CN116016953A - 一种基于深度熵编码的动态点云属性压缩方法 - Google Patents
一种基于深度熵编码的动态点云属性压缩方法 Download PDFInfo
- Publication number
- CN116016953A CN116016953A CN202211681168.4A CN202211681168A CN116016953A CN 116016953 A CN116016953 A CN 116016953A CN 202211681168 A CN202211681168 A CN 202211681168A CN 116016953 A CN116016953 A CN 116016953A
- Authority
- CN
- China
- Prior art keywords
- point cloud
- cloud data
- attribute
- information
- time sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000006835 compression Effects 0.000 title claims abstract description 38
- 238000007906 compression Methods 0.000 title claims abstract description 38
- 230000009466 transformation Effects 0.000 claims abstract description 61
- 239000013598 vector Substances 0.000 claims abstract description 48
- 238000012545 processing Methods 0.000 claims abstract description 19
- 238000007499 fusion processing Methods 0.000 claims abstract description 9
- 238000013528 artificial neural network Methods 0.000 claims description 16
- 238000000605 extraction Methods 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 13
- 230000002776 aggregation Effects 0.000 claims description 8
- 238000004220 aggregation Methods 0.000 claims description 8
- 238000013527 convolutional neural network Methods 0.000 claims description 7
- 238000007781 pre-processing Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 9
- 238000012549 training Methods 0.000 description 8
- 238000013135 deep learning Methods 0.000 description 6
- 238000004590 computer program Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211681168.4A CN116016953A (zh) | 2022-12-27 | 2022-12-27 | 一种基于深度熵编码的动态点云属性压缩方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211681168.4A CN116016953A (zh) | 2022-12-27 | 2022-12-27 | 一种基于深度熵编码的动态点云属性压缩方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116016953A true CN116016953A (zh) | 2023-04-25 |
Family
ID=86028172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211681168.4A Pending CN116016953A (zh) | 2022-12-27 | 2022-12-27 | 一种基于深度熵编码的动态点云属性压缩方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116016953A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117014633A (zh) * | 2023-10-07 | 2023-11-07 | 深圳大学 | 一种跨模态数据压缩方法、装置、设备及介质 |
CN118381927A (zh) * | 2024-06-24 | 2024-07-23 | 杭州宇泛智能科技股份有限公司 | 基于多模态双向循环场景流的动态点云压缩方法、系统、存储介质及设备 |
-
2022
- 2022-12-27 CN CN202211681168.4A patent/CN116016953A/zh active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117014633A (zh) * | 2023-10-07 | 2023-11-07 | 深圳大学 | 一种跨模态数据压缩方法、装置、设备及介质 |
CN117014633B (zh) * | 2023-10-07 | 2024-04-05 | 深圳大学 | 一种跨模态数据压缩方法、装置、设备及介质 |
CN118381927A (zh) * | 2024-06-24 | 2024-07-23 | 杭州宇泛智能科技股份有限公司 | 基于多模态双向循环场景流的动态点云压缩方法、系统、存储介质及设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shi et al. | Image compressed sensing using convolutional neural network | |
EP3298576B1 (en) | Training a neural network | |
Thakur et al. | Image de-noising with machine learning: A review | |
CN116016953A (zh) | 一种基于深度熵编码的动态点云属性压缩方法 | |
Genova et al. | Deep structured implicit functions | |
Kavitha et al. | Multimodal medical image fusion based on integer wavelet transform and neuro-fuzzy | |
CN116664450A (zh) | 基于扩散模型的图像增强方法、装置、设备及存储介质 | |
CN111630570A (zh) | 图像处理方法、设备及计算机可读存储介质 | |
Liu et al. | Single image super resolution techniques based on deep learning: Status, applications and future directions | |
Uddin et al. | A perceptually inspired new blind image denoising method using $ L_ {1} $ and perceptual loss | |
CN117499711A (zh) | 视频生成模型的训练方法、装置、设备及存储介质 | |
CN115564810A (zh) | 图像配准方法及设备 | |
CN117014633B (zh) | 一种跨模态数据压缩方法、装置、设备及介质 | |
CN116128985A (zh) | 基于双分支神经网络的大规模点云几何压缩方法 | |
Hou | Permuted sparse representation for 3D point clouds | |
CN116437110A (zh) | 一种基于密度约束自适应图卷积的点云几何压缩方法 | |
CN114708353B (zh) | 图像重建方法、装置、电子设备与存储介质 | |
US20230254230A1 (en) | Processing a time-varying signal | |
CN116095183A (zh) | 一种数据压缩方法以及相关设备 | |
Yang et al. | Remote sensing image super‐resolution based on convolutional blind denoising adaptive dense connection | |
CN116309679A (zh) | 一种适用于多种模态的类mlp医学影像分割方法 | |
Wu et al. | Non‐uniform image blind deblurring by two‐stage fully convolution network | |
CN115170682A (zh) | 一种处理点云数据的方法和目标处理点云数据模型 | |
CN115239563A (zh) | 一种基于神经网络的点云属性有损压缩装置及方法 | |
CN117616753A (zh) | 使用光流的视频压缩 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240131 Address after: 518107 Room 501, building 3, Herun Jiayuan, Huaxia Road, Guangming Street, Guangming New District, Shenzhen City, Guangdong Province Applicant after: Shenzhen, Zhongshan University Country or region after: China Applicant after: SUN YAT-SEN University Applicant after: National University of Defense Technology Address before: 518107 Room 501, building 3, Herun Jiayuan, Huaxia Road, Guangming Street, Guangming New District, Shenzhen City, Guangdong Province Applicant before: Shenzhen, Zhongshan University Country or region before: China Applicant before: SUN YAT-SEN University |