CN116012365A - Method for determining display faults of intelligent cabins and fault detection device - Google Patents
Method for determining display faults of intelligent cabins and fault detection device Download PDFInfo
- Publication number
- CN116012365A CN116012365A CN202310102059.0A CN202310102059A CN116012365A CN 116012365 A CN116012365 A CN 116012365A CN 202310102059 A CN202310102059 A CN 202310102059A CN 116012365 A CN116012365 A CN 116012365A
- Authority
- CN
- China
- Prior art keywords
- image
- display
- fault
- image processing
- real
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000001514 detection method Methods 0.000 title claims abstract description 17
- 238000012545 processing Methods 0.000 claims abstract description 96
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 71
- 238000012360 testing method Methods 0.000 claims abstract description 43
- 230000006870 function Effects 0.000 claims description 52
- 238000001914 filtration Methods 0.000 claims description 6
- 230000015654 memory Effects 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 4
- 230000008014 freezing Effects 0.000 claims description 2
- 238000007710 freezing Methods 0.000 claims description 2
- 230000002618 waking effect Effects 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 8
- 239000013589 supplement Substances 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 5
- 238000007405 data analysis Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 235000003642 hunger Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000037351 starvation Effects 0.000 description 2
- 238000009662 stress testing Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000013515 script Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及显示故障检测技术领域,并且更具体地涉及一种用于确定智能座舱的显示故障的方法、故障检测装置、智能座舱测试台架和计算机存储介质。The present invention relates to the technical field of display fault detection, and more particularly to a method for determining a display fault of an intelligent cockpit, a fault detection device, an intelligent cockpit test bench and a computer storage medium.
背景技术Background Art
随着汽车智能座舱技术的发展,智能座舱正在逐步成为用户体验的载体。由于智能座舱功能庞大且复杂,通常需要同时控制车内的多屏幕渲染,因此存在出现显示故障(例如,黑屏)的可能性。按照出现概率,显示故障可以划分为必现问题和偶发问题,其中偶发问题由于出现时机不定、出现后容易错过第一现场、即使修复后也难以准确判断修复的有效性,因此需要通过自动化压力测试对显示故障进行验证。然而,目前公开的自动化压力测试方法,很难在保证实时性的前提下,覆盖多种显示类问题。With the development of automotive smart cockpit technology, smart cockpits are gradually becoming the carrier of user experience. Since the functions of smart cockpits are large and complex, it is usually necessary to control the rendering of multiple screens in the car at the same time, so there is a possibility of display failures (for example, black screens). According to the probability of occurrence, display failures can be divided into inevitable problems and occasional problems. Among them, occasional problems have uncertain timing, are easy to miss the first scene after they occur, and even after they are repaired, it is difficult to accurately judge the effectiveness of the repair. Therefore, it is necessary to verify the display failure through automated stress testing. However, the currently disclosed automated stress testing methods are difficult to cover a variety of display problems while ensuring real-time performance.
发明内容Summary of the invention
为了解决或至少缓解以上问题中的一个或多个,提供了以下技术方案。本发明的实施例提供了一种用于确定智能座舱的显示故障的方法、故障检测装置、智能座舱测试台架和计算机存储介质,其能够在针对智能座舱的自动化测试中实时对相机采集的图像进行处理,以得到多种显示故障的准确定位,并及时保留第一现场,为进一步的诊断提供重要的数据分析支撑。In order to solve or at least alleviate one or more of the above problems, the following technical solutions are provided. Embodiments of the present invention provide a method for determining display faults of a smart cockpit, a fault detection device, a smart cockpit test bench, and a computer storage medium, which can process images captured by a camera in real time during automated testing of the smart cockpit to accurately locate a variety of display faults, and retain the first scene in time, providing important data analysis support for further diagnosis.
按照本发明的第一方面,提供一种用于确定智能座舱的显示故障的方法,包括:A、接收由相机采集的实时图像,其中所述实时图像包括智能座舱测试台架内的一个或多个显示器的原始显示图像;B、通过多线程调用同时开启多个图像处理算法对每个原始显示图像进行故障识别,以确定每个显示器是否存在显示故障以及显示故障的类型,其中所述多个图像处理算法中的每个图像处理算法用于识别不同类型的显示故障;以及C、基于故障识别结果,确定是否存储所述实时图像。According to a first aspect of the present invention, a method for determining a display fault in a smart cockpit is provided, comprising: A. receiving a real-time image captured by a camera, wherein the real-time image comprises an original display image of one or more displays in a smart cockpit test bench; B. simultaneously starting multiple image processing algorithms through multi-threaded calls to perform fault identification on each original display image to determine whether there is a display fault on each display and the type of display fault, wherein each of the multiple image processing algorithms is used to identify different types of display faults; and C. determining whether to store the real-time image based on the fault identification result.
作为以上方案的替代或补充,在根据本发明一实施例的方法中,步骤A进一步包括以下各项中的一项或多项:响应于接收到唤醒信号,唤醒所述智能座舱测试台架;加载作为所述一个或多个显示器的参考基准的基准图像;利用高斯低通滤波算法对所述实时图像进行去噪处理;以及利用图像捕捉算法从所述实时图像中截取出一个或多个显示器的原始显示图像。As an alternative or supplement to the above scheme, in a method according to an embodiment of the present invention, step A further includes one or more of the following items: waking up the smart cockpit test bench in response to receiving a wake-up signal; loading a reference image as a reference benchmark for the one or more displays; denoising the real-time image using a Gaussian low-pass filtering algorithm; and extracting the original display image of one or more displays from the real-time image using an image capture algorithm.
作为以上方案的替代或补充,在根据本发明一实施例的方法中,所述多个图像处理算法包括以下各项中的一项或多项:用于识别黑屏类故障的第一图像处理算法、用于识别雪花屏类故障的第二图像处理算法、用于识别屏幕卡滞类故障的第三图像处理算法、用于识别屏幕抖动类故障的第四图像处理算法。As an alternative or supplement to the above scheme, in a method according to an embodiment of the present invention, the multiple image processing algorithms include one or more of the following: a first image processing algorithm for identifying black screen type faults, a second image processing algorithm for identifying snow screen type faults, a third image processing algorithm for identifying screen freezing type faults, and a fourth image processing algorithm for identifying screen jitter type faults.
作为以上方案的替代或补充,在根据本发明一实施例的方法中,所述多个图像处理算法包括用于识别黑屏类故障的第一图像处理算法,并且步骤B包括:利用灰度处理函数对所述原始显示图像进行灰度处理;利用二值化函数对经灰度处理的图像进行二值化处理;利用非零计数函数对经二值化处理的图像中的非零像素的数量进行统计;将所述非零像素的数量与第一阈值进行比较,并基于比较结果确定与所述原始显示图像对应的显示器是否存在黑屏类故障。As an alternative or supplement to the above scheme, in a method according to an embodiment of the present invention, the multiple image processing algorithms include a first image processing algorithm for identifying black screen type faults, and step B includes: performing grayscale processing on the original display image using a grayscale processing function; binarizing the grayscale processed image using a binarization function; counting the number of non-zero pixels in the binarized image using a non-zero counting function; comparing the number of non-zero pixels with a first threshold, and determining whether the display corresponding to the original display image has a black screen type fault based on the comparison result.
作为以上方案的替代或补充,在根据本发明一实施例的方法中,所述多个图像处理算法包括用于识别雪花屏类故障的第二图像处理算法,并且步骤B包括:利用特征提取函数对所述原始显示图像和作为参考基准的基准图像分别进行特征点检测并计算其特征描述符;利用图片匹配函数对所述原始显示图像的特征描述符和所述基准图像的特征描述符进行匹配,以生成匹配后的特征点对;计算所述匹配后的特征点对中特征点相似度大于或等于第二阈值的特征点对的数量;将所述数量与第三阈值进行比较,并基于比较结果确定与所述原始显示图像对应的显示器是否存在雪花屏类故障。As an alternative or supplement to the above scheme, in a method according to an embodiment of the present invention, the multiple image processing algorithms include a second image processing algorithm for identifying snow screen type faults, and step B includes: using a feature extraction function to perform feature point detection on the original display image and the benchmark image used as a reference benchmark and calculate their feature descriptors; using an image matching function to match the feature descriptors of the original display image with the feature descriptors of the benchmark image to generate matched feature point pairs; calculating the number of feature point pairs in the matched feature point pairs whose feature point similarity is greater than or equal to a second threshold; comparing the number with a third threshold, and determining whether the display corresponding to the original display image has a snow screen type fault based on the comparison result.
作为以上方案的替代或补充,在根据本发明一实施例的方法中,步骤A包括在加载作为参考基准的基准图像之后改变向所述智能座舱测试台架输入的CAN总线信号,并在第一时间段后接收由相机采集的所述实时图像,并且所述多个图像处理算法包括用于识别屏幕卡滞类故障的第三图像处理算法。As an alternative or supplement to the above scheme, in a method according to one embodiment of the present invention, step A includes changing the CAN bus signal input to the smart cockpit test bench after loading a benchmark image as a reference benchmark, and receiving the real-time image captured by the camera after a first time period, and the multiple image processing algorithms include a third image processing algorithm for identifying screen jamming type faults.
作为以上方案的替代或补充,在根据本发明一实施例的方法中,步骤B包括:基于所述原始显示图像和所述基准图像的特征点对中相似度大于或等于第四阈值的特征点对的数量,判断与所述原始显示图像对应的显示器是否存在卡滞风险;若判定存在卡滞风险,则对所述原始显示图像和所述基准图像进行灰度处理和二值化处理,并对经灰度和二值化处理的图像中的非零像素的数量进行统计;若所述原始显示图像与所述基准图像的非零像素的数量之间的差值的绝对值大于或等于第五阈值,则确定所述显示器存在屏幕卡滞类故障。As an alternative or supplement to the above scheme, in a method according to an embodiment of the present invention, step B includes: based on the number of feature point pairs between the original display image and the reference image whose similarity is greater than or equal to a fourth threshold, judging whether the display corresponding to the original display image has a risk of jamming; if it is determined that there is a risk of jamming, grayscale processing and binarization processing are performed on the original display image and the reference image, and the number of non-zero pixels in the grayscale and binarization processed images is counted; if the absolute value of the difference between the number of non-zero pixels of the original display image and the reference image is greater than or equal to a fifth threshold, determining that the display has a screen jamming type fault.
作为以上方案的替代或补充,在根据本发明一实施例的方法中,所述多个图像处理算法包括用于识别屏幕抖动类故障的第四图像处理算法,并且步骤B包括:存储在第二时间段期间获取的原始显示图像并对其进行帧排序;对具有相邻帧序号的原始显示图像进行抖动比对,并获取抖动图像的总帧数;将所述总帧数与第六阈值进行比较,并基于比较结果确定与所述原始显示图像对应的显示器是否存在屏幕抖动类故障。As an alternative or supplement to the above scheme, in a method according to an embodiment of the present invention, the multiple image processing algorithms include a fourth image processing algorithm for identifying screen jitter type faults, and step B includes: storing the original display image acquired during the second time period and performing frame sorting on it; performing jitter comparison on the original display images with adjacent frame numbers, and obtaining the total number of frames of the jittered images; comparing the total number of frames with a sixth threshold, and determining whether the display corresponding to the original display image has a screen jitter type fault based on the comparison result.
作为以上方案的替代或补充,在根据本发明一实施例的方法中,步骤B进一步包括:实时监测每个图像处理线程的运行状态;以及基于所述运行状态调整所述多个图像处理线程的优先级。As an alternative or supplement to the above solution, in a method according to an embodiment of the present invention, step B further includes: monitoring the running status of each image processing thread in real time; and adjusting the priority of the multiple image processing threads based on the running status.
作为以上方案的替代或补充,在根据本发明一实施例的方法中,步骤C包括:若确定所述显示器中的一个或多个存在显示故障,则存储所述实时图像;若确定所述显示器不存在显示故障,则控制所述智能座舱测试台架下电,并在预设时间间隔后发送针对所述智能座舱测试台架的唤醒信号。As an alternative or supplement to the above scheme, in a method according to an embodiment of the present invention, step C includes: if it is determined that one or more of the displays have a display fault, storing the real-time image; if it is determined that the display does not have a display fault, controlling the smart cockpit test bench to power off, and sending a wake-up signal to the smart cockpit test bench after a preset time interval.
根据本发明的第二方面,提供一种故障检测装置,包括:存储器,其配置成存储指令;以及处理器,其配置成执行所述指令以执行根据本发明第一方面所述的方法中的任意一项。According to a second aspect of the present invention, there is provided a fault detection device, comprising: a memory configured to store instructions; and a processor configured to execute the instructions to perform any one of the methods according to the first aspect of the present invention.
根据本发明的第三方面,提供一种智能座舱测试台架,包括:相机,用于采集智能座舱测试台架内的一个或多个显示器的原始显示图像;以及根据本发明第二方面所述的故障检测装置中的任意一项。According to a third aspect of the present invention, there is provided an intelligent cockpit test bench, comprising: a camera for collecting original display images of one or more displays in the intelligent cockpit test bench; and any one of the fault detection devices described in the second aspect of the present invention.
根据本发明的第四方面,提供一种计算机存储介质,所述计算机存储介质包括指令,所述指令在运行时执行根据本发明第一方面所述的方法中的任意一项。According to a fourth aspect of the present invention, there is provided a computer storage medium, the computer storage medium comprising instructions, the instructions executing any one of the methods according to the first aspect of the present invention when run.
根据本发明的一个或多个实施例的用于确定智能座舱的显示故障的方案通过实时采集各显示器的原始显示图像并且通过开启多个图像处理算法对每个原始显示图像进行故障识别,使得能够在确保图像识别和处理的实时性的同时,对多种显示故障进行准确定位并及时保留第一现场,从而为进一步的诊断提供重要的数据分析支撑。此外,根据本发明的一个或多个实施例的用于确定智能座舱的显示故障的方案通过多线程调用同时开启多个图像处理算法,避免了单线程处理的低效问题,并且能够有针对性地对多种显示故障进行识别和定位,从而提高了智能座舱显示故障的识别准确率和修复效率。According to one or more embodiments of the present invention, the solution for determining the display fault of the smart cockpit collects the original display images of each display in real time and identifies the fault of each original display image by starting multiple image processing algorithms, so that while ensuring the real-time performance of image recognition and processing, various display faults can be accurately located and the first scene can be retained in time, thereby providing important data analysis support for further diagnosis. In addition, according to one or more embodiments of the present invention, the solution for determining the display fault of the smart cockpit starts multiple image processing algorithms simultaneously through multi-threaded calls, avoiding the inefficiency of single-threaded processing, and can identify and locate various display faults in a targeted manner, thereby improving the recognition accuracy and repair efficiency of the display fault of the smart cockpit.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
本发明的上述和/或其它方面和优点将通过以下结合附图的各个方面的描述变得更加清晰和更容易理解,附图中相同或相似的单元采用相同的标号表示。在所述附图中:The above and/or other aspects and advantages of the present invention will become clearer and easier to understand through the following description of various aspects in conjunction with the accompanying drawings, in which the same or similar units are represented by the same reference numerals. In the accompanying drawings:
图1为按照本发明的一个或多个实施例的用于确定智能座舱的显示故障的方法10的示意性流程图;以及FIG. 1 is a schematic flow chart of a
图2为按照本发明的一个或多个实施例的用于确定智能座舱的显示故障的方法20的示意性流程图。FIG. 2 is a schematic flow chart of a
具体实施方式DETAILED DESCRIPTION
以下具体实施方式的描述本质上仅仅是示例性地,并且不旨在限制所公开的技术或所公开的技术的应用和用途。此外,不意图受在前述技术领域、背景技术或以下具体实施方式中呈现的任何明示或暗示的理论的约束。The description of the following specific embodiments is merely exemplary in nature and is not intended to limit the disclosed technology or the application and use of the disclosed technology. In addition, it is not intended to be bound by any express or implied theory presented in the aforementioned technical field, background technology or the following specific embodiments.
在实施例的以下详细描述中,阐述了许多具体细节以便提供对所公开技术的更透彻理解。然而,对于本领域普通技术人员显而易见的是,可以在没有这些具体细节的情况下实践所公开的技术。在其他实例中,没有详细描述公知的特征,以避免不必要地使描述复杂化。In the following detailed description of the embodiments, many specific details are set forth in order to provide a more thorough understanding of the disclosed technology. However, it is apparent to one of ordinary skill in the art that the disclosed technology can be practiced without these specific details. In other instances, well-known features are not described in detail to avoid unnecessarily complicating the description.
诸如“包含”和“包括”之类的用语表示除了具有在说明书中有直接和明确表述的单元和步骤以外,本发明的技术方案也不排除具有未被直接或明确表述的其它单元和步骤的情形。诸如“第一”和“第二”之类的用语并不表示单元在时间、空间、大小等方面的顺序而仅仅是作区分各单元之用。在本说明书中,术语“车辆”或者其它类似的术语包括一般的机动车辆,例如乘用车(包括运动型多用途车、公共汽车、卡车等)、各种商用车等等,并包括混合动力汽车、电动车、插电式混动电动车等。混动动力汽车是一种具有两个或更多个功率源的车辆,例如汽油动力和电动车辆。Terms such as "comprising" and "including" indicate that in addition to the units and steps directly and explicitly stated in the specification, the technical solution of the present invention does not exclude the situation of having other units and steps that are not directly or explicitly stated. Terms such as "first" and "second" do not indicate the order of units in terms of time, space, size, etc., but are only used to distinguish the units. In this specification, the term "vehicle" or other similar terms include general motor vehicles, such as passenger cars (including sports utility vehicles, buses, trucks, etc.), various commercial vehicles, etc., and include hybrid vehicles, electric vehicles, plug-in hybrid electric vehicles, etc. A hybrid vehicle is a vehicle with two or more power sources, such as gasoline-powered and electric vehicles.
在下文中,将参考附图详细地描述根据本发明的各示例性实施例。Hereinafter, exemplary embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
图1为按照本发明的一个或多个实施例的用于确定智能座舱的显示故障的方法10的示意性流程图。需要说明的是,上文提到的(以及下面还要提到的)步骤名称仅仅用于步骤之间的区分和便于步骤的引用,并不代表步骤之间的顺序关系,包括附图的流程图也仅仅是执行本方法的示例。在没有明显冲突的情况下,步骤之间可以用各种顺序或者同时执行。FIG1 is a schematic flow chart of a
如图1所示,在步骤S110中,接收由相机采集的实时图像,其中实时图像包括智能座舱测试台架内的一个或多个显示器的原始显示图像。As shown in FIG. 1 , in step S110 , a real-time image captured by a camera is received, wherein the real-time image includes an original display image of one or more displays in the smart cockpit test bench.
随着智能座舱功能的丰富,智能座舱内可布置有一个或多个显示器,例如,驾驶员前方的仪表板、抬头显示(HUD)和中控台屏幕,以及副驾驶和后排前方的娱乐屏幕。智能座舱主机与车载的各类总线和信息传递部件相连接,完成各类通信信号(例如,控制器局域网络(CAN)总线信号)的接收、发送和预处理,并基于上述通信信号对一个或多个显示器的显示图像进行渲染。可以理解的是,在针对智能座舱进行功能性测试的测试台架内相应地设置有一个或多个显示器,并且还设置有对一个或多个显示器的原始显示图像进行捕获的相机(例如,工业相机)。应理解,在本发明的实施例中,相机、摄像机、摄像头等均表示可以获取覆盖范围内的图像或影像的设备,其含义类似,且可以互换,本发明对此不做限制。As the functions of the smart cockpit become richer, one or more displays may be arranged in the smart cockpit, such as the dashboard in front of the driver, the head-up display (HUD) and the center console screen, and the entertainment screen in front of the co-pilot and the back row. The smart cockpit host is connected to various buses and information transmission components on the vehicle, completes the reception, transmission and preprocessing of various communication signals (for example, controller area network (CAN) bus signals), and renders the display images of one or more displays based on the above communication signals. It is understandable that one or more displays are correspondingly arranged in the test bench for functional testing of the smart cockpit, and a camera (for example, an industrial camera) is also provided to capture the original display images of one or more displays. It should be understood that in the embodiments of the present invention, cameras, video cameras, cameras, etc. all represent devices that can obtain images or images within the coverage range, and their meanings are similar and interchangeable, and the present invention does not limit this.
示例性地,方法10基于OpenCV实现。OpenCV是一种开源的软件库,可以运行在多种操作系统上,同时支持Python语言接口,其具有功能轻量级且高效的优势,提供了大量的图像识别库函数的支持。智能座舱测试台架使用Python脚本自动化控制运行,Python通过OpenCV的兼容接口cv2实现对库函数的调用。示例性地,可通过OpenCV实现对以下核心库函数的调用,例如,高斯滤波函数gaussian()、图像捕捉函数VideoCapture()、图像加载函数imread()、灰度处理函数cvColor()、二值化函数threshold()、非零计数函数countNonZero()、对象创建函数xfeatures2d.SIFT_create()、特征提取函数detectAndCompute()、图片匹配函数FlannBasedMatcher()和knnMatch()等。Exemplarily,
可选地,在方法10中,针对智能座舱测试台架设置上电循环间隔,例如,每隔5分钟向智能座舱测试台架发送唤醒信号。智能座舱测试台架响应于接收到唤醒信号,继而开启智能座舱测试台架内的一个或多个显示器以及相机。可选地,在智能座舱测试台架上电后,利用图像捕捉算法(例如,通过调用OpenCV库函数中的图像捕捉函数VideoCapture())从实时图像中截取出一个或多个显示器的原始显示图像,和/或加载作为一个或多个显示器的参考基准的基准图像(例如,通过调用OpenCV库函数中的图像捕捉函数VideoCapture())。Optionally, in
可选地,在接收由相机采集的实时图像后,还可以利用高斯低通滤波算法对实时图像进行去噪处理。示例性地,首先通过如下式示出的二维离散傅里叶变换F(u,v)将实时图像从空间域转至频域,以获得二维频谱上的像素(u,v):Optionally, after receiving the real-time image captured by the camera, the real-time image can also be denoised using a Gaussian low-pass filtering algorithm. Exemplarily, the real-time image is first converted from the spatial domain to the frequency domain by a two-dimensional discrete Fourier transform F(u, v) as shown in the following formula to obtain pixels (u, v) on the two-dimensional spectrum:
其中,x和y分别为实时图像上的横纵坐标,M和N为实时图像的高和宽,f(x,y)为实时图像上坐标点(x,y)处的灰度值。Wherein, x and y are the horizontal and vertical coordinates on the real-time image, respectively; M and N are the height and width of the real-time image; and f(x, y) is the grayscale value at the coordinate point (x, y) on the real-time image.
接着,利用如下式示出的高斯低通滤波器H(u,v)对二维频谱进行低通滤波操作:Next, a low-pass filtering operation is performed on the two-dimensional spectrum using a Gaussian low-pass filter H(u, v) as shown in the following equation:
其中D(u,v)为二维频谱上像素(u,v)到频谱中心的距离。Where D(u, v) is the distance from the pixel (u, v) to the center of the spectrum on the two-dimensional spectrum.
最后对经滤波的频谱做二维离散傅里叶反变换,以得到如下式示出的经滤波的图像f(x,y):Finally, a two-dimensional discrete Fourier inverse transform is performed on the filtered spectrum to obtain the filtered image f(x, y) as shown below:
如图1所示,在步骤S120中,通过多线程调用同时开启多个图像处理算法对每个原始显示图像进行故障识别,以确定每个显示器是否存在显示故障以及显示故障的类型,其中多个图像处理算法中的每个图像处理算法用于识别不同类型的显示故障。As shown in FIG. 1 , in step S120 , multiple image processing algorithms are simultaneously started through multi-threaded calls to perform fault identification on each original display image to determine whether there is a display fault on each display and the type of display fault, wherein each of the multiple image processing algorithms is used to identify different types of display faults.
多线程调用指的是通过程序调用从软件或者硬件上实现多个线程并发执行的技术。具有多线程能力的设备因有硬件支持而能够在同一时间执行多个线程,进而提升整体处理性能。通过多线程调用同时开启多个图像处理算法,能够在提高故障识别准确率和修复效率的同时,有针对性地对多种显示故障进行识别和定位,例如,识别出哪一个显示器出现了哪一类显示故障。Multithreaded calls refer to the technology of implementing concurrent execution of multiple threads from software or hardware through program calls. Devices with multithreading capabilities can execute multiple threads at the same time due to hardware support, thereby improving overall processing performance. By simultaneously starting multiple image processing algorithms through multithreaded calls, it is possible to identify and locate multiple display faults in a targeted manner while improving fault identification accuracy and repair efficiency, for example, identifying which display has which type of display fault.
可选地,上述多个图像处理算法包括以下各项中的一项或多项:用于识别黑屏类故障的第一图像处理算法、用于识别雪花屏类故障的第二图像处理算法、用于识别屏幕卡滞类故障的第三图像处理算法、用于识别屏幕抖动类故障的第四图像处理算法。也就是说,针对每个显示器示出的原始显示图像,能够通过多线程调用同时针对黑屏类故障、雪花屏类故障、屏幕卡滞类故障和屏幕抖动类故障进行识别和定位。Optionally, the plurality of image processing algorithms include one or more of the following: a first image processing algorithm for identifying black screen faults, a second image processing algorithm for identifying snow screen faults, a third image processing algorithm for identifying screen stuck faults, and a fourth image processing algorithm for identifying screen shaking faults. That is, for the original display image shown by each display, black screen faults, snow screen faults, screen stuck faults, and screen shaking faults can be identified and located at the same time through multi-threaded calls.
可选地,在多个图像处理算法包括用于识别黑屏类故障的第一图像处理算法的实施例中,步骤S120包括:利用灰度处理函数对原始显示图像进行灰度处理;利用二值化函数对经灰度处理的图像进行二值化处理;利用非零计数函数对经二值化处理的图像中的非零像素的数量进行统计;将非零像素的数量与第一阈值进行比较,并基于比较结果确定与原始显示图像对应的显示器是否存在黑屏类故障。示例性地,通过调用OpenCV库函数中的灰度处理函数cvColor()和二值化函数threshold()对各显示器的原始显示图像进行灰度处理和二值化阈值处理,例如,若像素的灰度值大于或等于127则将该像素按照白点处理(也即,将像素的灰度值设置为255),若像素的灰度值小于127则将该像素按照黑点处理(也即,将像素的灰度值设置为0)。接下来,通过调用OpenCV库函数中的非零计数函数countNonZero()对经二值化处理的图像中的非零像素(也即,白点)的数量进行统计,若非零像素总数大于或等于预设的第一阈值,则判定该原始显示图像被正常点亮(也即,该显示器未发生黑屏类故障),否则,判定该原始显示图像未被正常点亮(也即,该显示器发生黑屏类故障)。可选地,虽然智能座舱测试台架所在的实验室大多采用具有稳定亮度的光源,但是在一天内不同时间段仍可能存在一定的亮度波动,因此,可以提前对实验室环境的亮度进行标定,以确定用于不同时段的第一阈值。Optionally, in an embodiment where the plurality of image processing algorithms include a first image processing algorithm for identifying a black screen fault, step S120 includes: grayscale processing the original display image using a grayscale processing function; binarization processing the grayscale processed image using a binarization function; counting the number of non-zero pixels in the binarized image using a non-zero counting function; comparing the number of non-zero pixels with a first threshold, and determining whether the display corresponding to the original display image has a black screen fault based on the comparison result. Exemplarily, grayscale processing and binarization threshold processing are performed on the original display image of each display by calling the grayscale processing function cvColor() and the binarization function threshold() in the OpenCV library function, for example, if the grayscale value of the pixel is greater than or equal to 127, the pixel is processed as a white point (that is, the grayscale value of the pixel is set to 255), and if the grayscale value of the pixel is less than 127, the pixel is processed as a black point (that is, the grayscale value of the pixel is set to 0). Next, the number of non-zero pixels (i.e., white dots) in the binary image is counted by calling the non-zero counting function countNonZero() in the OpenCV library function. If the total number of non-zero pixels is greater than or equal to the preset first threshold, it is determined that the original display image is normally lit (i.e., the display does not have a black screen failure). Otherwise, it is determined that the original display image is not normally lit (i.e., the display has a black screen failure). Optionally, although most laboratories where the smart cockpit test bench is located use light sources with stable brightness, there may still be certain brightness fluctuations at different time periods in a day. Therefore, the brightness of the laboratory environment can be calibrated in advance to determine the first threshold for different time periods.
可选地,在多个图像处理算法包括用于识别雪花屏类故障的第二图像处理算法的实施例中,步骤S120包括:利用特征提取函数对原始显示图像和作为参考基准的基准图像分别进行特征点检测并计算其特征描述符;利用图片匹配函数对原始显示图像的特征描述符和基准图像的特征描述符进行匹配,以生成匹配后的特征点对;计算匹配后的特征点对中特征点相似度大于或等于第二阈值的特征点对的数量;将数量与第三阈值进行比较,并基于比较结果确定与原始显示图像对应的显示器是否存在雪花屏类故障。示例性地,通过调用OpenCV库函数中的对象创建函数xfeatures2d.SIFT_create()创建对象,并通过调用特征提取函数detectAndCompute()分别提取原始显示图像和基准图像的特征点(例如,轮廓折角、顶点)并计算其特征描述符。特征描述符是图像的一种表示(例如,其可以表示在每个特征点周围的区域内以选定的比例计算出的局部图像梯度),可以通过比较两个图片的特征描述符,找出两个图片的共同之处。然后,通过调用OpenCV库函数中的图片匹配函数FlannBasedMatcher()和knnMatch()对两张图像的特征描述符进行匹配,以获得匹配后的特征点对。接下来,在匹配后的特征点对中进行相似度筛选,也即,保留相似度大于或等于第二阈值的特征点对并对其数量进行统计,若该数量大于或等于预设的第三阈值,则判定该显示器未发生雪花屏类故障,否则,判定该显示器发生雪花屏类故障。Optionally, in an embodiment where the plurality of image processing algorithms include a second image processing algorithm for identifying snow screen faults, step S120 includes: using a feature extraction function to perform feature point detection on the original display image and the reference image as a reference respectively and calculating their feature descriptors; using an image matching function to match the feature descriptors of the original display image and the feature descriptors of the reference image to generate matched feature point pairs; calculating the number of feature point pairs whose feature point similarity is greater than or equal to a second threshold in the matched feature point pairs; comparing the number with a third threshold, and determining whether the display corresponding to the original display image has a snow screen fault based on the comparison result. Exemplarily, an object is created by calling the object creation function xfeatures2d.SIFT_create() in the OpenCV library function, and feature points (e.g., contour corners, vertices) of the original display image and the reference image are extracted respectively by calling the feature extraction function detectAndCompute() and calculating their feature descriptors. A feature descriptor is a representation of an image (e.g., it can represent a local image gradient calculated at a selected ratio in an area around each feature point), and the commonality of the two images can be found by comparing the feature descriptors of the two images. Then, the feature descriptors of the two images are matched by calling the image matching functions FlannBasedMatcher() and knnMatch() in the OpenCV library function to obtain matched feature point pairs. Next, similarity screening is performed in the matched feature point pairs, that is, feature point pairs with similarity greater than or equal to the second threshold are retained and their number is counted. If the number is greater than or equal to the preset third threshold, it is determined that the display does not have a snow screen fault, otherwise, it is determined that the display has a snow screen fault.
可选地,在多个图像处理算法包括用于识别雪花屏类故障的第二图像处理算法的实施例中,步骤S110包括:在加载作为参考基准的基准图像之后改变向智能座舱测试台架输入的CAN总线信号,并在第一时间段后接收由相机采集的实时图像。示例性地,先通过调用OpenCV库函数中的图像加载函数imread()加载正常显示的基准图像,然后向测试台架输入CAN总线信号的变化,例如,车速、挡位等,并在第一时间段后捕捉并加载显示器的原始显示图像,还可以对2张图片进行局部抠图(例如,通过调用图像捕捉函数VideoCapture())来提取感兴趣的部分。Optionally, in an embodiment where the plurality of image processing algorithms include a second image processing algorithm for identifying snow screen type faults, step S110 includes: after loading a reference image as a reference benchmark, changing the CAN bus signal input to the smart cockpit test bench, and receiving a real-time image captured by the camera after a first time period. Exemplarily, the normally displayed reference image is first loaded by calling the image loading function imread() in the OpenCV library function, and then the changes in the CAN bus signal, such as vehicle speed, gear position, etc., are input to the test bench, and the original display image of the display is captured and loaded after the first time period. The two pictures can also be partially cut out (for example, by calling the image capture function VideoCapture()) to extract the part of interest.
此外,可选地,在多个图像处理算法包括用于识别屏幕卡滞类故障的第三图像处理算法的实施例中,步骤S120包括:基于原始显示图像和基准图像的特征点对中相似度大于或等于第四阈值的特征点对的数量,判断与原始显示图像对应的显示器是否存在卡滞风险;若判定存在卡滞风险,则对原始显示图像和基准图像进行灰度处理和二值化处理,并对经灰度和二值化处理的图像中的非零像素的数量进行统计;若原始显示图像与基准图像的非零像素的数量之间的差值的绝对值大于或等于第五阈值,则确定显示器存在屏幕卡滞类故障。示例性地,对在改变向智能座舱测试台架输入的CAN总线信号之前、之后分别获取的基准图像和原始显示图像依次进行特征点检测、特征描述符计算、特征点对匹配、相似度筛选操作,上述操作具有与雪花屏类故障识别中的特征点检测、特征描述符计算、特征点对匹配、相似度筛选相同或相似的步骤,此处不再赘述。然后,将相似度筛选中统计的数量与第四阈值进行比较,若该数量大于或等于预设的第四阈值,则判定该显示器存在卡滞风险,否则,判定该显示器不存在卡滞风险(也即,未发生屏幕卡滞类故障)。若判定该显示器存在卡滞风险,为了避免误判场景,接下来,通过调用OpenCV库函数中的灰度处理函数cvColor()和二值化函数threshold()对原始显示图像和基准图像进行灰度处理和二值化阈值处理,并通过调用OpenCV库函数中的非零计数函数countNonZero()对经二值化处理的两张图像中的非零像素的数量进行统计,若原始显示图像与基准图像的非零像素的数量之间的差值的绝对值大于或等于第五阈值,则判定该显示器存在屏幕卡滞类故障,否则,判定该显示器不存在屏幕卡滞类故障。In addition, optionally, in an embodiment where the plurality of image processing algorithms include a third image processing algorithm for identifying a screen stuck fault, step S120 includes: judging whether the display corresponding to the original display image has a stuck risk based on the number of feature point pairs whose similarity is greater than or equal to a fourth threshold value in the feature point pairs of the original display image and the reference image; if it is determined that there is a stuck risk, grayscale processing and binarization processing are performed on the original display image and the reference image, and the number of non-zero pixels in the grayscale and binarization processed images is counted; if the absolute value of the difference between the number of non-zero pixels of the original display image and the reference image is greater than or equal to a fifth threshold value, it is determined that the display has a screen stuck fault. Exemplarily, feature point detection, feature descriptor calculation, feature point pair matching, and similarity screening operations are performed on the reference image and the original display image respectively acquired before and after the CAN bus signal input to the intelligent cockpit test bench is changed, and the above operations have the same or similar steps as feature point detection, feature descriptor calculation, feature point pair matching, and similarity screening in the identification of snow screen faults, which are not repeated here. Then, the number counted in the similarity screening is compared with the fourth threshold value. If the number is greater than or equal to the preset fourth threshold value, it is determined that the display has a risk of jamming. Otherwise, it is determined that the display does not have a risk of jamming (that is, no screen jamming fault occurs). If it is determined that the display has a risk of jamming, in order to avoid misjudgment of the scene, next, the grayscale processing function cvColor() and the binarization function threshold() in the OpenCV library function are called to perform grayscale processing and binarization threshold processing on the original display image and the reference image, and the number of non-zero pixels in the two binarized images is counted by calling the non-zero counting function countNonZero() in the OpenCV library function. If the absolute value of the difference between the number of non-zero pixels in the original display image and the reference image is greater than or equal to the fifth threshold value, it is determined that the display has a screen jamming fault. Otherwise, it is determined that the display does not have a screen jamming fault.
可选地,在多个图像处理算法包括用于识别屏幕抖动类故障的第四图像处理算法的实施例中,步骤S120包括:存储在第二时间段期间获取的原始显示图像并对其进行帧排序;对具有相邻帧序号的原始显示图像进行抖动比对,并获取抖动图像的总帧数;将总帧数与第六阈值进行比较,并基于比较结果确定与原始显示图像对应的显示器是否存在屏幕抖动类故障。示例性地,在由摄像头捕获实时视频的实施例中,可直接存储相机上电后的在第二时间段期间获取的视频并对其进行帧排序,需要说明的是,需要确保在该第二时间段期间没有CAN总线信号输入的变化,进而并未发生显示更新。接下来,针对每一帧图像,将该帧图像与相邻帧图像(例如,上一帧、下一帧)进行抖动比对,并对抖动图像(例如,相邻帧之间的抖动值较大)的总帧数进行统计。若该总帧数大于或等于第六阈值,则判定该显示器存在屏幕抖动类故障,否则判定不存在屏幕抖动类故障。Optionally, in an embodiment where the plurality of image processing algorithms include a fourth image processing algorithm for identifying screen jitter type faults, step S120 includes: storing the original display image acquired during the second time period and performing frame sorting on it; performing jitter comparison on the original display image with adjacent frame numbers, and obtaining the total number of frames of the jitter image; comparing the total number of frames with the sixth threshold, and determining whether the display corresponding to the original display image has a screen jitter type fault based on the comparison result. Exemplarily, in an embodiment where the real-time video is captured by a camera, the video acquired during the second time period after the camera is powered on can be directly stored and frame sorted. It should be noted that it is necessary to ensure that there is no change in the CAN bus signal input during the second time period, and thus no display update occurs. Next, for each frame image, the frame image is compared with the adjacent frame image (for example, the previous frame, the next frame) for jitter, and the total number of frames of the jitter image (for example, the jitter value between adjacent frames is large) is counted. If the total number of frames is greater than or equal to the sixth threshold, it is determined that the display has a screen jitter type fault, otherwise it is determined that there is no screen jitter type fault.
可选地,步骤S120进一步包括:实时监测每个图像处理线程的运行状态;以及基于运行状态调整多个图像处理线程的优先级。可以理解的是,为了防止线程冲突,可以预先设置多线程的优先级,例如,用于执行第一图像处理算法的第一线程、用于执行第二图像处理算法的第二线程、用于执行第三图像处理算法的第三线程、用于执行第四图像处理算法的第四线程。示例性地,可以根据各显示故障的严重程度设置优先级,例如,针对黑屏类故障的第一线程的优先级高于其他线程。然而,在优先级调度下容易出现线程饿死现象,也即,在执行优先级较低的线程之前总是有比其优先级更高的线程等待执行,因此这个低优先级的线程始终得不到执行。为了避免线程饿死,可以采用线程优先级动态设置,也即,基于各线程的实时运行状态,动态调整其优先级,例如,根据线程进入等待状态的频繁程度来调整其优先级。Optionally, step S120 further includes: monitoring the running state of each image processing thread in real time; and adjusting the priority of multiple image processing threads based on the running state. It is understandable that in order to prevent thread conflicts, the priority of multiple threads can be pre-set, for example, a first thread for executing a first image processing algorithm, a second thread for executing a second image processing algorithm, a third thread for executing a third image processing algorithm, and a fourth thread for executing a fourth image processing algorithm. Exemplarily, the priority can be set according to the severity of each display fault, for example, the priority of the first thread for a black screen fault is higher than that of other threads. However, thread starvation is prone to occur under priority scheduling, that is, before executing a thread with a lower priority, there is always a thread with a higher priority waiting to be executed, so this low-priority thread is never executed. In order to avoid thread starvation, thread priority can be dynamically set, that is, based on the real-time running state of each thread, its priority is dynamically adjusted, for example, according to the frequency of the thread entering the waiting state to adjust its priority.
在步骤S130中,基于故障识别结果,确定是否存储实时图像。可选地,若确定显示器中的一个或多个存在显示故障,则存储实时图像;若确定显示器不存在显示故障,则控制智能座舱测试台架下电,并在预设时间间隔后发送针对智能座舱测试台架的唤醒信号。示例性地,若在步骤S120中确定有显示器发生任何种类的显示故障(诸如,黑屏类故障、雪花屏类故障、屏幕卡滞类故障、屏幕抖动类故障),为了保留第一现场来为进一步的诊断提供数据分析支撑,存储在该次上电循环期间由相机采集的实时图像。若没有显示器存在显示故障,则向智能座舱测试台架发送休眠信号,并在预设的上电循环间隔(例如,5分钟)后向智能座舱测试台架发送唤醒信号,以重新开始执行步骤S110-S130。In step S130, based on the fault identification result, it is determined whether to store the real-time image. Optionally, if it is determined that one or more of the displays have a display fault, the real-time image is stored; if it is determined that the display does not have a display fault, the smart cockpit test bench is controlled to power off, and a wake-up signal for the smart cockpit test bench is sent after a preset time interval. Exemplarily, if it is determined in step S120 that any type of display fault (such as a black screen fault, a snow screen fault, a screen stuck fault, a screen jitter fault) occurs on a display, in order to retain the first scene to provide data analysis support for further diagnosis, the real-time image collected by the camera during the power-on cycle is stored. If no display has a display fault, a sleep signal is sent to the smart cockpit test bench, and a wake-up signal is sent to the smart cockpit test bench after a preset power-on cycle interval (for example, 5 minutes) to restart the execution of steps S110-S130.
根据本发明的一个或多个实施例的方法10通过实时采集各显示器的原始显示图像并且通过开启多个图像处理算法对每个原始显示图像进行故障识别,使得能够在确保图像识别和处理的实时性的同时,对多种显示故障进行准确定位并及时保留第一现场,从而为进一步的诊断提供重要的数据分析支撑。此外,方法10通过多线程调用同时开启多个图像处理算法,避免了单线程处理的低效率问题,并且能够有针对性地对多种显示故障进行识别和定位,从而提高了智能座舱显示故障的识别准确率和修复效率。According to one or more embodiments of the present invention, the
为了更清晰地说明本申请的原理,图2以一种更完整的形式示出了一种用于确定智能座舱的显示故障的方法20,应当理解,图2的示例不应当视为对本文中的其他示例(例如,图1对应的实施例)构成了额外的限制。In order to more clearly illustrate the principles of the present application, FIG2 shows in a more complete form a
在步骤S210中,响应于接收到唤醒信号,智能座舱测试台架被唤醒,继而开启智能座舱测试台架内的一个或多个显示器以及相机。在步骤S220中,加载作为一个或多个显示器的参考基准的基准图像。在步骤S230中,开启主线程,接收由相机采集的实时图像(其中实时图像包括智能座舱测试台架内的一个或多个显示器的原始显示图像)并利用图像捕捉算法从实时图像中截取出一个或多个显示器的原始显示图像。在步骤S240中,加载一个或多个显示器的原始显示图像。在步骤S250中,利用高斯低通滤波算法对实时图像进行去噪处理。在步骤S260中,同时开启多个子线程,其中,第一子线程包括执行用于识别黑屏类故障的第一图像处理算法、第二子线程包括执行用于识别雪花屏类故障的第二图像处理算法、第三子线程包括执行用于识别屏幕卡滞类故障的第三图像处理算法、第四子线程包括执行用于识别屏幕抖动类故障的第四图像处理算法、第五子线程包括实时监测每个图像处理线程的运行状态以及基于运行状态调整多个图像处理线程的优先级。在步骤S270中,基于第一子线程至第四子线程的执行结果判定显示器是否存在显示故障,若是,则方法20行进到步骤S280,否则方法20行进到步骤S290。在步骤S280中,程序停止循环并存储实时图像,以便测试台架保持故障现场。在步骤S290中,开启定时器,以在预设的上电循环间隔后向智能座舱测试台架发送唤醒信号,以重新开始执行步骤S210-S290。In step S210, in response to receiving a wake-up signal, the smart cockpit test bench is awakened, and then one or more displays and cameras in the smart cockpit test bench are turned on. In step S220, a reference image is loaded as a reference benchmark for one or more displays. In step S230, the main thread is started, a real-time image captured by the camera is received (wherein the real-time image includes the original display image of one or more displays in the smart cockpit test bench) and the original display image of one or more displays is intercepted from the real-time image using an image capture algorithm. In step S240, the original display image of one or more displays is loaded. In step S250, the real-time image is denoised using a Gaussian low-pass filtering algorithm. In step S260, multiple sub-threads are started at the same time, wherein the first sub-thread includes executing a first image processing algorithm for identifying black screen faults, the second sub-thread includes executing a second image processing algorithm for identifying snow screen faults, the third sub-thread includes executing a third image processing algorithm for identifying screen stuck faults, the fourth sub-thread includes executing a fourth image processing algorithm for identifying screen jitter faults, and the fifth sub-thread includes real-time monitoring of the running state of each image processing thread and adjusting the priority of multiple image processing threads based on the running state. In step S270, it is determined whether the display has a display fault based on the execution results of the first sub-thread to the fourth sub-thread. If so, the
根据本发明的另一方面,提供一种故障检测装置,包括:存储器,其配置成存储指令;以及处理器,其配置成执行所述指令以执行如图1所示的方法10或如图2所示的方法20。According to another aspect of the present invention, a fault detection device is provided, comprising: a memory configured to store instructions; and a processor configured to execute the instructions to perform the
根据本发明的又一方面,提供一种智能座舱测试台架,包括:相机,用于采集智能座舱测试台架内的一个或多个显示器的原始显示图像;以及根据本发明一个方面所述的故障检测装置。According to another aspect of the present invention, there is provided a smart cockpit test bench, comprising: a camera for collecting original display images of one or more displays in the smart cockpit test bench; and a fault detection device according to one aspect of the present invention.
另外,本发明也可以被实施为一种计算机存储介质,在其中存储有用于使计算机执行如图1所示的方法10或如图2所示的方法20。在此,作为计算机存储介质,能采用盘类(例如,磁盘、光盘等)、卡类(例如,存储卡、光卡等)、半导体存储器类(例如,ROM、非易失性存储器等)、带类(例如,磁带、盒式磁带等)等各种方式的计算机存储介质。In addition, the present invention can also be implemented as a computer storage medium, in which a computer performs
在可适用的情况下,可以使用硬件、软件或硬件和软件的组合来实现由本发明提供的各种实施例。而且,在可适用的情况下,在不脱离本发明的范围的情况下,本文中阐述的各种硬件部件和/或软件部件可以被组合成包括软件、硬件和/或两者的复合部件。在可适用的情况下,在不脱离本发明的范围的情况下,本文中阐述的各种硬件部件和/或软件部件可以被分成包括软件、硬件或两者的子部件。另外,在可适用的情况下,预期的是,软件部件可以被实现为硬件部件,以及反之亦然。In applicable situations, hardware, software or a combination of hardware and software can be used to realize the various embodiments provided by the present invention. Moreover, in applicable situations, without departing from the scope of the present invention, the various hardware components and/or software components set forth herein can be combined into composite components comprising software, hardware and/or both. In applicable situations, without departing from the scope of the present invention, the various hardware components and/or software components set forth herein can be divided into subcomponents comprising software, hardware or both. In addition, in applicable situations, it is contemplated that software components can be implemented as hardware components, and vice versa.
根据本发明的软件(诸如程序代码和/或数据)可以被存储在一个或多个计算机存储介质上。还预期的是,可以使用联网的和/或以其他方式的一个或多个通用或专用计算机和/或计算机系统来实现本文中标识的软件。提供本文中提出的实施例和示例,以便最好地说明按照本发明及其特定应用的实施例,并且由此使本领域的技术人员能够实施和使用本发明。但是,本领域的技术人员将会知道,仅为了便于说明和举例而提供以上描述和示例。所提出的描述不是意在涵盖本发明的各个方面或者将本发明局限于所公开的精确形式。Software according to the present invention (such as program code and/or data) can be stored on one or more computer storage media. It is also contemplated that the software identified herein can be implemented using one or more general or special computers and/or computer systems that are networked and/or otherwise. The embodiments and examples proposed herein are provided to best illustrate the embodiments according to the present invention and its specific applications, and thus enable those skilled in the art to implement and use the present invention. However, those skilled in the art will appreciate that the above description and examples are provided only for ease of explanation and example. The proposed description is not intended to cover all aspects of the present invention or to limit the present invention to the disclosed precise form.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310102059.0A CN116012365A (en) | 2023-01-19 | 2023-01-19 | Method for determining display faults of intelligent cabins and fault detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310102059.0A CN116012365A (en) | 2023-01-19 | 2023-01-19 | Method for determining display faults of intelligent cabins and fault detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116012365A true CN116012365A (en) | 2023-04-25 |
Family
ID=86030011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310102059.0A Pending CN116012365A (en) | 2023-01-19 | 2023-01-19 | Method for determining display faults of intelligent cabins and fault detection device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116012365A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014042514A2 (en) * | 2012-09-12 | 2014-03-20 | Mimos Berhad | A surveillance system and a method for tampering detection and correction |
CN105791814A (en) * | 2016-03-09 | 2016-07-20 | 中国科学院自动化研究所 | A surveillance video quality detection method and device based on image processing technology |
CN109636793A (en) * | 2018-12-14 | 2019-04-16 | 中航华东光电(上海)有限公司 | The detection system and its detection method of display |
CN112235540A (en) * | 2020-10-09 | 2021-01-15 | 北京航空航天大学 | Intelligent video monitoring system for screen display fault recognition alarm |
US20210358454A1 (en) * | 2020-05-18 | 2021-11-18 | Rockwell Collins, Inc. | Flipped or frozen display monitor |
CN114910733A (en) * | 2022-07-15 | 2022-08-16 | 深圳益实科技有限公司 | Display fault intelligent diagnosis analysis system based on artificial intelligence |
-
2023
- 2023-01-19 CN CN202310102059.0A patent/CN116012365A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014042514A2 (en) * | 2012-09-12 | 2014-03-20 | Mimos Berhad | A surveillance system and a method for tampering detection and correction |
CN105791814A (en) * | 2016-03-09 | 2016-07-20 | 中国科学院自动化研究所 | A surveillance video quality detection method and device based on image processing technology |
CN109636793A (en) * | 2018-12-14 | 2019-04-16 | 中航华东光电(上海)有限公司 | The detection system and its detection method of display |
US20210358454A1 (en) * | 2020-05-18 | 2021-11-18 | Rockwell Collins, Inc. | Flipped or frozen display monitor |
CN112235540A (en) * | 2020-10-09 | 2021-01-15 | 北京航空航天大学 | Intelligent video monitoring system for screen display fault recognition alarm |
CN114910733A (en) * | 2022-07-15 | 2022-08-16 | 深圳益实科技有限公司 | Display fault intelligent diagnosis analysis system based on artificial intelligence |
Non-Patent Citations (1)
Title |
---|
孙洋;: "某型飞机多功能显示器和平显画面黑屏问题分析", 航空维修与工程, no. 08, 20 August 2020 (2020-08-20) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200125885A1 (en) | Vehicle insurance image processing method, apparatus, server, and system | |
JP6230751B1 (en) | Object detection apparatus and object detection method | |
CN110728681B (en) | Mura defect detection method and device | |
WO2019206209A1 (en) | Machine learning-based fundus image detection method, apparatus, and system | |
CN110766679A (en) | Lens contamination detection method and device and terminal equipment | |
WO2019020103A1 (en) | Target recognition method and apparatus, storage medium and electronic device | |
CN109840883B (en) | Method and device for training object recognition neural network and computing equipment | |
JP2008518344A (en) | Method and system for processing video data | |
CN111417960B (en) | Information processing device, information processing method, and program | |
CN110599453A (en) | Panel defect detection method and device based on image fusion and equipment terminal | |
CN112329567A (en) | Method and system for detecting target in automatic driving scene, server and medium | |
CN109087281B (en) | Display screen peripheral circuit detection method, device, electronic equipment and storage medium | |
CN111079621A (en) | Method and device for detecting object, electronic equipment and storage medium | |
CN110390295B (en) | Image information identification method and device and storage medium | |
CN113486856A (en) | Driver irregular behavior detection method based on semantic segmentation and convolutional neural network | |
CN107729502A (en) | A kind of bayonet vehicle individualized feature intelligent retrieval system and method | |
CN115470109A (en) | Automatic testing method and device for automobile instrument | |
CN113139419B (en) | Unmanned aerial vehicle detection method and device | |
WO2021233058A1 (en) | Method for monitoring articles on shop shelf, computer and system | |
CN114998782B (en) | Scene classification method, device, electronic device and storage medium for face-to-face video | |
CN119068345B (en) | Image processing method and device, storage medium and electronic equipment | |
CN113065454B (en) | High-altitude parabolic target identification and comparison method and device | |
CN116012365A (en) | Method for determining display faults of intelligent cabins and fault detection device | |
CN116229336B (en) | Video moving target identification method, system, storage medium and computer | |
CN113743434A (en) | Training method of target detection network, image augmentation method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |