))相关的信息,也可以被称为空间接收参数、空间关系信息(Spatial Relation Information(SRI))等。TCI状态也可以按每个信道或者每个信号被设定给UE。
QCL是表示信号/信道的统计性质的指标。例如,某个信号/信道和其他信号/信道为QCL的关系的情况也可以意指:在这些不同的多个信号/信道间,能够设想多普勒偏移(Doppler shift)、多普勒扩展(Doppler spread)、平均延迟(average delay)、延迟扩展(delay spread)、空间参数(spatial parameter)(例如,空间接收参数(spatial Rxparameter))的至少一个相同(关于这些至少一个为QCL)。
另外,空间接收参数也可以对应于UE的接收波束(例如,接收模拟波束),还可以基于空间QCL而被确定波束。本公开中的QCL(或者QCL的至少一个的要素)也可以被替换为sQCL(空间QCL(spatial QCL))。
QCL也可以被规定多个类型(QCL类型)。例如,也可以被设置能够设想为相同的参数(或者参数集)不同的四个QCL类型A-D,以下表示该参数(也可以被称为QCL参数):
·QCL类型A:多普勒偏移、多普勒扩展、平均延迟以及延迟扩展,
·QCL类型B:多普勒偏移以及多普勒扩展,
·QCL类型C:多普勒偏移以及平均延迟,
·QCL类型D:空间接收参数。
类型A至C也可以相当于与时间以及频率的至少一者的同步处理关联的QCL信息,类型D也可以相当于与波束控制相关的QCL信息。
UE设想为特定的控制资源集(Control Resource Set(CORESET))、信道或者参考信号与其他CORESET、信道或者参考信号处于特定的QCL(例如,QCL类型D)的关系也可以被称为QCL设想(QCL assumption)。
UE也可以基于信号/信道的TCI状态或者QCL设想,决定该信号/信道的发送波束(Tx波束)以及接收波束(Rx波束)的至少一个。
TCI状态例如也可以是成为对象的信道(或者该信道用的参考信号(ReferenceSignal(RS)))与其他信号(例如,其他下行参考信号(下行链路参考信号(DownlinkReference Signal(DL-RS))))之间的QCL相关的信息。TCI状态也可以通过高层信令、物理层信令或者它们的组合而被设定(指示)。
在本公开中,高层信令例如也可以是无线资源控制(Radio Resource Control(RRC))信令、媒体访问控制(Medium Access Control(MAC))信令、广播信息等中的任意一个,或者它们的组合。
MAC信令例如也可以使用MAC控制元素(MAC Control Element(MAC CE))、MAC协议数据单元(MAC Protocol Data Unit(PDU))等。广播信息例如也可以是主信息块(MasterInformation Block(MIB))、系统信息块(System Information Block(SIB))、最低限度的系统信息(剩余最小系统信息(Remaining Minimum System Information(RMSI)))、其他系统信息(Other System Information(OSI))等。
物理层信令例如也可以是下行控制信息(下行链路控制信息(Downlink ControlInformation(DCI)))。
另外,成为TCI状态的应用对象的信道/信号也可以被称为目标信道/参考信号(target channel/RS),还可以被简称为目标等,上述其他信号也可以被称为参照参考信号(reference RS)、源RS(source RS),还可以被简称为参考等。
被设定(指定)TCI状态的信道例如也可以是下行共享信道(物理下行链路共享信道(Physical Downlink Shared Channel(PDSCH)))、下行控制信道(物理下行链路控制信道(Physical Downlink Control Channel(PDCCH)))等。
此外,与该信道成为QCL关系的RS(DL-RS)例如也可以是同步信号块(Synchronization Signal Block(SSB))、信道状态信息参考信号(Channel StateInformation Reference Signal(CSI-RS))的至少一个。或者DL-RS也可以是在跟踪用中被利用的CSI-RS(也称为跟踪参考信号(Tracking Reference Signal(TRS)))、或者在QCL检测用中被利用的参考信号(也称为QRS)。
SSB是包含主同步信号(Primary Synchronization Signal(PSS))、副同步信号(Secondary Synchronization Signal(SSS))以及广播信道(物理广播信道(PhysicalBroadcast Channel(PBCH)))的至少一个的信号块。SSB也可以被称为SS/PBCH块。
通过高层信令被设定的TCI状态的信息元素(RRC的“TCI-state IE”)也可以包含一个或者多个QCL信息(“QCL-Info”)。QCL信息也可以包含与成为QCL关系的DL-RS相关的信息(DL-RS关系信息)以及表示QCL类型的信息(QCL类型信息)的至少一个。DL-RS关系信息也可以包含DL-RS的索引(例如,SSB索引、非零功率CSI-RS(Non-Zero-Power(NZP)CSI-RS)资源ID(标识符(Identifier)))、RS所在的小区的索引、RS所在的带宽部分(Bandwidth Part(BWP))的索引等信息。
(用于SRS、PUSCH的空间关系)
在Rel.15NR中,UE也可以接收在测量用参考信号(例如,探测参考信号(SoundingReference Signal(SRS)))的发送中使用的信息(SRS设定信息、例如,RRC控制元素的“SRS-Config”内的参数)。
具体而言,UE也可以接收与一个或者多个SRS资源集相关的信息(SRS资源集信息、例如,RRC控制元素的“SRS-ResourceSet”)和与一个或者多个SRS资源相关的信息(SRS资源信息、例如,RRC控制元素的“SRS-Resource”)的至少一个。
一个SRS资源集也可以与特定数量的SRS资源关联(也可以对特定数量的SRS资源进行分组)。各SRS资源也可以通过SRS资源标识符(SRS Resource Indicator(SRI))或者SRS资源ID(标识符(Identifier))而被确定。
SRS资源集信息也可以包含SRS资源集ID(SRS-ResourceSetId)、在该资源集中使用的SRS资源ID(SRS-ResourceId)的列表、SRS资源类型、SRS的用途(usage)的信息。
这里,SRS资源类型也可以表示周期性SRS(Periodic SRS(P-SRS))、半持续SRS(Semi-Persistent SRS(SP-SRS))、非周期性CSI(Aperiodic SRS(A-SRS))中的任意一个。另外,UE也可以周期性(或者在激活后、周期性)地发送P-SRS以及SP-SRS,并基于DCI的SRS请求来发送A-SRS。
此外,用途(RRC参数的“用途(usage)”、L1(层-1(Layer-1))参数的“SRS-SetUse”)例如也可以是波束管理(beamManagement)、码本(codebook(CB))、非码本(noncodebook(NCB))、天线切换等。码本或者非码本用途的SRS也可以在基于SRI的基于码本或者基于非码本的上行链路共享信道(物理上行链路共享信道(Physical Uplink Shared Channel(PUSCH)))发送的预编码的决定中使用。
例如,在基于码本的发送(codebook-based transmission)的情况下,UE也可以基于SRI、发送秩指示符(Transmitted Rank Indicator(TRI))以及发送预编码矩阵指示符(Transmitted Precoding Matrix Indicator(TPMI)),决定用于PUSCH发送的预编码。在基于非码本的发送(non-codebook-based transmission)的情况下,UE也可以基于SRI来决定用于PUSCH发送的预编码。
SRS资源信息也可以包含SRS资源ID(SRS-ResourceId)、SRS端口数、SRS端口编号、发送Comb、SRS资源映射(例如,时间以及/或者频率资源位置、资源偏移量、资源的周期、反复数、SRS码元数、SRS带宽等)、跳跃关联信息、SRS资源类型、序列ID、SRS的空间关系信息等。
SRS的空间关系信息(例如,RRC信息元素的“spatialRelationInfo”)也可以表示特定的参考信号与SRS之间的空间关系信息。该特定的参考信号也可以是同步信号/广播信道(同步信号/物理广播信道(Synchronization Signal/Physical Broadcast Channel(SS/PBCH)))块、信道状态信息参考信号(Channel State Information Reference Signal(CSI-RS))以及SRS(例如其他SRS)的至少一个。SS/PBCH块也可以被称为同步信号块(SSB)。
SRS的空间关系信息也可以包含SSB索引、CSI-RS资源ID、SRS资源ID的至少一个作为上述特定的参考信号的索引。
另外,在本公开中,SSB索引、SSB资源ID以及SSB资源指示符(SSB ResourceIndicator(SSBRI))也可以相互替换。此外,CSI-RS索引、CSI-RS资源ID以及CSI-RS资源指示符(CSI-RS Resource Indicator(CRI))也可以相互替换。此外,SRS索引、SRS资源ID以及SRI也可以相互替换。
SRS的空间关系信息也可以包含与上述特定的参考信号对应的服务小区索引、BWP索引(BWP ID)等。
在针对某个SRS资源被设定与SSB或者CSI-RS和SRS相关的空间关系信息的情况下,UE也可以使用与用于该SSB或者CSI-RS的接收的空间域滤波器(空间域接收滤波器)相同的空间域滤波器(空间域发送滤波器)来发送该SRS资源。在该情况下,UE也可以设想为SSB或者CSI-RS的UE接收波束与SRS的UE发送波束相同。
在针对某个SRS(目标SRS)资源被设定与其他SRS(参考SRS)和该SRS(目标SRS)相关的空间关系信息的情况下,UE也可以使用与用于该参考SRS的发送的空间域滤波器(空间域发送滤波器)相同的空间域滤波器(空间域发送滤波器)来发送目标SRS资源。即,在该情况下,UE也可以设想为参考SRS的UE发送波束与目标SRS的UE发送波束相同。
UE也可以基于DCI(例如,DCI格式0_1)内的特定字段(例如,SRS资源标识符(SRI)字段)的值,决定通过该DCI被调度的PUSCH的空间关系。具体而言,UE也可以将基于该特定字段的值(例如,SRI)而被决定的SRS资源的空间关系信息(例如,RRC信息元素的“spatialRelationInfo”)用于PUSCH发送。
在Rel.15/16NR中,在对于PUSCH使用基于码本的发送的情况下,UE也可以通过RRC被设定具有最大两个SRS资源的用途为码本的SRS资源集,并通过DCI(1比特的SRI字段)被指示该最大两个SRS资源中的一个。PUSCH的发送波束通过SRI字段而被指定。
UE也可以基于预编码信息以及层数字段(以下,也称为预编码信息字段),来判断用于PUSCH的TPMI以及层数(发送秩)。UE也可以基于上述TPMI、层数等,从针对端口数的上行链路用的码本中选择预编码,该端口数与由为了通过上述SRI字段被指定的SRS资源而被设定的高层参数的“nrofSRS-Ports”表示的SRS端口数相同。
在Rel.15/16NR中,在对于PUSCH使用基于非码本的发送的情况下,UE也可以通过RRC被设定具有最大四个SRS资源的用途为非码本的SRS资源集,并通过DCI(2比特的SRI字段)被指示该最大四个SRS资源中的一个。
UE也可以基于上述SRI字段来决定用于PUSCH的层数(发送秩)。例如,UE也可以判断为通过上述SRI字段被指定的SRS资源的数量与用于PUSCH的层数相同。此外,UE也可以计算上述SRS资源的预编码。
在通过高层被设定了与该SRS资源(或者该SRS资源所属的SRS资源集)关联的CSI-RS(也可以被称为关联的CSI-RS(associated CSI-RS))的情况下,PUSCH的发送波束也可以基于该被设定的关联的CSI-RS(的测量)来计算。在不是这样的情况下,PUSCH的发送波束也可以通过SRI而被指定。
另外,UE也可以通过表示发送方案的高层参数“txConfig”而被设定是使用基于码本的PUSCH发送、还是使用基于非码本的PUSCH发送。该参数也可以表示“码本(codebook)”或者“非码本(nonCodebook)”的值。
在本公开中,基于码本的PUSCH(基于码本的PUSCH发送、基于码本的发送)也可以意指在UE中被设定了“码本”作为发送方案的情况下的PUSCH。在本公开中,基于非码本的PUSCH(基于非码本的PUSCH发送、基于非码本的发送)也可以意指在UE中被设定了“非码本”作为发送方案的情况下的PUSCH。
(UL TCI状态)
在NR中,作为用于UL的波束指示方法,正在研究使用UL TCI状态。UL TCI状态类似于UE的DL波束(DL TCI状态)的通知。另外,DL TCI状态也可以与用于PDCCH/PDSCH的TCI状态相互替换。
UL TCI状态也可以通过在特定的版本中被规定的空间关系信息(例如,在Rel.17中被规定的spatialRelationInfo-r17)(也可以被称为UL TCI状态信息)被设定给UE。ULTCI状态既可以被称为被统一的TCI状态(unified TCI state(U-TCI状态)),也可以被称为空间关系、特定的版本的空间关系等。
被设定的UL TCI状态的一个或者多个也可以使用MAC CE被激活/去激活。此外,根据被设定/激活的UL TCI状态,用于A-SRS、PUSCH、PUCCH、PRACH的至少一个的空间关系信息也可以通过DCI被指定给UE。
被设定(指定)UL TCI状态的信道/信号(也可以被称为目标信道/RS)例如也可以是用于PUSCH、PUSCH的解调用参考信号(DeModulation Reference Signal(DMRS))、用于PUCCH、PUCCH的DMRS、随机接入信道(物理随机接入信道(Physical Random AccessChannel(PRACH)))、SRS等的至少一个。
此外,与该信道/信号成为QCL关系的RS(参考RS)例如既可以是DL RS(例如,SSB、CSI-RS、TRS等),也可以是UL RS(例如,SRS、波束管理用的SRS等)。
在UL TCI状态下,与该信道/信号成为QCL关系的RS也可以与用于接收或者发送该RS的面板(面板ID)关联。该关联既可以通过高层信令(例如,RRC信令、MAC CE等)被显式地设定(或者指定),也可以被隐式地判断。
RS与面板ID的对应关系既可以被包含在UL TCI状态信息中而被设定,也可以被包含在该RS的资源设定信息、空间关系信息等的至少一个中而被设定。
由UL TCI状态表示的QCL类型既可以是现有的QCL类型A-D,也可以是其他QCL类型,还可以包含特定的空间关系、关联的天线端口(端口索引)等。
如果对于UL发送被指定(例如,通过DCI被指定)关联的面板ID,则UE也可以使用与该面板ID对应的面板来进行该UL发送。面板ID也可以与UL TCI状态关联,在对于特定的UL信道/信号被指定(或者激活)了UL TCI状态的情况下,UE也可以按照与该UL TCI状态关联的面板ID来确定在该UL信道/信号发送中使用的面板。
然而,关于在被导入UL TCI状态的情况下如何控制UE所使用的UL波束,尚未进行研究。如果该控制不明确,则存在抑制通信吞吐量的增大的担忧。
例如,在被导入UL TCI状态的情况下,在针对上述基于码本的PUSCH使用SSB/CSI-RS作为用于PUSCH发送的参照(references)参考信号的情况下,考虑不设定用途=码本的SRS。在该情况下,基站考虑不是基于SRS测量,而是基于UE的DL CSI测量(的反馈报告)来决定TPMI、发送秩等。
在该情况下,不需要在DCI格式中包含SRI字段,但是没有研究在不利用SRI字段时如何通知用于PUSCH的QCL(空间关系)信息、天线端口数等。
因此,本发明的发明人们想到了考虑了被导入UL TCI状态的情况下的、用于适当地进行PUSCH发送的方法。
以下,参考附图,对本公开所涉及的实施方式详细地进行说明。各实施方式所涉及的无线通信方法既可以分别单独应用,也可以组合应用。另外,本公开的实施方式也可以在未被导入UL TCI状态的情况下被利用。
另外,在本公开中,“A/B”也可以意指“A以及B的至少一者”。
在本公开中,激活、去激活、指示(或者指定(indicate))、选择、设定(configure)、更新(update)、决定(determine)等也可以相互替换。
在本公开中,面板、波束、面板组、波束组、上行链路(Uplink(UL))发送实体、TRP、空间关系信息(SRI)、空间关系、控制资源集(COntrol REsource SET(CORESET))、物理下行链路共享信道(Physical Downlink Shared Channel(PDSCH))、码字、基站、特定的天线端口(例如,解调用参考信号(DeModulation Reference Signal(DMRS))端口)、特定的天线端口组(例如,DMRS端口组)、特定的组(例如,码分复用(Code Division Multiplexing(CDM))组、特定的参考信号组、CORESET组)、特定的资源(例如,特定的参考信号资源)、特定的资源集(例如,特定的参考信号资源集)、CORESET池、PUCCH组(PUCCH资源组)、空间关系组、下行链路的TCI状态(DL TCI状态)、上行链路的TCI状态(UL TCI状态)、被统一的TCI状态(unified TCI state)、QCL等也可以相互替换。
此外,空间关系信息标识符(Identifier(ID))(TCI状态ID)与空间关系信息(TCI状态)也可以相互替换。“空间关系信息”也可以与“空间关系信息的集合”、“一个或者多个空间关系信息”等相互替换。TCI状态以及TCI也可以相互替换。
在本公开中,索引、ID、指示符、资源ID也可以相互替换。此外,在本公开中,序列、列表、集合、组、群、簇、子集等也可以相互替换。
在以下的实施方式中,空间关系信息(spatialRelationInfo)、在特定的版本中被规定的空间关系信息(例如,在Rel.17中被规定的spatialRelationInfo-r17)、在特定的版本中被规定的TCI状态(例如,在Rel.17中被规定的TCIstate-r17)等也可以相互替换。
此外,在以下的实施方式中,空间关系信息ID(spatialRelationInfoId)、在特定的版本中被规定的空间关系信息ID(例如,在Rel.17中被规定的spatialRelationInfoId-r17)、在特定的版本中被规定的TCI状态ID(例如,在Rel.17中被规定的TCIstateId-r17)等也可以相互替换。另外,这些参数的名称不限于这些。
在以下的实施方式的说明中,“空间关系信息(Spatial Relation Information(SRI))”、“用于PUSCH的空间关系信息”、“空间关系”、“UL波束”、“UE的发送波束”、“ULTCI”、“UL TCI状态”、“UL TCI状态的空间关系”、SRS资源指示符(SRS Resource Indicator(SRI))、SRS资源、预编码等也可以相互替换。
(无线通信方法)
<第一实施方式>
第一实施方式涉及利用U-TCI框架的情况下的基于码本的PUSCH。
[用于指定空间关系信息的DCI字段]
UE也可以基于在DCI中包含的特定的字段的一部分或者全部来决定(选择)PUSCH的UL TCI。该特定的字段既可以是在现有的Rel.15NR的DCI格式中不包含的新的字段(例如,也可以被称为UL波束字段、UL TCI字段等),也可以是在现有的Rel.15NR的DCI格式中包含的字段(例如,SRI字段、SRS请求字段、预编码信息字段等)。
UE也可以根据通过高层信令(例如,RRC信令、MAC信令)被设定或者激活的一个以上的空间关系信息(高层参数“spatialRelationInfo”),基于在DCI中包含的上述特定的字段来决定PUSCH的UL TCI。
UE也可以通过RRC信令被设定上述空间关系信息的列表。UE也可以通过MAC CE被激活被设定的上述空间关系信息的列表中的一个或者多个空间关系信息。
在DCI中包含的上述特定的字段的值也可以相当于与空间关系信息关联的空间关系信息ID(例如,高层参数“spatialRelationInfoId”)、上述列表的条目编号(例如,在上述列表包含n个空间关系信息的情况下,条目编号为0至n-1)、被激活的空间关系信息的索引(第一个激活的空间关系信息为索引0、第二个激活的空间关系信息为索引1、…)等的至少一个。
空间关系信息也可以包含与参照参考信号(例如,SSB/CSI-RS/SRS)相关的信息。UE也可以按照与参照参考信号相关的空间关系来发送PUSCH。
在第一实施方式中,在包含上述特定的字段(例如,UL TCI字段)的DCI中也可以不包含SRI字段。换言之,在调度PUSCH的DCI格式中,也可以包含上述特定的字段来取代SRI字段。
[天线端口数的设定/指定]
UE也可以基于预编码信息字段来判断TPMI(或者预编码)以及RI(或者层数)。UE也可以从上行链路用的码本中选择预编码。
用于该码本的(例如,用于参考该码本的)天线端口数既可以通过高层信令(例如,用于PUSCH设定的RRC信息元素“PUSCH-Config”)被设定给UE,也可以通过DCI字段(例如,天线端口数字段)被指示给UE。另外,天线端口数字段的码点也可以被映射为1、2、4、其他被支持的天线端口数。
用于该码本的天线端口数不依赖于用于SRS资源的天线端口数(例如,通过高层参数“nrofSRS-Ports”而被给定的)。换言之,用于该码本的天线端口数也可以通过与用于SRS资源的天线端口数的高层参数不同的高层参数、或者天线端口数字段被通知给UE。
UE也可以基于上述TPMI、层数等,从针对被设定或者指定天线端口数的上行链路用的码本中选择预编码。
UE也可以利用被设定或者指定的天线端口数的天线端口来发送PUSCH。
图1是示出第一实施方式中的天线端口数字段与天线端口数的对应关系的一例的图。在本例中,例如对于天线端口数字段的值为0、1、2,分别对应单端口(端口数1)、2端口(端口数2)、4端口(端口数4)。
该对应关系既可以预先通过规范被规定,也可以高层信令被设定,也可以通过DCI被指定,还可以基于UE能力被决定。
上述天线端口数的设定/指定也可以仅被应用于满足以下的任意一个条件的情况:
·通过上述特定的字段被指定的空间关系信息包含与参照DL参考信号(例如,SSB/CSI-RS)相关的信息,
·通过上述特定的字段被指定的空间关系信息包含与参照UL参考信号(例如,SRS)相关的信息。
另外,在通过上述特定的字段被指定的空间关系信息包含与参照UL参考信号相关的信息的情况下,天线端口数也可以通过为了该参照UL参考信号而被设定的天线端口数(例如,在用于SRS设定的RRC信息元素“SRS-Config”中包含的用于SRS资源的天线端口数)而被决定(在该情况下,上述天线端口数的设定/指示也可以不被应用)。
另外,在通过上述特定的字段被指定的空间关系信息包含与参照DL参考信号相关的信息的情况下,既可以参考表示预编码信息字段与TPMI以及层数的对应关系的现有的Rel.15/16的表,也可以参考表示新的对应关系的表。
在DCI中包含上述天线端口数字段的情况下,预编码信息字段被用于表示TPMI以及层数。其中,该情况下的预编码信息字段也可以被规定为X比特(例如,X=6)。UE也可以设想为与天线端口数字段的值(天线端口数字段所表示的天线端口数)无关而预编码信息字段具有固定的大小。
在现有的NR规范中,在基于码本的发送的情况下,基于被半静态地设定的天线端口数(例如,与由高层参数的“nrofSRS-Ports”表示的SRS端口数相同的端口数),预编码信息字段的大小是可变的。另一方面,这是因为在天线端口数通过天线端口数字段被动态地指定的情况下,预编码信息字段优选为固定大小(这是因为如果DCI的大小动态地变化,则难以适当地进行解码)。
上述X的值既可以预先通过规范被规定,也可以通过高层信令被设定,还可以基于UE能力被决定。
[发送方案]
也可以被新规定用于激活第一实施方式的控制的发送方案。图2是示出用于激活第一实施方式的控制的发送方案的设定的一例的图。本例使用抽象语法标记1(AbstractSyntax Notation One(ASN.1))记法来记载(另外,由于只是例子,所以有可能没有完全的记载)。
在本例中,在PUSCH设定信息(PUSCH-Config)中也可以包含表示发送方案的新的参数(txConfig-r17)来取代表示发送方案的现有的参数(txConfig)。该新的参数除了现有的“码本(codebook)”、“非码本(nonCodebook)”之外,还可以取“新的发送方案(newTxScheme)”的值。被设定该“新的发送方案”作为新的参数的UE也可以激活第一实施方式的控制(例如,UE也可以预想为了PUSCH而被指定的空间关系信息除了SRS之外或者取代SRS还包含CSI-RS/SSB作为参照参考信号)。
另外,上述新的参数(txConfig-r17)的名称、新的发送方案(newTxScheme)的名称不限于这些。例如,“新的发送方案(newTxScheme)”也可以被替换为表示用于码本的新的发送方案的“用于码本的新的发送方案(newTxSchemeForCodebook)”。
根据以上说明的第一实施方式,UE能够适当地决定针对基于码本的PUSCH的ULTCI。另外,第一实施方式也可以被应用于基于非码本的发送。
<第二实施方式>
第二实施方式涉及利用U-TCI框架的情况下的基于非码本的PUSCH。
UE也可以基于在DCI中包含的特定的字段的一部分或者全部来决定(选择)PUSCH的UL TCI。该特定的字段既可以是在现有的Rel.15NR的DCI格式中不包含的新的字段(例如,也可以被称为UL波束字段、UL TCI字段等),也可以是在现有的Rel.15NR的DCI格式中包含的字段(例如,SRI字段、SRS请求字段、预编码信息字段等)。
在该特定的字段为SRI字段的情况下,该SRI字段也可以被映射到用途=非码本的SRS资源。在该情况下,UE也可以不预想DCI包含上述新的字段(例如,UL TCI字段)。以下,为了简化,将新的字段作为UL TCI字段进行说明。
另外,在第二实施方式中,在包含上述特定的字段(例如,UL TCI字段)的DCI中也可以不包含SRI字段。换言之,在调度PUSCH的DCI格式中,也可以包含上述特定的字段来取代SRI字段。
为了非码本PUSCH发送而被设定在特定的版本中被规定的空间关系信息(例如,spatialRelationInfo-r17),被设定了用途=非码本的SRS资源集的UE也可以预想为用于调度PUSCH的DCI包含UL TCI字段。
UE也可以将UL TCI字段解释为现有的SRI字段。例如,UE也可以判断为UL TCI字段的码点遵循在现有的Rel.16规范的TS 38.212V16.2.0中记载的表7.3.1.1.2-28/29/30/31(或者与这些表相同),并基于UL TCI字段的值,为了PUSCH的空间关系信息而决定在用途=非码本的SRS资源集中包含的一个或者多个SRS资源。UE也可以基于该一个或者多个SRS资源来决定UL TCI。
该表7.3.1.1.2-28/29/30/31相当于用于基于非码本的PUSCH发送的SRI字段与SRI的对应关系(表)。
图3示出在TS 38.212V16.2.0中记载的表7.3.1.1.2-29。该表涉及Lmax=2的情况下的用于基于非码本的PUSCH发送的SRI指示。另外,Lmax的值既可以通过表示最大MIMO(多输入多输出(Multi Input Multi Output))层数的高层参数“maxMIMO-Layers”而被设定,也可以通过UE所支持的PUSCH的最大层数而被给定。
映射到索引的比特字段(Bit field mapped to index)列表示SRI字段的值。NSRS表示对于SRS资源集被设定的SRS资源数。在图3中示出了NSRS=2、3、4。
在进行上述替换的情况下,UE也可以视为图3的映射到索引的比特字段(Bitfield mapped to index)列表示UL TCI字段的值。
为了非码本PUSCH发送而被设定了在特定的版本中被规定的空间关系信息(例如,spatialRelationInfo-r17)的UE也可以预想为用于调度PUSCH的DCI包含UL TCI字段。在该情况下,该UE也可以不被设定用途=非码本的SRS资源集。
UE也可以设想为UL TCI字段的码点被映射到为了PUSCH而被设定/激活的一个以上的空间关系信息。各空间关系信息也可以包含SRS作为参照参考信号。UE也可以基于ULTCI字段的值,决定为被设定/激活的空间关系信息的至少一个的UL TCI。各空间关系信息也可以包含SRS作为参照参考信号。
图4A以及图4B和图5A以及图5B是示出与第二实施方式所涉及的空间关系信息指示相关的表的一例的图。这些表涉及用于基于非码本的PUSCH发送的UL TCI字段(码点(Codepoint))与空间关系信息(spatialRelationInfo(s))的对应关系。图4A、图4B、图5A以及图5B分别对应于上述Lmax=1、2、3以及4的情况。
另外,与图3的NSRS同样地,NSpatialRelationInfo=2、3、4也可以对应于各图的从左起每2列。这里,NSpatialRelationInfo也可以意指(为了基于非码本的发送)被设定/激活的空间关系信息的数量。
在图4A、图4B、图5A以及图5B中,spatialRelationInfo(s)=i也可以意指为了PUSCH而被设定的第i个空间关系信息。spatialRelationInfo(s)=i也可以意指为了PUSCH而被设定的空间关系信息ID从小起(或者从大起)第i个空间关系信息。
在该特定的字段为SRS请求字段的情况下,UL TCI也可以基于被设定的CSI-RS(的测量)而被决定。在该情况下,SRI字段也可以是0比特。例如,UE也可以基于与通过该SRS请求字段被指定的SRS(例如,A-SRS)关联的CSI-RS(associated CSI-RS)的测量,来决定ULTCI(或者预编码)。
根据以上说明的第二实施方式,UE能够适当地决定针对基于非码本的PUSCH的ULTCI。
<第三实施方式>
第三实施方式涉及基于码本/基于非码本的PUSCH。
在第三实施方式中,用于PUSCH的DMRS(PUSCH DMRS)的空间关系也可以通过TCI状态被设定。
例如,在为了PUSCH(或者PUSCH DMRS)而被设定/激活了某个TCI状态的情况下,用于基于码本/基于非码本的PUSCH的UL波束(空间域滤波器)也可以通过与在该TCI状态的QCL类型D(QCL-D)的接收中使用的空间域滤波器相同的空间域滤波器而被决定。例如,UE也可以判断为用于PUSCH的空间域滤波器是与在为了该PUSCH而被设定/激活的TCI状态的、QCL-D的参考RS(例如,SSB/CSI-RS)的接收中使用的空间域滤波器相同的空间域滤波器。
在为了PUSCH(或者PUSCH DMRS)而被设定/激活了多个TCI状态的情况下,也可以通过DCI(例如,该DCI的特定的字段(在第一、第二实施方式中已说明))而被指定一个TCI状态。用于基于码本/基于非码本的PUSCH的UL波束(空间域滤波器)也可以通过与在该被指定的TCI状态的QCL类型D(QCL-D)的接收中使用的空间域滤波器相同的空间域滤波器而被决定。
调度PUSCH的DCI(或者该DCI的上述特定的字段)也可以依赖于被设定/激活的TCI状态的数量而可变。
另外,第三实施方式的TCI状态(TCI状态ID)也可以意指DL TCI状态(DL TCI状态ID)。在该情况下,不需要重新设定/激活UL TCI状态,不仅能够将DL TCI状态作为PDCCH/PDSCH/CSI-RS的TCI状态来利用,还能够作为PUSCH的UL TCI状态来利用。
根据以上说明的第三实施方式,UE能够基于TCI状态适当地决定PUSCH的空间域滤波器。
<其他>
上述实施方式的至少一个也可以仅被应用于报告了特定的UE能力(UEcapability)或者支持该特定的UE能力的UE。
该特定的UE能力也可以表示以下的至少一个:
·(取代用途=码本的SRS)是否支持使用了包含SSB/CSI-RS作为参照参考信号的用于PUSCH的空间关系信息的基于码本的PUSCH发送,
·(取代用途=非码本的SRS)是否支持使用了包含SSB/CSI-RS作为参照参考信号的用于PUSCH的空间关系信息的基于非码本的PUSCH发送,
·所支持的PUSCH发送用的空间关系的数量(或者最大数)。
此外,上述实施方式的至少一个也可以被应用于UE通过高层信令被设定了与上述实施方式关联的特定的信息的情况(在未被设定的情况下,例如应用Rel.15/16的操作)。例如,该特定的信息也可以是表示激活UL TCI的信息(例如,spatialRelation-r17)、表示激活U-TCI的信息、表示激活包含SSB/CSI-RS作为参照参考信号的用于PUSCH的空间关系信息的信息、表示上述新的发送方案的信息、面向特定的版本(例如,Rel.17)的任意的RRC参数等。
上述实施方式的至少一个也可以被应用于在UE中被设定/激活的空间关系信息(TCI状态,UL TCI状态)的参照参考信号全部是DL-RS(例如,SSB/CSI-RS)(换言之,未被设定/激活参照参考信号为SRS的空间关系信息)的情况。
(无线通信系统)
以下,对本公开的一实施方式所涉及的无线通信系统的结构进行说明。在该无线通信系统中,使用本公开的上述各实施方式所涉及的无线通信方法中的任一个或者它们的组合来进行通信。
图6是示出一实施方式所涉及的无线通信系统的概略结构的一例的图。无线通信系统1也可以是利用通过第三代合作伙伴计划(Third Generation Partnership Project(3GPP))而被规范化的长期演进(Long Term Evolution(LTE))、第五代移动通信系统新无线(5th generation mobile communication system New Radio(5G NR))等来实现通信的系统。
此外,无线通信系统1也可以支持多个无线接入技术(Radio Access Technology(RAT))间的双重连接(多RAT双重连接(Multi-RAT Dual Connectivity(MR-DC)))。MR-DC也可以包含LTE(演进的通用陆地无线接入(Evolved Universal Terrestrial Radio Access(E-UTRA)))与NR的双重连接(E-UTRA-NR双重连接(E-UTRA-NR Dual Connectivity(EN-DC)))、NR与LTE的双重连接(NR-E-UTRA双重连接(NR-E-UTRADual Connectivity(NE-DC)))等。
在EN-DC中,LTE(E-UTRA)的基站(eNB)是主节点(Master Node(MN)),NR的基站(gNB)是副节点(Secondary Node(SN))。在NE-DC中,NR的基站(gNB)是MN,LTE(E-UTRA)的基站(eNB)是SN。
无线通信系统1也可以支持同一RAT内的多个基站间的双重连接(例如,MN以及SN这二者是NR的基站(gNB)的双重连接(NR-NR双重连接(NR-NR Dual Connectivity(NN-DC))))。
无线通信系统1也可以具备形成覆盖范围比较宽的宏小区C1的基站11、和被配置在宏小区C1内并形成比宏小区C1窄的小型小区C2的基站12(12a-12c)。用户终端20也可以位于至少一个小区内。各小区以及用户终端20的配置、数量等不限定于图中所示的方式。以下,在不区分基站11以及12的情况下,统称为基站10。
用户终端20也可以与多个基站10中的至少一个连接。用户终端20也可以利用使用了多个分量载波(Component Carrier(CC))的载波聚合(Carrier Aggregation(CA))以及双重连接(DC)的至少一者。
各CC也可以被包含在第一频带(频率范围1(Frequency Range 1(FR1)))以及第二频带(频率范围2(Frequency Range 2(FR2)))的至少一个中。宏小区C1也可以被包含在FR1中,小型小区C2也可以被包含在FR2中。例如,FR1也可以是6GHz以下的频带(低于6GHz(sub-6GHz)),FR2也可以是比24GHz高的频带(above-24GHz)。另外,FR1以及FR2的频带、定义等不限于这些,例如FR1也可以相当于比FR2高的频带。
此外,用户终端20也可以在各CC中,使用时分双工(Time Division Duplex(TDD))以及频分双工(Frequency Division Duplex(FDD))的至少一个来进行通信。
多个基站10也可以通过有线(例如,基于通用公共无线接口(Common PublicRadio Interface(CPRI))的光纤、X2接口等)或者无线(例如,NR通信)而连接。例如,当在基站11以及12间NR通信作为回程而被利用的情况下,相当于上位站的基站11也可以被称为集成接入回程(Integrated Access Backhaul(IAB))宿主(donor),相当于中继站(中继(relay))的基站12也可以被称为IAB节点。
基站10也可以经由其他基站10或者直接与核心网络30连接。核心网络30例如也可以包含演进分组核心(Evolved Packet Core(EPC))、5G核心网络(5G Core Network(5GCN))、下一代核心(Next Generation Core(NGC))等的至少一个。
用户终端20也可以是支持LTE、LTE-A、5G等通信方式的至少一个的终端。
在无线通信系统1中,也可以利用基于正交频分复用(Orthogonal FrequencyDivision Multiplexing(OFDM))的无线接入方式。例如,在下行链路(Downlink(DL))以及上行链路(Uplink(UL))的至少一者中,也可以利用循环前缀OFDM(Cyclic Prefix OFDM(CP-OFDM))、离散傅里叶变换扩展OFDM(Discrete Fourier Transform Spread OFDM(DFT-s-OFDM))、正交频分多址(Orthogonal Frequency Division Multiple Access(OFDMA))、单载波频分多址(Single Carrier Frequency Division Multiple Access(SC-FDMA))等。
无线接入方式也可以被称为波形(waveform)。另外,在无线通信系统1中,在UL以及DL的无线接入方式中,也可以使用其他无线接入方式(例如,其他单载波传输方式、其他多载波传输方式)。
作为下行链路信道,在无线通信系统1中也可以使用在各用户终端20中共享的下行共享信道(物理下行链路共享信道(Physical Downlink Shared Channel(PDSCH)))、广播信道(物理广播信道(Physical Broadcast Channel(PBCH)))、下行控制信道(物理下行链路控制信道(Physical Downlink Control Channel(PDCCH)))等。
此外,作为上行链路信道,在无线通信系统1中也可以使用在各用户终端20中共享的上行共享信道(物理上行链路共享信道(Physical Uplink Shared Channel(PUSCH)))、上行控制信道(物理上行链路控制信道(Physical Uplink Control Channel(PUCCH)))、随机接入信道(物理随机接入信道(Physical Random Access Channel(PRACH)))等。
用户数据、高层控制信息、系统信息块(System Information Block(SIB))等通过PDSCH被传输。用户数据、高层控制信息等也可以通过PUSCH被传输。此外,主信息块(MasterInformation Block(MIB))也可以通过PBCH被传输。
低层控制信息也可以通过PDCCH被传输。低层控制信息例如也可以包含下行控制信息(下行链路控制信息(Downlink Control Information(DCI))),该下行控制信息包含PDSCH以及PUSCH的至少一者的调度信息。
另外,对PDSCH进行调度的DCI也可以被称为DL分配、DL DCI等,对PUSCH进行调度的DCI也可以被称为UL许可、UL DCI等。另外,PDSCH也可以被替换为DL数据,PUSCH也可以被替换为UL数据。
在PDCCH的检测中,也可以利用控制资源集(COntrol REsource SET(CORESET))以及搜索空间(search space)。CORESET对应于搜索DCI的资源。搜索空间对应于PDCCH候选(PDCCH candidates)的搜索区域以及搜索方法。一个CORESET也可以与一个或者多个搜索空间进行关联。UE也可以基于搜索空间设定,来监视与某个搜索空间关联的CORESET。
一个搜索空间也可以与相当于一个或者多个聚合等级(aggregation Level)的PDCCH候选对应。一个或者多个搜索空间也可以被称为搜索空间集。另外,本公开的“搜索空间”、“搜索空间集”、“搜索空间设定”、“搜索空间集设定”、“CORESET”、“CORESET设定”等也可以相互替换。
包含信道状态信息(Channel State Information(CSI))、送达确认信息(例如也可以被称为混合自动重发请求确认(Hybrid Automatic Repeat reQuestACKnowledgement(HARQ-ACK))、ACK/NACK等)以及调度请求(Scheduling Request(SR))的至少一个的上行控制信息(上行链路控制信息(Uplink Control Information(UCI)))也可以通过PUCCH被传输。用于与小区建立连接的随机接入前导码也可以通过PRACH被传输。
另外,在本公开中,下行链路、上行链路等也可以不带有“链路”而表述。此外,也可以在各种信道的开头不带有“物理(Physical)”而表述。
在无线通信系统1中,也可以传输同步信号(Synchronization Signal(SS))、下行链路参考信号(Downlink Reference Signal(DL-RS))等。作为DL-RS,在无线通信系统1中也可以传输小区特定参考信号(Cell-specific Reference Signal(CRS))、信道状态信息参考信号(Channel State Information Reference Signal(CSI-RS))、解调用参考信号(DeModulation Reference Signal(DMRS))、定位参考信号(Positioning ReferenceSignal(PRS))、相位跟踪参考信号(Phase Tracking Reference Signal(PTRS))等。
同步信号例如也可以是主同步信号(Primary Synchronization Signal(PSS))以及副同步信号(Secondary Synchronization Signal(SSS))的至少一个。包含SS(PSS、SSS)以及PBCH(以及PBCH用的DMRS)的信号块也可以被称为SS/PBCH块、SS块(SS Block(SSB))等。另外,SS、SSB等也可以被称为参考信号。
此外,在无线通信系统1中,作为上行链路参考信号(Uplink Reference Signal(UL-RS)),也可以传输测量用参考信号(探测参考信号(Sounding Reference Signal(SRS)))、解调用参考信号(DMRS)等。另外,DMRS也可以被称为用户终端特定参考信号(UE-specific Reference Signal)。
(基站)
图7是示出一实施方式所涉及的基站的结构的一例的图。基站10具备控制单元110、发送接收单元120、发送接收天线130以及传输路径接口(传输线接口(transmissionline interface))140。另外,控制单元110、发送接收单元120以及发送接收天线130以及传输路径接口140也可以分别被具备一个以上。
另外,在本例中,主要示出了本实施方式中的特征部分的功能块,也可以设想为基站10也具有无线通信所需要的其他功能块。以下说明的各单元的处理的一部分也可以省略。
控制单元110实施基站10整体的控制。控制单元110能够由基于本公开所涉及的技术领域中的共同认知而说明的控制器、控制电路等构成。
控制单元110也可以控制信号的生成、调度(例如,资源分配、映射)等。控制单元110也可以控制使用了发送接收单元120、发送接收天线130以及传输路径接口140的发送接收、测量等。控制单元110也可以生成作为信号而发送的数据、控制信息、序列(sequence)等,并转发给发送接收单元120。控制单元110也可以进行通信信道的呼叫处理(设定、释放等)、基站10的状态管理、无线资源的管理等。
发送接收单元120也可以包含基带(baseband)单元121、射频(Radio Frequency(RF))单元122、测量单元123。基带单元121也可以包含发送处理单元1211以及接收处理单元1212。发送接收单元120能够由基于本公开所涉及的技术领域中的共同认知而说明的发送机/接收机、RF电路、基带电路、滤波器、相位偏移器(移相器(phase shifter))、测量电路、发送接收电路等构成。
发送接收单元120既可以作为一体的发送接收单元而构成,也可以由发送单元以及接收单元构成。该发送单元也可以由发送处理单元1211、RF单元122构成。该接收单元也可以由接收处理单元1212、RF单元122、测量单元123构成。
发送接收天线130能够由基于本公开所涉及的技术领域中的共同认知而说明的天线、例如阵列天线等构成。
发送接收单元120也可以发送上述的下行链路信道、同步信号、下行链路参考信号等。发送接收单元120也可以接收上述的上行链路信道、上行链路参考信号等。
发送接收单元120也可以使用数字波束成形(例如,预编码)、模拟波束成形(例如,相位旋转)等,来形成发送波束以及接收波束的至少一者。
发送接收单元120(发送处理单元1211)例如也可以针对从控制单元110取得的数据、控制信息等,进行分组数据汇聚协议(Packet Data Convergence Protocol(PDCP))层的处理、无线链路控制(Radio Link Control(RLC))层的处理(例如,RLC重发控制)、媒体访问控制(Medium Access Control(MAC))层的处理(例如,HARQ重发控制)等,生成要发送的比特串。
发送接收单元120(发送处理单元1211)也可以针对要发送的比特串,进行信道编码(也可以包含纠错编码)、调制、映射、滤波器处理(滤波处理)、离散傅里叶变换(DiscreteFourier Transform(DFT))处理(根据需要)、快速傅里叶逆变换(Inverse Fast FourierTransform(IFFT))处理、预编码、数字-模拟转换等的发送处理,输出基带信号。
发送接收单元120(RF单元122)也可以对基带信号,进行向无线频带的调制、滤波器处理、放大等,并将无线频带的信号经由发送接收天线130发送。
另一方面,发送接收单元120(RF单元122)也可以对通过发送接收天线130被接收的无线频带的信号,进行放大、滤波器处理、向基带信号的解调等。
发送接收单元120(接收处理单元1212)也可以对被取得的基带信号应用模拟-数字转换、快速傅里叶变换(Fast Fourier Transform(FFT))处理、离散傅里叶逆变换(Inverse Discrete Fourier Transform(IDFT))处理(根据需要)、滤波器处理、解映射、解调、解码(也可以包含纠错解码)、MAC层处理、RLC层的处理以及PDCP层的处理等的接收处理,取得用户数据等。
发送接收单元120(测量单元123)也可以实施与接收到的信号相关的测量。例如,测量单元123也可以基于接收到的信号,进行无线资源管理(Radio Resource Management(RRM))测量、信道状态信息(Channel State Information(CSI))测量等。测量单元123也可以针对接收功率(例如,参考信号接收功率(Reference Signal Received Power(RSRP)))、接收质量(例如,参考信号接收质量(Reference Signal Received Quality(RSRQ))、信号与干扰加噪声比(Signal to Interference plus Noise Ratio(SINR))、信噪比(Signalto Noise Ratio(SNR)))、信号强度(例如,接收信号强度指示符(Received SignalStrength Indicator(RSSI)))、传播路径信息(例如,CSI)等,进行测量。测量结果也可以被输出至控制单元110。
传输路径接口140也可以在与核心网络30中包含的装置、其他基站10等之间,对信号进行发送接收(回程信令),也可以对用于用户终端20的用户数据(用户面数据)、控制面数据等进行取得、传输等。
另外,本公开中的基站10的发送单元以及接收单元也可以由发送接收单元120、发送接收天线130以及传输路径接口140的至少一个构成。
另外,发送接收单元120也可以将包含在上行链路发送设定指示状态(UplinkTransmission Configuration Indication state(UL TCI状态))的决定中使用的特定的字段的下行链路控制信息(Downlink Control Information(DCI))发送给用户终端20。
发送接收单元120也可以接收通过所述用户终端20应用基于所述UL TCI状态被决定的预编码而被发送的基于码本/基于非码本的上行链路共享信道(PUSCH)。
(用户终端)
图8是示出一实施方式所涉及的用户终端的结构的一例的图。用户终端20具备控制单元210、发送接收单元220以及发送接收天线230。另外,控制单元210、发送接收单元220以及发送接收天线230也可以分别被具备一个以上。
另外,在本例中,主要示出了本实施方式中的特征部分的功能块,也可以设想为用户终端20还具有无线通信所需要的其他功能块。以下说明的各单元的处理的一部分也可以省略。
控制单元210实施用户终端20整体的控制。控制单元210能够由基于本公开所涉及的技术领域中的共同认知而说明的控制器、控制电路等构成。
控制单元210也可以控制信号的生成、映射等。控制单元210也可以控制使用了发送接收单元220以及发送接收天线230的发送接收、测量等。控制单元210也可以生成作为信号而发送的数据、控制信息、序列等,并转发给发送接收单元220。
发送接收单元220也可以包含基带单元221、RF单元222、测量单元223。基带单元221也可以包含发送处理单元2211、接收处理单元2212。发送接收单元220能够由基于本公开所涉及的技术领域中的共同认知而说明的发送机/接收机、RF电路、基带电路、滤波器、相位偏移器、测量电路、发送接收电路等构成。
发送接收单元220既可以作为一体的发送接收单元而构成,也可以由发送单元以及接收单元构成。该发送单元也可以由发送处理单元2211、RF单元222构成。该接收单元也可以由接收处理单元2212、RF单元222、测量单元223构成。
发送接收天线230能够由基于本公开所涉及的技术领域中的共同认知而说明的天线、例如阵列天线等构成。
发送接收单元220也可以接收上述的下行链路信道、同步信号、下行链路参考信号等。发送接收单元220也可以发送上述的上行链路信道、上行链路参考信号等。
发送接收单元220也可以使用数字波束成形(例如,预编码)、模拟波束成形(例如,相位旋转)等,来形成发送波束以及接收波束的至少一者。
发送接收单元220(发送处理单元2211)例如也可以针对从控制单元210取得的数据、控制信息等,进行PDCP层的处理、RLC层的处理(例如,RLC重发控制)、MAC层的处理(例如,HARQ重发控制)等,生成要发送的比特串。
发送接收单元220(发送处理单元2211)也可以针对要发送的比特串,进行信道编码(也可以包含纠错编码)、调制、映射、滤波器处理、DFT处理(根据需要)、IFFT处理、预编码、数字-模拟转换等发送处理,输出基带信号。
另外,关于是否应用DFT处理,也可以基于变换预编码的设定。针对某个信道(例如,PUSCH),在变换预编码是有效(启用(enabled))的情况下,发送接收单元220(发送处理单元2211)也可以为了利用DFT-s-OFDM波形来发送该信道,作为上述发送处理而进行DFT处理,在不是这样的情况下,发送接收单元220(发送处理单元2211)也可以作为上述发送处理而不进行DFT处理。
发送接收单元220(RF单元222)也可以针对基带信号,进行向无线频带的调制、滤波器处理、放大等,将无线频带的信号经由发送接收天线230来发送。
另一方面,发送接收单元220(RF单元222)也可以针对通过发送接收天线230而被接收的无线频带的信号,进行放大、滤波器处理、向基带信号的解调等。
发送接收单元220(接收处理单元2212)也可以针对所取得的基带信号,应用模拟-数字转换、FFT处理、IDFT处理(根据需要)、滤波器处理、解映射、解调、解码(也可以包含纠错解码)、MAC层处理、RLC层的处理以及PDCP层的处理等接收处理,取得用户数据等。
发送接收单元220(测量单元223)也可以实施与接收到的信号相关的测量。例如,测量单元223也可以基于接收到的信号,进行RRM测量、CSI测量等。测量单元223也可以针对接收功率(例如,RSRP)、接收质量(例如,RSRQ、SINR、SNR)、信号强度(例如,RSSI)、传播路径信息(例如,CSI)等进行测量。测量结果也可以被输出至控制单元210。
另外,本公开中的用户终端20的发送单元以及接收单元也可以由发送接收单元220以及发送接收天线230的至少一个构成。
另外,控制单元210也可以基于在下行链路控制信息(Downlink ControlInformation(DCI))中包含的特定的字段,来决定上行链路发送设定指示状态(UplinkTransmission Configuration Indication state(UL TCI状态))。
该DCI也可以是用于调度PUSCH的DCI格式(例如,DCI格式0_0、0_1、0_2等)。在所述DCI中也可以不包含测量用参考信号(探测参考信号(Sounding Reference Signal(SRS)))资源指示符(SRS Resource Indicator(SRI))字段。
该特定的字段既可以是在现有的Rel.15NR的DCI格式中不包含的新的字段(例如,也可以被称为UL波束字段、UL TCI字段等),也可以是在现有的Rel.15NR的DCI格式中包含的字段(例如,SRI字段、SRS请求字段、预编码信息字段等)。
发送接收单元220也可以应用基于所述UL TCI状态被决定的预编码,来发送基于码本的上行链路共享信道。
所述预编码也可以根据通过与用于测量用参考信号(探测参考信号(SoundingReference Signal(SRS)))资源的天线端口数的高层参数不同的高层参数而被给定的天线端口数、或者针对由上述DCI的字段表示的天线端口数的码本而被决定。
控制单元210也可以设想为,在所述DCI中包含表示所述天线端口数的字段的情况下,所述DCI的预编码信息以及层数字段与所表示的天线端口数无关地具有固定的大小。
发送接收单元220也可以应用基于所述UL TCI状态被决定的预编码,发送基于非码本的上行链路共享信道。
控制单元210也可以判断为所述特定的字段的码点遵循用于基于非码本的上行链路共享信道发送的、与测量用参考信号(探测参考信号(Sounding Reference Signal(SRS)))资源指示符(SRS Resource Indicator(SRI))字段与SRI的对应关系相同的对应关系,并基于在通过所述特定的字段的值被指定的、用途=非码本的SRS资源集中包含的一个或者多个SRS资源来决定所述UL TCI(例如,也可以将用于该一个或者多个SRS资源的ULTCI用作所述UL TCI)。
控制单元210也可以判断为所述特定的字段的码点被映射到为了上行链路共享信道而被设定或者激活的一个以上的空间关系信息,并基于通过所述特定的字段的值被指定的至少一个的该空间关系信息来决定所述UL TCI(例如,也可以判断为该空间关系信息是所述UL TCI)。
(硬件结构)
另外,在上述实施方式的说明中使用的框图示出了功能单位的块。这些功能块(结构单元)通过硬件以及软件的至少一者的任意组合来实现。此外,各功能块的实现方法并没有特别限定。即,各功能块可以用物理上或者逻辑上结合而成的一个装置来实现,也可以将物理上或者逻辑上分离的两个以上的装置直接或者间接地(例如用有线、无线等)连接而用这些多个装置来实现。功能块也可以将上述一个装置或者上述多个装置与软件组合来实现。
这里,在功能中,有判断、决定、判定、计算、算出、处理、导出、调查、搜索、确认、接收、发送、输出、接入、解决、选择、选定、建立、比较、设想、期待、视为、广播(broadcasting)、通知(notifying)、通信(communicating)、转发(forwarding)、构成(设定(configuring))、重构(重设定(reconfiguring))、分配(allocating、映射(mapping))、分派(assigning)等,但是不受限于这些。例如,实现发送功能的功能块(结构单元)也可以被称为发送单元(transmitting unit)、发送机(transmitter)等。任意一个均如上述那样,实现方法不受到特别限定。
例如,本公开的一实施方式中的基站、用户终端等也可以作为进行本公开的无线通信方法的处理的计算机而发挥功能。图9是示出一实施方式所涉及的基站以及用户终端的硬件结构的一例的图。上述的基站10以及用户终端20在物理上也可以构成为包含处理器1001、存储器1002、储存器1003、通信装置1004、输入装置1005、输出装置1006、总线1007等的计算机装置。
另外,在本公开中,装置、电路、设备、部分(section)、单元等术语能够相互替换。基站10以及用户终端20的硬件结构既可以构成为将图中示出的各装置包含一个或者多个,也可以构成为不包含一部分装置。
例如,处理器1001仅图示出一个,但也可以有多个处理器。此外,处理可以由一个处理器来执行,也可以同时地、依次地、或者用其他手法由两个以上的处理器来执行处理。另外,处理器1001也可以通过一个以上的芯片而被实现。
关于基站10以及用户终端20中的各功能,例如通过将特定的软件(程序)读入到处理器1001、存储器1002等硬件上,从而由处理器1001进行运算并控制经由通信装置1004的通信,或者控制存储器1002以及储存器1003中的数据的读出以及写入的至少一者,由此来实现。
处理器1001例如使操作系统进行操作来控制计算机整体。处理器1001也可以由包含与外围设备的接口、控制装置、运算装置、寄存器等的中央处理装置(中央处理单元(Central Processing Unit(CPU)))构成。例如,上述的控制单元110(210)、发送接收单元120(220)等的至少一部分也可以由处理器1001实现。
此外,处理器1001将程序(程序代码)、软件模块、数据等从储存器1003以及通信装置1004的至少一者读出至存储器1002,并根据它们来执行各种处理。作为程序,可使用使计算机执行在上述的实施方式中说明的操作的至少一部分的程序。例如,控制单元110(210)也可以通过被存储于存储器1002中并在处理器1001中进行操作的控制程序来实现,针对其他功能块也可以同样地实现。
存储器1002也可以是计算机可读取的记录介质,例如由只读存储器(Read OnlyMemory(ROM))、可擦除可编程只读存储器(Erasable Programmable ROM(EPROM))、电可擦除可编程只读存储器(Electrically EPROM(EEPROM))、随机存取存储器(Random AccessMemory(RAM))、其他适当的存储介质的至少一个构成。存储器1002也可以被称为寄存器、高速缓存、主存储器(主存储装置)等。存储器1002能够保存为了实施本公开的一实施方式所涉及的无线通信方法而可执行的程序(程序代码)、软件模块等。
储存器1003也可以是计算机可读取的记录介质,例如由柔性盘(flexible disc)、软(Floppy(注册商标))盘、光磁盘(例如压缩盘(压缩盘只读存储器(Compact Disc ROM(CD-ROM))等)、数字多功能盘、蓝光(Blu-ray)(注册商标)盘)、可移动磁盘(removabledisc)、硬盘驱动器、智能卡、闪存设备(例如卡(card)、棒(stick)、键驱动器(key drive))、磁条(stripe)、数据库、服务器、其他适当的存储介质的至少一个构成。储存器1003也可以称为辅助存储装置。
通信装置1004是用于经由有线网络以及无线网络的至少一者来进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。为了实现例如频分双工(Frequency Division Duplex(FDD))以及时分双工(Time DivisionDuplex(TDD))的至少一者,通信装置1004也可以构成为包含高频开关、双工器、滤波器、频率合成器等。例如上述的发送接收单元120(220)、发送接收天线130(230)等也可以由通信装置1004来实现。发送接收单元120(220)也可以由发送单元120a(220a)和接收单元120b(220b)进行在物理上或者逻辑上分离的实现。
输入装置1005是受理来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置1006是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(Light Emitting Diode(LED))灯等)。另外,输入装置1005以及输出装置1006也可以是成为一体的结构(例如,触摸面板)。
此外,处理器1001、存储器1002等各装置通过用于对信息进行通信的总线1007来连接。总线1007可以用单个(single)总线构成,也可以在各装置间用不同的总线来构成。
此外,基站10以及用户终端20还可以构成为包含微处理器、数字信号处理器(Digital Signal Processor(DSP))、专用集成电路(Application Specific IntegratedCircuit(ASIC))、可编程逻辑器件(Programmable Logic Device(PLD))、现场可编程门阵列(Field Programmable Gate Array(FPGA))等硬件,也可以用该硬件来实现各功能块的一部分或者全部。例如,处理器1001也可以使用这些硬件的至少一个来实现。
(变形例)
另外,关于在本公开中进行了说明的术语以及为了理解本公开所需要的术语,也可以替换为具有相同或者类似的意思的术语。例如,信道、码元以及信号(信号或者信令)也可以相互替换。此外,信号也可以是消息。参考信号(Reference Signal)还能够简称为RS,还可以根据所应用的标准而被称为导频(Pilot)、导频信号等。此外,分量载波(ComponentCarrier(CC))也可以被称为小区、频率载波、载波频率等。
无线帧在时域中还可以由一个或者多个期间(帧)构成。构成无线帧的该一个或者多个期间(帧)的各个期间(帧)也可以被称为子帧。进一步地,子帧在时域中还可以由一个或者多个时隙构成。子帧也可以是不依赖于参数集(numerology)的固定的时间长度(例如1ms)。
这里,参数集还可以是指在某信号或者信道的发送以及接收的至少一者中应用的通信参数。例如,参数集还可以表示子载波间隔(SubCarrier Spacing(SCS))、带宽、码元长度、循环前缀长度、发送时间间隔(Transmission Time Interval(TTI))、每个TTI的码元数、无线帧结构、发送接收机在频域中所进行的特定的滤波处理、发送接收机在时域中所进行的特定的加窗(windowing)处理等的至少一者。
时隙在时域中还可以由一个或者多个码元(正交频分复用(OrthogonalFrequency Division Multiplexing(OFDM))码元、单载波频分多址(Single CarrierFrequency Division Multiple Access(SC-FDMA))码元等)构成。此外,时隙也可以是基于参数集的时间单位。
时隙也可以包含多个迷你时隙。各迷你时隙也可以在时域内由一个或者多个码元构成。此外,迷你时隙也可以被称为子时隙。迷你时隙还可以由比时隙少的数量的码元构成。以比迷你时隙大的时间单位被发送的PDSCH(或者PUSCH)还可以被称为PDSCH(PUSCH)映射类型A。使用迷你时隙被发送的PDSCH(或者PUSCH)还可以被称为PDSCH(PUSCH)映射类型B。
无线帧、子帧、时隙、迷你时隙以及码元均表示传输信号时的时间单位。无线帧、子帧、时隙、迷你时隙以及码元还可以使用各自所对应的其他称呼。另外,本公开中的帧、子帧、时隙、迷你时隙、码元等时间单位也可以相互替换。
例如,一个子帧也可以被称为TTI,多个连续的子帧也可以被称为TTI,一个时隙或者一个迷你时隙也可以被称为TTI。即,子帧以及TTI的至少一者可以是现有的LTE中的子帧(1ms),也可以是比1ms短的期间(例如,1-13个码元),还可以是比1ms长的期间。另外,表示TTI的单位也可以不被称为子帧,而被称为时隙、迷你时隙等。
这里,TTI例如是指无线通信中的调度的最小时间单位。例如,在LTE系统中,基站对各用户终端进行以TTI单位来分配无线资源(在各用户终端中能够使用的频率带宽、发送功率等)的调度。另外,TTI的定义不限于此。
TTI也可以是进行了信道编码的数据分组(传输块)、码块、码字等的发送时间单位,还可以成为调度、链路自适应等的处理单位。另外,在TTI被给定时,实际上被映射传输块、码块、码字等的时间区间(例如,码元数)也可以比该TTI短。
另外,在一个时隙或者一个迷你时隙被称为TTI的情况下,一个以上的TTI(即,一个以上的时隙或者一个以上的迷你时隙)也可以成为调度的最小时间单位。此外,构成该调度的最小时间单位的时隙数(迷你时隙数)也可以被控制。
具有1ms的时间长度的TTI也可以被称为通常TTI(3GPP Rel.8-12中的TTI)、标准TTI、长TTI、通常子帧、标准子帧、长子帧、时隙等。比通常TTI短的TTI也可以被称为缩短TTI、短TTI、部分TTI(partial或者fractional TTI)、缩短子帧、短子帧、迷你时隙、子时隙、时隙等。
另外,长TTI(例如,通常TTI、子帧等)也可以替换为具有超过1ms的时间长度的TTI,短TTI(例如,缩短TTI等)也可以替换为具有小于长TTI的TTI长度且1ms以上的TTI长度的TTI。
资源块(Resource Block(RB))是时域以及频域的资源分配单位,在频域中也可以包含一个或者多个连续的副载波(子载波(subcarrier))。RB中包含的子载波的数量也可以与参数集无关而均是相同的,例如也可以是12。RB中包含的子载波的数量也可以基于参数集来决定。
此外,RB在时域中也可以包含一个或者多个码元,也可以是一个时隙、一个迷你时隙、一个子帧、或者一个TTI的长度。一个TTI、一个子帧等也可以分别由一个或者多个资源块构成。
另外,一个或者多个RB也可以被称为物理资源块(Physical RB(PRB))、子载波组(Sub-Carrier Group(SCG))、资源元素组(Resource Element Group(REG))、PRB对、RB对等。
此外,资源块也可以由一个或者多个资源元素(Resource Element(RE))构成。例如,一个RE也可以是一个子载波以及一个码元的无线资源区域。
带宽部分(Bandwidth Part(BWP))(也可以被称为部分带宽等)也可以表示在某个载波中某个参数集用的连续的公共RB(公共资源块(common resource blocks))的子集。这里,公共RB也可以通过以该载波的公共参考点为基准的RB的索引来确定。PRB也可以在某BWP中被定义,并在该BWP内被附加编号。
在BWP中也可以包含UL BWP(UL用的BWP)和DL BWP(DL用的BWP)。针对UE,也可以在一个载波内设定一个或者多个BWP。
被设定的BWP的至少一个也可以是激活的,UE也可以不设想在激活的BWP以外,对特定的信道/信号进行发送接收。另外,本公开中的“小区”、“载波”等也可以被替换为“BWP”。
另外,上述的无线帧、子帧、时隙、迷你时隙和码元等结构只不过是例示。例如,无线帧中包含的子帧的数量、每个子帧或者无线帧的时隙的数量、时隙内包含的迷你时隙的数量、时隙或者迷你时隙中包含的码元以及RB的数量、RB中包含的子载波的数量、以及TTI内的码元数、码元长度、循环前缀(Cyclic Prefix(CP))长度等结构能够进行各种各样的变更。
此外,在本公开中说明了的信息、参数等可以用绝对值来表示,也可以用相对于特定的值的相对值来表示,还可以用对应的其他信息来表示。例如,无线资源也可以由特定的索引来指示。
在本公开中,对参数等所使用的名称在所有方面均不是限定性的名称。进而,使用这些参数的数学式等也可以与在本公开中明确公开的不同。各种各样的信道(PUCCH、PDCCH等)以及信息元素能够通过任何适宜的名称来标识,因此,分配给这些各种各样的信道以及信息元素的各种各样的名称在所有方面均不是限定性的名称。
在本公开中进行了说明的信息、信号等也可以使用各种各样的不同技术中的任一个来表示。例如,可能遍及上述的整个说明而提及的数据、指令、命令、信息、信号、比特、码元、码片(chip)等也可以通过电压、电流、电磁波、磁场或者磁性粒子、光场或者光子、或者它们的任意组合来表示。
此外,信息、信号等能够以如下的至少一个方向输出:从高层(上位层)向低层(下位层)、以及从低层向高层。信息、信号等也可以经由多个网络节点而被输入输出。
所输入输出的信息、信号等可以被保存于特定的部位(例如,存储器),也可以用管理表格来进行管理。所输入输出的信息、信号等可以被覆写、更新或者追加。所输出的信息、信号等也可以被删除。所输入的信息、信号等也可以被发送至其他装置。
信息的通知不限于在本公开中进行了说明的方式/实施方式,也可以用其他方法进行。例如,本公开中的信息的通知也可以通过物理层信令(例如,下行控制信息(下行链路控制信息(Downlink Control Information(DCI)))、上行控制信息(上行链路控制信息(Uplink Control Information(UCI))))、高层信令(例如,无线资源控制(Radio ResourceControl(RRC))信令、广播信息(主信息块(Master Information Block(MIB))、系统信息块(System Information Block(SIB))等)、媒体访问控制(Medium Access Control(MAC))信令)、其他信号或者它们的组合来实施。
另外,物理层信令也可以被称为层1/层2(Layer 1/Layer 2(L1/L2))控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以被称为RRC消息,例如还可以是RRC连接建立(RRC Connection Setup)消息、RRC连接重构(RRC连接重设定(RRCConnection Reconfiguration))消息等。此外,MAC信令例如也可以使用MAC控制元素(MACControl Element(CE))而被通知。
此外,特定的信息的通知(例如,“是X”的通知)不限于显式的通知,也可以隐式地(例如,通过不进行该特定的信息的通知、或者通过其他信息的通知)进行。
判定可以通过由一个比特表示的值(0或者1)来进行,也可以通过由真(true)或者假(false)来表示的真假值(布尔值(boolean))来进行,还可以通过数值的比较(例如,与特定的值的比较)来进行。
软件无论被称为软件(software)、固件(firmware)、中间件(middle-ware)、微代码(micro-code)、硬件描述语言,还是以其他名称来称呼,都应该被宽泛地解释为意指指令、指令集、代码(code)、代码段(code segment)、程序代码(program code)、程序(program)、子程序(sub-program)、软件模块(software module)、应用(application)、软件应用(software application)、软件包(software package)、例程(routine)、子例程(sub-routine)、对象(object)、可执行文件、执行线程、过程、功能等。
此外,软件、指令、信息等也可以经由传输介质而被发送接收。例如,在使用有线技术(同轴线缆、光纤线缆、双绞线、数字订户线路(Digital Subscriber Line(DSL))等)以及无线技术(红外线、微波等)的至少一者,从网站、服务器或者其他远程源(remote source)来发送软件的情况下,这些有线技术以及无线技术的至少一者被包含在传输介质的定义内。
在本公开中使用的“系统”以及“网络”这样的术语能够被互换使用。“网络”也可以意指网络中包含的装置(例如,基站)。
在本公开中,“预编码(precoding)”、“预编码(precoder)”、“权重(预编码权重)”、“准共址(Quasi-Co-Location(QCL))”、“发送设定指示状态(Transmission ConfigurationIndication state(TCI状态))”、“空间关系(spatial relation)”、“空间域滤波器(spatial domain filter)”、“发送功率”、“相位旋转”、“天线端口”、“天线端口组”、“层”、“层数”、“秩”、“资源”、“资源集”、“资源组”、“波束”、“波束宽度”、“波束角度”、“天线”、“天线元件”、“面板”等术语能够互换使用。
在本公开中,“基站(Base Station(BS))”、“无线基站”、“固定台(fixedstation)”、“NodeB”、“eNB(eNodeB)”、“gNB(gNodeB)”、“接入点(access point)”、“发送点(Transmission Point(TP))”、“接收点(Reception Point(RP))”、“发送接收点(Transmission/Reception Point(TRP))”、“面板”、“小区”、“扇区”、“小区组”、“载波”、“分量载波”等术语能够互换使用。还存在如下情况,即,用宏小区、小型小区、毫微微小区、微微小区等术语来称呼基站。
基站能够容纳一个或者多个(例如,三个)小区。在基站容纳多个小区的情况下,基站的覆盖区域整体能够划分为多个更小的区域,各个更小的区域也能够通过基站子系统(例如,室内用的小型基站(远程无线头(Remote Radio Head(RRH))))来提供通信服务。“小区”或者“扇区”这样的术语是指,在该覆盖范围内进行通信服务的基站以及基站子系统的至少一者的覆盖区域的一部分或者整体。
在本公开中,“移动台(Mobile Station(MS))”、“用户终端(user terminal)”、“用户装置(用户设备(User Equipment(UE)))”、“终端”等术语能够互换使用。
还存在用订户站、移动单元、订户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动订户站、接入终端、移动终端、无线终端、远程终端、手持通话器(hand set)、用户代理、移动客户端、客户端或者若干其他适当的术语来称呼移动台的情况。
基站以及移动台的至少一者还可以被称为发送装置、接收装置、无线通信装置等。另外,基站以及移动台的至少一者还可以是在移动体中搭载的设备、移动体本体等。该移动体既可以是交通工具(例如,车辆、飞机等),也可以是以无人的方式移动的移动体(例如,无人机(drone)、自动驾驶车辆等),还可以是机器人(有人型或者无人型)。另外,基站以及移动台的至少一者还包含在进行通信操作时不一定移动的装置。例如,基站以及移动台的至少一者也可以是传感器等物联网(Internet of Things(IoT))设备。
此外,本公开中的基站也可以替换为用户终端。例如,针对将基站与用户终端间的通信替换为多个用户终端间的通信(例如,也可以被称为设备对设备(Device-to-Device(D2D))、车联网(Vehicle-to-Everything(V2X))等)的结构,也可以应用本公开的各方式/实施方式。在该情况下,也可以设为由用户终端20具有上述的基站10所具有的功能的结构。此外,“上行”、“下行”等术语也可以被替换为与终端间通信对应的术语(例如,“侧(side)”)。例如,上行信道、下行信道等也可以被替换为侧信道。
同样地,本公开中的用户终端也可以被替换为基站。在该情况下,也可以设为由基站10具有上述的用户终端20所具有的功能的结构。
在本公开中,设为由基站进行的动作,有时还根据情况而由其上位节点(uppernode)进行。明显地,在包含具有基站的一个或者多个网络节点(network nodes)的网络中,为了与终端的通信而进行的各种各样的操作可以由基站、除基站以外的一个以上的网络节点(例如考虑移动性管理实体(Mobility Management Entity(MME))、服务网关(Serving-Gateway(S-GW))等,但不限于这些)或者它们的组合来进行。
在本公开中进行了说明的各方式/实施方式可以单独地使用,也可以组合地使用,还可以随着执行而切换着使用。此外,在本公开中进行了说明的各方式/实施方式的处理过程、序列、流程图等,只要不矛盾则也可以调换顺序。例如,针对在本公开中进行了说明的方法,使用例示的顺序来提示各种各样的步骤的元素,但不限定于所提示的特定的顺序。
在本公开中进行了说明的各方式/实施方式也可以应用于长期演进(Long TermEvolution(LTE))、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER3G、IMT-Advanced、第四代移动通信系统(4th generation mobile communication system(4G))、第五代移动通信系统(5th generation mobile communication system(5G))、第六代移动通信系统(6thgeneration mobile communication system(6G))、第x代移动通信系统(xth generationmobile communication system(xG))(xG(x例如是整数、小数))、未来无线接入(FutureRadio Access(FRA))、新无线接入技术(New-Radio Access Technology(RAT))、新无线(New Radio(NR))、新无线接入(New radio access(NX))、新一代无线接入(Futuregeneration radio access(FX))、全球移动通信系统(Global System for Mobilecommunications(GSM(注册商标)))、CDMA2000、超移动宽带(Ultra Mobile Broadband(UMB))、IEEE 802.11(Wi-Fi(注册商标))、IEEE802.16(WiMAX(注册商标))、IEEE 802.20、超宽带(Ultra-WideBand(UWB))、Bluetooth(蓝牙)(注册商标)、利用其他适当的无线通信方法的系统、基于它们而扩展得到的下一代系统等中。此外,多个系统还可以被组合(例如,LTE或者LTE-A、与5G的组合等)来应用。
在本公开中使用的“基于”这一记载,只要没有特别地写明,就不意指“仅基于”。换言之,“基于”这一记载意指“仅基于”和“至少基于”两者。
任何对使用了在本公开中使用的“第一”、“第二”等称呼的元素的参照均不会全面地限定这些元素的量或者顺序。这些称呼在本公开中可以作为区分两个以上的元素之间的便利的方法来使用。因此,关于第一以及第二元素的参照,不意指仅可以采用两个元素、或者第一元素必须以某种形式优先于第二元素。
在本公开中使用的“判断(决定)(determining)”这样的术语存在包含多种多样的动作的情况。例如,“判断(决定)”还可以是将判定(judging)、计算(calculating)、算出(computing)、处理(processing)、导出(deriving)、调查(investigating)、搜索(lookingup(查找)、search、inquiry(查询))(例如表格、数据库或者其他数据结构中的搜索)、确认(ascertaining)等视为进行“判断(决定)”的情况。
此外,“判断(决定)”也可以是将接收(receiving)(例如,接收信息)、发送(transmitting)(例如,发送信息)、输入(input)、输出(output)、访问(accessing)(例如,访问存储器中的数据)等视为进行“判断(决定)”的情况。
此外,“判断(决定)”还可以是将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为进行“判断(决定)”的情况。即,“判断(决定)”还可以是将一些动作视为进行“判断(决定)”的情况。
此外,“判断(决定)”还可以被替换为“设想(assuming)”、“期待(expecting)”、“视为(considering)”等。
在本公开中使用的“连接(connected)”、“结合(coupled)”这样的术语,或者它们的所有变形,意指两个或者其以上的元素间的直接或者间接的所有连接或者结合,并能够包含在相互“连接”或者“结合”的两个元素间存在一个或者一个以上的中间元素这一情况。元素间的结合或者连接可以是物理上的,也可以是逻辑上的,或者还可以是它们的组合。例如,“连接”也可以被替换为“接入(access)”。
在本公开中,在两个元素被连接的情况下,能够考虑使用一个以上的电线、线缆、印刷电连接等,以及作为若干个非限定且非包括的示例而使用具有无线频域、微波区域、光(可见以及不可见两者)区域的波长的电磁能量等,而被相互“连接”或者“结合”。
在本公开中,“A与B不同”这样的术语也可以意指“A与B相互不同”的意思。另外,该术语也可以意指“A和B分别与C不同”的意思。“分离”、“结合”等术语也可以与“不同”进行同样的解释。
在本公开中使用“包含(include)”、“包含有(including)”、以及它们的变形的情况下,这些术语与术语“具备(comprising)”同样地,是指包括性的意思。进而,在本公开中使用的术语“或者(or)”不是指异或者的意思。
在本公开中,例如在如英语中的a、an以及the那样通过翻译追加了冠词的情况下,本公开还可以包含接在这些冠词之后的名词是复数形式的情况。
以上,针对本公开所涉及的发明详细地进行了说明,但是对本领域技术人员而言,本公开所涉及的发明显然不限定于本公开中进行了说明的实施方式。本公开所涉及的发明在不脱离基于权利要求书的记载而确定的发明的主旨以及范围的情况下,能够作为修正和变更方式来实施。因此,本公开的记载以例示说明为目的,不带有对本公开所涉及的发明任何限制性的意思。
Claims (6)
1.一种终端,具有:
控制单元,基于在下行链路控制信息(Downlink Control Information(DCI))中包含的特定的字段,决定上行链路发送设定指示状态(Uplink Transmission ConfigurationIndication state(UL TCI状态));以及
发送单元,应用基于所述UL TCI状态而被决定的预编码,发送基于码本的上行链路共享信道。
2.如权利要求1所述的终端,其中,
在所述DCI中不包含测量用参考信号(Sounding Reference Signal(SRS))资源指示符(SRS Resource Indicator(SRI))字段。
3.如权利要求1或权利要求2所述的终端,其中,
所述预编码根据通过与用于测量用参考信号(Sounding Reference Signal(SRS))资源的天线端口数的高层参数不同的高层参数而被给定的天线端口数、或者关于由所述DCI的字段表示的天线端口数的码本而被决定。
4.如权利要求3所述的终端,其中,
所述控制单元设想为在所述DCI中包含表示所述天线端口数的字段的情况下,所述DCI的预编码信息以及层数字段与所表示的天线端口数无关地具有固定的大小。
5.一种终端的无线通信方法,具有:
基于在下行链路控制信息(Downlink Control Information(DCI))中包含的特定的字段,决定上行链路发送设定指示状态(Uplink Transmission Configuration Indicationstate(ULTCI状态))的步骤;以及
应用基于所述ULTCI状态而被决定的预编码,发送基于码本的上行链路共享信道的步骤。
6.一种基站,具有:
发送单元,将包含在上行链路发送设定指示状态(Uplink TransmissionConfiguration Indication state(ULTCI状态))的决定中使用的特定的字段的下行链路控制信息(Downlink Control Information(DCI))发送给终端;以及
接收单元,接收通过所述终端应用基于所述ULTCI状态被决定的预编码而被发送的基于码本的上行链路共享信道。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/030041 WO2022029933A1 (ja) | 2020-08-05 | 2020-08-05 | 端末、無線通信方法及び基地局 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116018834A true CN116018834A (zh) | 2023-04-25 |
Family
ID=80117791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080104367.1A Pending CN116018834A (zh) | 2020-08-05 | 2020-08-05 | 终端、无线通信方法以及基站 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116018834A (zh) |
WO (1) | WO2022029933A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230308237A1 (en) * | 2021-02-18 | 2023-09-28 | Ofinno, Llc | Default Spatial Filter Determination |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116961855A (zh) * | 2022-04-20 | 2023-10-27 | 大唐移动通信设备有限公司 | 信息传输方法、装置及通信设备 |
WO2023205986A1 (en) * | 2022-04-25 | 2023-11-02 | Qualcomm Incorporated | Unified transmission configuration indicator for sounding reference signal set |
CN117856840A (zh) * | 2022-09-30 | 2024-04-09 | 大唐移动通信设备有限公司 | 信息确定方法、装置、终端及网络设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110149187A (zh) * | 2018-02-13 | 2019-08-20 | 展讯通信(上海)有限公司 | 一种获取非周期信道探测参考信号的方法 |
WO2020106128A1 (ko) * | 2018-11-23 | 2020-05-28 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이에 대한 장치 |
-
2020
- 2020-08-05 WO PCT/JP2020/030041 patent/WO2022029933A1/ja active Application Filing
- 2020-08-05 CN CN202080104367.1A patent/CN116018834A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110149187A (zh) * | 2018-02-13 | 2019-08-20 | 展讯通信(上海)有限公司 | 一种获取非周期信道探测参考信号的方法 |
WO2020106128A1 (ko) * | 2018-11-23 | 2020-05-28 | 엘지전자 주식회사 | 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이에 대한 장치 |
Non-Patent Citations (5)
Title |
---|
""R1-1801143 Feature lead summary 2 of beam measurement and reporting"", 3GPP TSG_RAN\\WG1_RL1, 26 January 2018 (2018-01-26) * |
""R1-1810364_Remaining issues on Multi-antenna schemes"", 3GPP TSG_RAN\\WG1_RL1, 29 September 2018 (2018-09-29), pages 2 * |
""R1-1908352"", 3GPP TSG_RAN\\WG1_RL1, 17 August 2019 (2019-08-17), pages 2 * |
""R1-1908502 R16 Multi-Beam"", 3GPP TSG_RAN\\WG1_RL1, 17 August 2019 (2019-08-17), pages 5 * |
RAN1: "RP-192270 "Status Report for WI: Enhancements on MIMO for NR; rapporteur: Samsung"", 3GPP TSG_RAN\\TSG_RAN, no. 85, 20 September 2019 (2019-09-20) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230308237A1 (en) * | 2021-02-18 | 2023-09-28 | Ofinno, Llc | Default Spatial Filter Determination |
US11824807B2 (en) * | 2021-02-18 | 2023-11-21 | Ofinno, Llc | Default spatial filter determination |
Also Published As
Publication number | Publication date |
---|---|
WO2022029933A1 (ja) | 2022-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113170482B (zh) | 终端、基站、系统以及无线通信方法 | |
CN116636243A (zh) | 终端、无线通信方法以及基站 | |
WO2022029933A1 (ja) | 端末、無線通信方法及び基地局 | |
CN117063503A (zh) | 终端、无线通信方法以及基站 | |
CN116235590A (zh) | 终端、无线通信方法以及基站 | |
CN116235586A (zh) | 终端、无线通信方法以及基站 | |
CN116458227A (zh) | 终端、无线通信方法以及基站 | |
CN116569630A (zh) | 终端、无线通信方法以及基站 | |
CN116325854B (zh) | 终端、无线通信方法及基站 | |
CN116349353A (zh) | 终端、无线通信方法以及基站 | |
CN116325858A (zh) | 终端、无线通信方法以及基站 | |
CN116325855A (zh) | 终端、无线通信方法以及基站 | |
CN116326040A (zh) | 终端、无线通信方法以及基站 | |
WO2022029934A1 (ja) | 端末、無線通信方法及び基地局 | |
CN117897985A (zh) | 终端、无线通信方法以及基站 | |
CN116134893A (zh) | 终端、无线通信方法以及基站 | |
CN118285129A (zh) | 终端、无线通信方法以及基站 | |
CN116235591A (zh) | 终端、无线通信方法以及基站 | |
CN116349344A (zh) | 终端、无线通信方法以及基站 | |
CN115280869A (zh) | 终端、无线通信方法以及基站 | |
CN116508339A (zh) | 终端、无线通信方法以及基站 | |
CN117546503A (zh) | 终端、无线通信方法以及基站 | |
CN117643090A (zh) | 终端、无线通信方法以及基站 | |
CN116806442A (zh) | 终端、无线通信方法以及基站 | |
CN115997402A (zh) | 终端、无线通信方法以及基站 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |