CN116003023A - A kind of modified glass fiber powder reinforced polyurethane concrete and its preparation method - Google Patents
A kind of modified glass fiber powder reinforced polyurethane concrete and its preparation method Download PDFInfo
- Publication number
- CN116003023A CN116003023A CN202211692078.5A CN202211692078A CN116003023A CN 116003023 A CN116003023 A CN 116003023A CN 202211692078 A CN202211692078 A CN 202211692078A CN 116003023 A CN116003023 A CN 116003023A
- Authority
- CN
- China
- Prior art keywords
- glass fiber
- fiber powder
- modified glass
- polyurethane
- coupling agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004814 polyurethane Substances 0.000 title claims abstract description 101
- 229920002635 polyurethane Polymers 0.000 title claims abstract description 101
- 239000003365 glass fiber Substances 0.000 title claims abstract description 82
- 239000000843 powder Substances 0.000 title claims abstract description 62
- 239000004567 concrete Substances 0.000 title claims abstract description 61
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000000853 adhesive Substances 0.000 claims abstract description 42
- 230000001070 adhesive effect Effects 0.000 claims abstract description 42
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000007822 coupling agent Substances 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000000243 solution Substances 0.000 claims abstract description 13
- 238000003756 stirring Methods 0.000 claims abstract description 11
- 239000011259 mixed solution Substances 0.000 claims abstract description 7
- 239000002994 raw material Substances 0.000 claims abstract description 5
- 238000009210 therapy by ultrasound Methods 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims description 24
- -1 polyoxypropylene Polymers 0.000 claims description 23
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 20
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 18
- 229920001228 polyisocyanate Polymers 0.000 claims description 15
- 239000005056 polyisocyanate Substances 0.000 claims description 15
- 229920001451 polypropylene glycol Polymers 0.000 claims description 11
- IBOFVQJTBBUKMU-UHFFFAOYSA-N 4,4'-methylene-bis-(2-chloroaniline) Chemical compound C1=C(Cl)C(N)=CC=C1CC1=CC=C(N)C(Cl)=C1 IBOFVQJTBBUKMU-UHFFFAOYSA-N 0.000 claims description 10
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 9
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical group CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 7
- OEOIWYCWCDBOPA-UHFFFAOYSA-N 6-methyl-heptanoic acid Chemical compound CC(C)CCCCC(O)=O OEOIWYCWCDBOPA-UHFFFAOYSA-N 0.000 claims description 7
- 229910052797 bismuth Inorganic materials 0.000 claims description 7
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical group [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 7
- 239000013530 defoamer Substances 0.000 claims description 6
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 claims description 5
- 229920006389 polyphenyl polymer Polymers 0.000 claims description 4
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 claims description 2
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 2
- 239000004593 Epoxy Substances 0.000 claims 1
- 239000012948 isocyanate Substances 0.000 claims 1
- 150000002513 isocyanates Chemical class 0.000 claims 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 claims 1
- 238000004448 titration Methods 0.000 claims 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 claims 1
- 230000003068 static effect Effects 0.000 abstract description 16
- 229920000642 polymer Polymers 0.000 abstract description 8
- 239000002131 composite material Substances 0.000 abstract description 4
- 238000001035 drying Methods 0.000 abstract 1
- 238000000227 grinding Methods 0.000 abstract 1
- 238000007873 sieving Methods 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 29
- 239000002986 polymer concrete Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 9
- 239000004568 cement Substances 0.000 description 7
- 238000002525 ultrasonication Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241001247482 Amsonia Species 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及聚氨酯混凝土技术领域,特别涉及一种改性玻璃纤维粉增强型聚氨酯混凝土及其制备方法。The invention relates to the technical field of polyurethane concrete, in particular to a modified glass fiber powder reinforced polyurethane concrete and a preparation method thereof.
背景技术Background technique
聚氨酯混凝土,是以聚氨酯胶黏剂替代水泥基材料作为胶凝材料,与无机骨料物理混合,形成的一种路面修补材料。因为其快速的固化时间和强的粘接能力,吸引了工业界和学术界大量的关注。与普通水泥相比,聚合物混凝土具有独特的性能,包括强的耐化学腐蚀,高的比强度,短的固化时间,强的粘接能力,出色的隔音隔声性能。Polyurethane concrete is a pavement repair material formed by physically mixing polyurethane adhesives instead of cement-based materials as cementitious materials and inorganic aggregates. Because of its fast curing time and strong bonding ability, it has attracted a lot of attention from both industry and academia. Compared with ordinary cement, polymer concrete has unique properties, including strong chemical resistance, high specific strength, short curing time, strong bonding ability, and excellent sound insulation performance.
聚氨酯胶黏剂相对于其他树脂,具有更好点的韧性,更快的固化速率,出色的低温弹性,低成本和能够无溶剂制备。聚氨酯主要是作为修补材料或者装饰材料,但是它们最近在一些领域也作为主要的建筑材料主体来使用。聚氨酯聚合物混凝土具有高抗压强度,高抗折强度,也能快速固化。聚氨酯混凝土具有出色的耐化学腐蚀,耐候性,耐磨,不易产生裂缝和损坏。普通的水泥混凝土非常容易生成空洞和裂缝,并且造成了二次裂缝的生成。受到腐蚀的基材的通过裂缝和空隙移动,造成了混凝土的破碎,并最终导致整体结构发生破坏。在聚氨酯聚合物混凝土中,聚合物能够填充骨料之间的空隙,从而降低了外界腐蚀侵袭混凝土的概率。Compared with other resins, polyurethane adhesives have better toughness, faster curing rate, excellent low temperature elasticity, low cost and can be prepared without solvents. Polyurethanes are mainly used as repair materials or decorative materials, but they are also recently used in some fields as the main body of building materials. Polyurethane polymer concrete has high compressive strength, high flexural strength and also cures quickly. Polyurethane concrete has excellent chemical resistance, weather resistance, abrasion resistance, and is less prone to cracks and damage. Ordinary cement concrete is very easy to generate voids and cracks, and causes the generation of secondary cracks. The movement of the corroded substrate through cracks and voids causes the concrete to crumble and ultimately lead to failure of the overall structure. In polyurethane polymer concrete, the polymer can fill the voids between the aggregates, thereby reducing the probability of external corrosion attacking the concrete.
然而,室温快速固化的胶黏剂聚氨酯胶黏剂运用于聚合物混凝土时,其静态弹性模量和抗折模量比较弱,容易变形,限制了其使用范围,同时也容易导致破裂。However, when the polyurethane adhesive, which is a fast-curing adhesive at room temperature, is used in polymer concrete, its static elastic modulus and flexural modulus are relatively weak, and it is easy to deform, which limits its application range and is also prone to cracking.
发明内容Contents of the invention
本发明要解决的技术问题是克服现有技术的不足,提供一种改性型玻璃纤维粉增强聚氨酯混凝土及其制备方法,采用改性玻璃纤维粉所制备的聚氨酯混凝土具有较高的弹性模量和抗折模量。The technical problem to be solved in the present invention is to overcome the deficiencies of the prior art, to provide a modified glass fiber powder reinforced polyurethane concrete and its preparation method, and the polyurethane concrete prepared by using modified glass fiber powder has a higher modulus of elasticity and flexural modulus.
为解决上述技术问题,本发明采用如下技术方案。In order to solve the above technical problems, the present invention adopts the following technical solutions.
一种改性玻璃纤维粉增强型聚氨酯混凝土,其原料组分包括聚氨酯胶黏剂和骨料,所述聚氨酯胶黏剂包括5-20wt%硅氧烷偶联剂改性玻璃纤维粉;所述骨料为符合工业标准(JC/T108-2008)的中国标准砂;A modified glass fiber powder reinforced polyurethane concrete, its raw material components include polyurethane adhesive and aggregate, the polyurethane adhesive includes 5-20wt% siloxane coupling agent modified glass fiber powder; The aggregate is the Chinese standard sand that meets the industrial standard (JC/T108-2008);
所述硅氧烷偶联剂改性玻璃纤维粉的制备方法如下:The preparation method of described siloxane coupling agent modified glass fiber powder is as follows:
将硅氧烷偶联剂溶解在水/乙醇混合溶液里,搅拌均匀;玻璃纤维研磨过1000目筛得玻璃纤维粉,加入溶液中,超声处理;超声之后,乙醇清洗、干燥,即得。Dissolve the siloxane coupling agent in the water/ethanol mixed solution and stir evenly; grind the glass fiber through a 1000-mesh sieve to obtain glass fiber powder, add it to the solution, and perform ultrasonic treatment; after ultrasonic cleaning, wash with ethanol and dry to obtain the product.
具体地,玻璃纤维粉利用研磨机将废弃的玻纤粉研磨成粉末,将粉末过1000目筛。采用硅氧烷偶联剂处理改性粒子表面的官能团。首先,氧烷偶联剂溶解在水/乙醇混合溶剂中,搅拌1小时。接着,玻璃纤维粉加入溶液中,上述混合物用细胞粉碎机超声1小时。超声之后,玻璃纤维粉用乙醇清洗两遍,除去剩余的硅氧烷,最后在120℃的烘箱中干燥2小时。Specifically, glass fiber powder uses a grinder to grind waste glass fiber powder into powder, and the powder is passed through a 1000-mesh sieve. The functional groups on the surface of the modified particles are treated with a siloxane coupling agent. First, the oxane coupling agent was dissolved in a water/ethanol mixed solvent and stirred for 1 hour. Next, glass fiber powder was added into the solution, and the above mixture was sonicated for 1 hour with a cell pulverizer. After ultrasonication, the glass fiber powder was washed twice with ethanol to remove the remaining siloxane, and finally dried in an oven at 120 °C for 2 hours.
优选地,所述硅氧烷偶联剂的用量为水/乙醇混合溶液质量的1.9~2.1wt%。Preferably, the amount of the siloxane coupling agent is 1.9-2.1 wt% of the mass of the water/ethanol mixed solution.
优选地,所述水/乙醇混合溶液中水和乙醇的质量比1:1~1.2。Preferably, the mass ratio of water and ethanol in the water/ethanol mixed solution is 1:1-1.2.
优选地,玻璃纤维粉与硅氧烷偶联剂的质量比为50~55:1。Preferably, the mass ratio of glass fiber powder to siloxane coupling agent is 50-55:1.
优选地,硅氧烷偶联剂为氨丙基三乙氧基硅烷、γ―(2,3-环氧丙氧)丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷的一种。Preferably, the siloxane coupling agent is aminopropyltriethoxysilane, γ-(2,3-epoxypropoxy)propyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane A type of silane.
优选地,按重量百分比计,所述胶黏剂还包括:4,4’-亚甲基-二(邻氯苯胺)15~20wt%、聚氧化丙烯醚二醇65~70wt%、催化剂0.1~0.3wt%、消泡剂0.25~0.75wt%、聚亚甲基多异氰酸酯10~15wt%。Preferably, by weight percentage, the adhesive further includes: 4,4'-methylene-bis(o-chloroaniline) 15-20 wt%, polyoxypropylene ether glycol 65-70 wt%, catalyst 0.1- 0.3wt%, defoamer 0.25-0.75wt%, polymethylene polyisocyanate 10-15wt%.
优选地,聚氧化丙烯醚二醇的Mn=2000g/mol。Preferably, the Mn of the polyoxypropylene ether glycol is 2000 g/mol.
优选地,所述催化剂为异辛酸铋(Bi(Oc)2)、消泡剂为聚亚甲基多异氰酸酯为多苯基多亚甲基多异氰酸酯。Preferably, the catalyst is bismuth isooctanoate (Bi(Oc) 2 ), and the defoamer is Polymethylene polyisocyanates are polyphenyl polymethylene polyisocyanates.
优选地,所述胶黏剂的制备方法包括如下步骤:Preferably, the preparation method of described adhesive comprises the steps:
将4,4’-亚甲基-二(邻氯苯胺)、聚氧化丙烯醚二醇、催化剂、消泡剂混合,在烧瓶内80℃氮气氛围下搅拌0.8-1.2h;混合物冷却后贮存密封在容器内待用;加入硅氧烷改性玻璃纤维粉,搅拌均匀;再与聚亚甲基多异氰酸酯混合均匀;注入模具,并在室温下养护,得聚氨酯胶黏剂。
优选地,按重量份计,包括:25~35份聚氨酯胶黏剂、65~75份骨料。Preferably, in parts by weight, it includes: 25-35 parts of polyurethane adhesive, and 65-75 parts of aggregate.
一种上述的改性玻璃纤维粉增强型聚氨酯混凝土的制备方法,包括如下步骤:A kind of preparation method of above-mentioned modified glass fiber powder reinforced polyurethane concrete, comprises the steps:
将聚氨酯胶黏剂、骨料混合均匀,注入模具,脱模后养护,即得。Mix the polyurethane adhesive and aggregate evenly, pour it into the mold, and maintain it after demoulding.
本发明采用硅氧烷偶联剂处理改性,来改性玻璃纤维粒子表面的官能团,增加了玻璃纤维粉末的亲润性。玻璃纤维粉研磨过1000目筛,具有大的比表面积,并且硅氧烷偶联剂对于玻璃纤维粉粒子的尺寸分布影响很小。改性玻璃纤维粉之间强的氢键相互作用,限制了聚氨酯链段的移动,从而增加了链段的刚性。改性玻璃纤维粉末的存在能够有效地限制骨料和聚氨酯之间裂缝的生成,从而改善聚氨酯胶黏剂的力学性能。改性玻璃纤维粉末的加入能够有效地提高聚氨酯胶黏剂的热稳定性。聚氨酯的结晶度随着改性玻璃纤维粉末的含量增加而减少,同时聚合物和无机粒子之间强的氢键相互作用力也限制了聚氨酯硬段的结晶。聚氨酯的软段由聚氧化丙烯醚二醇链组成,它具有长的交缠链;聚氨酯的硬段由多苯基多亚甲基多异氰酸酯和4,4’-亚甲基-二(邻氯苯胺)组成,硬段作为分散相散布在作为连续相的软段里面。The invention adopts siloxane coupling agent to treat and modify the functional groups on the surface of the glass fiber particles to increase the wettability of the glass fiber powder. The glass fiber powder is ground through a 1000-mesh sieve and has a large specific surface area, and the siloxane coupling agent has little effect on the size distribution of the glass fiber powder particles. The strong hydrogen bond interaction between the modified glass fiber powder restricts the movement of the polyurethane chain segment, thereby increasing the rigidity of the chain segment. The presence of modified glass fiber powder can effectively limit the formation of cracks between aggregate and polyurethane, thereby improving the mechanical properties of polyurethane adhesives. The addition of modified glass fiber powder can effectively improve the thermal stability of polyurethane adhesives. The crystallinity of polyurethane decreases as the content of modified glass fiber powder increases, and the strong hydrogen bond interaction between polymer and inorganic particles also limits the crystallization of polyurethane hard segments. The soft segment of polyurethane is composed of polyoxypropylene ether glycol chains, which have long intertwined chains; the hard segment of polyurethane is composed of polyphenylpolymethylene polyisocyanate and 4,4'-methylene-bis(o-chloro Aniline), the hard segment is dispersed in the soft segment as the continuous phase as the dispersed phase.
与现有技术相比,本发明的优点在于:Compared with the prior art, the present invention has the advantages of:
本发明提供的改性玻璃纤维粉增强型聚氨酯混凝土,通过对玻璃纤维的改性,改善了混凝土的力学性能、提升了热稳定性。相比于水泥混凝土,聚氨酯混凝土具有较低的静态弹性模量和更高的弹性形变能力。聚氨酯基材和改性玻璃纤维粉粒子之间强的界面粘接能力,这个粘接能力限制了聚氨酯基材的链段运动。相对于纯聚氨酯混凝土,添加15wt%玻璃纤维粉复合物制备的聚合物增强了38.7%的静态弹性模量,112.0%抗折强度,225.3%抗折模量和44.9%的粘接强度。The modified glass fiber powder reinforced polyurethane concrete provided by the invention improves the mechanical properties of the concrete and enhances the thermal stability by modifying the glass fibers. Compared with cement concrete, polyurethane concrete has a lower static elastic modulus and higher elastic deformation capacity. The strong interfacial bonding ability between the polyurethane substrate and the modified glass fiber powder particles limits the chain segment movement of the polyurethane substrate. Compared with pure polyurethane concrete, the polymer prepared by adding 15wt% glass fiber powder compound enhanced the static elastic modulus by 38.7%, the flexural strength by 112.0%, the flexural modulus by 225.3% and the bond strength by 44.9%.
附图说明Description of drawings
图1为固化后的聚氨酯混凝土的抗压应力应变曲线;Fig. 1 is the compressive stress-strain curve of polyurethane concrete after curing;
图2为聚氨酯混凝土的抗压强度和静态弹性模量随玻璃纤维含量的变化曲线;Fig. 2 is the variation curve of compressive strength and static modulus of elasticity of polyurethane concrete with glass fiber content;
图3为固化后的聚氨酯混凝土的抗折应力应变曲线;Fig. 3 is the flexural stress-strain curve of the polyurethane concrete after curing;
图4为聚氨酯混凝土的抗折强度和抗折模量随玻璃纤维含量的变化曲线。Fig. 4 is the variation curve of flexural strength and flexural modulus of polyurethane concrete with glass fiber content.
具体实施方式Detailed ways
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。以下实施例中,若无特别说明,所采用的原料和仪器均为市售。The present invention will be further described below in conjunction with the accompanying drawings and specific preferred embodiments, but the protection scope of the present invention is not limited thereby. In the following examples, unless otherwise specified, the raw materials and instruments used are all commercially available.
实施例中所用的原料和设备如下:Raw material and equipment used in the embodiment are as follows:
氨丙基三乙氧基硅烷:分析纯,晨光。Aminopropyltriethoxysilane: analytically pure, Chenguang.
4,4’-亚甲基-二(邻氯苯胺):分析纯,苏州湘园化工有限公司。4,4'-methylene-bis(o-chloroaniline): analytically pure, Suzhou Xiangyuan Chemical Co., Ltd.
聚氧化丙烯醚二醇:Mn=2000g/mol,山东蓝星东大化工有限责任公司。Polyoxypropylene ether diol: Mn=2000g/mol, Shandong Bluestar Dongda Chemical Co., Ltd.
异辛酸铋(Bi(Oc)2:分析纯,上海德音化学有限公司。Bismuth isooctanoate (Bi(Oc) 2 : analytically pure, Shanghai Deyin Chemical Co., Ltd.
分析纯,德国默克公司。 Analytical pure, Merck, Germany.
多苯基多亚甲基多异氰酸酯:分析纯,万华化学集团股份有限公司。Polyphenyl polymethylene polyisocyanate: analytically pure, Wanhua Chemical Group Co., Ltd.
水:自来水。Water: tap water.
实施例1(对比例)Embodiment 1 (comparative example)
将2g氨丙基三乙氧基硅烷溶解在100g水/乙醇(1:1质量比)里,搅拌1小时。接着,玻璃纤维粉粒子加入溶液中,上述混合物用细胞粉碎机超声1小时。超声之后,玻璃纤维粉粒子被乙醇清洗两遍,除去剩余的硅氧烷,最后在120℃的烘箱中干燥2小时。Dissolve 2g of aminopropyltriethoxysilane in 100g of water/ethanol (1:1 mass ratio), and stir for 1 hour. Next, glass fiber powder particles were added into the solution, and the above mixture was sonicated for 1 hour with a cell pulverizer. After ultrasonication, the glass fiber powder particles were washed twice with ethanol to remove the remaining siloxane, and finally dried in an oven at 120 °C for 2 hours.
制备聚合物混凝土的聚合物胶黏剂Base组分:将53.4g 4,4’-亚甲基-二(邻氯苯胺),200g聚氧化丙烯醚二醇,0.5g异辛酸铋(Bi(Oc)2),1.25g上述物质混合,在烧瓶内80℃氮气氛围下搅拌1小时。混合物冷却后贮存密封在容器内待用。Prepare the polymer adhesive Base component of polymer concrete: 53.4
聚氨酯胶黏剂的Base组分用机械搅拌桨强力搅拌5分钟。再将混合物和40g多苯基多亚甲基多异氰酸酯在一次性杯中混合2分钟,得聚氨酯胶粘剂。The Base component of the polyurethane adhesive was vigorously stirred with a mechanical stirring paddle for 5 minutes. The mixture and 40 g of polyphenyl polymethylene polyisocyanate were mixed in a disposable cup for 2 minutes to obtain a polyurethane adhesive.
实施例2Example 2
将2g氨丙基三乙氧基硅烷溶解在100g水/乙醇(1:1质量比)里,搅拌1小时。接着,玻璃纤维粉粒子加入溶液中,上述混合物用细胞粉碎机超声1小时。超声之后,玻璃纤维粉粒子被乙醇清洗两遍,除去剩余的硅氧烷,最后在120℃的烘箱中干燥2小时。Dissolve 2g of aminopropyltriethoxysilane in 100g of water/ethanol (1:1 mass ratio), and stir for 1 hour. Next, glass fiber powder particles were added into the solution, and the above mixture was sonicated for 1 hour with a cell pulverizer. After ultrasonication, the glass fiber powder particles were washed twice with ethanol to remove the remaining siloxane, and finally dried in an oven at 120 °C for 2 hours.
制备聚合物混凝土的聚合物胶黏剂Base组分:将53.4g 4,4’-亚甲基-二(邻氯苯胺),200g聚氧化丙烯醚二醇,0.5g异辛酸铋(Bi(Oc)2),1.25g上述物质混合,在烧瓶内80℃氮气氛围下搅拌1小时。混合物冷却后贮存密封在容器内待用。Prepare the polymer adhesive Base component of polymer concrete: 53.4
将5wt%的表面改性的玻璃纤维粉粉末加入聚氨酯胶黏剂的Base组分。混合物组分用机械搅拌桨强力搅拌5分钟。再将混合物和40g多苯基多亚甲基多异氰酸酯在一次性杯中混合2分钟。紧接着将新制备的聚氨酯/玻璃纤维粉复合物注入模具,并在室温下养护5小时,得聚氨酯胶粘剂。Add 5 wt% of surface-modified glass fiber powder to the Base component of the polyurethane adhesive. The mixture components were stirred vigorously with a mechanical paddle for 5 minutes. The mixture was then mixed with 40 g of polyphenylpolymethylene polyisocyanate in a disposable cup for 2 minutes. Immediately afterwards, the newly prepared polyurethane/glass fiber powder composite was injected into the mold, and cured at room temperature for 5 hours to obtain the polyurethane adhesive.
实施例3Example 3
将1.9g氨丙基三乙氧基硅烷溶解在100g水/乙醇(1:1质量比)里,搅拌1小时。接着,玻璃纤维粉粒子加入溶液中,上述混合物用细胞粉碎机超声1小时。超声之后,玻璃纤维粉粒子被乙醇清洗两遍,除去剩余的硅氧烷,最后在120℃的烘箱中干燥2小时。Dissolve 1.9g of aminopropyltriethoxysilane in 100g of water/ethanol (1:1 mass ratio), and stir for 1 hour. Next, glass fiber powder particles were added into the solution, and the above mixture was sonicated for 1 hour with a cell pulverizer. After ultrasonication, the glass fiber powder particles were washed twice with ethanol to remove the remaining siloxane, and finally dried in an oven at 120 °C for 2 hours.
制备聚合物混凝土的聚合物胶黏剂Base组分:将53.8g 4,4’-亚甲基-二(邻氯苯胺),203g聚氧化丙烯醚二醇,0.5g异辛酸铋(Bi(Oc)2),1.23g上述物质混合,在烧瓶内80℃氮气氛围下搅拌1小时。混合物冷却后贮存密封在容器内待用。Prepare the polymer adhesive Base component of polymer concrete: 53.8
将15wt%的表面改性的玻璃纤维粉粉末加入聚氨酯胶黏剂的Base组分。混合物组分用机械搅拌桨强力搅拌5分钟。再将混合物和40g多苯基多亚甲基多异氰酸酯在一次性杯中混合2分钟。紧接着将新制备的聚氨酯/玻璃纤维粉复合物注入模具,并在室温下养护5小时,得聚氨酯胶粘剂。15 wt% of surface-modified glass fiber powder was added to the Base component of the polyurethane adhesive. The mixture components were stirred vigorously with a mechanical paddle for 5 minutes. The mixture was then mixed with 40 g of polyphenylpolymethylene polyisocyanate in a disposable cup for 2 minutes. Immediately afterwards, the newly prepared polyurethane/glass fiber powder composite was injected into the mold, and cured at room temperature for 5 hours to obtain the polyurethane adhesive.
实施例4Example 4
将2.1g氨丙基三乙氧基硅烷溶解在100g水/乙醇(1:1质量比)里,搅拌1小时。接着,玻璃纤维粉粒子加入溶液中,上述混合物用细胞粉碎机超声1小时。超声之后,玻璃纤维粉粒子被乙醇清洗两遍,除去剩余的硅氧烷,最后在120℃的烘箱中干燥2小时。Dissolve 2.1g of aminopropyltriethoxysilane in 100g of water/ethanol (1:1 mass ratio), and stir for 1 hour. Next, glass fiber powder particles were added into the solution, and the above mixture was sonicated for 1 hour with a cell pulverizer. After ultrasonication, the glass fiber powder particles were washed twice with ethanol to remove the remaining siloxane, and finally dried in an oven at 120 °C for 2 hours.
制备聚合物混凝土的聚合物胶黏剂Base组分:将53.2g 4,4’-亚甲基-二(邻氯苯胺),198g聚氧化丙烯醚二醇,0.5g异辛酸铋(Bi(Oc)2),1.22g上述物质混合,在烧瓶内80℃氮气氛围下搅拌1小时。混合物冷却后贮存密封在容器内待用。Prepare the polymer adhesive Base component of polymer concrete: 53.2
将20wt%的表面改性的玻璃纤维粉粉末加入聚氨酯胶黏剂的Base组分。混合物组分用机械搅拌桨强力搅拌5分钟。再将混合物和40g多苯基多亚甲基多异氰酸酯在一次性杯中混合2分钟。紧接着将新制备的聚氨酯/玻璃纤维粉复合物注入模具,并在室温下养护5小时,得聚氨酯胶粘剂。Add 20wt% of surface-modified glass fiber powder to the Base component of the polyurethane adhesive. The mixture components were stirred vigorously with a mechanical paddle for 5 minutes. The mixture was then mixed with 40 g of polyphenylpolymethylene polyisocyanate in a disposable cup for 2 minutes. Immediately afterwards, the newly prepared polyurethane/glass fiber powder composite was injected into the mold, and cured at room temperature for 5 hours to obtain the polyurethane adhesive.
实施例5(对比例)Embodiment 5 (comparative example)
将30份上述实施例1中的聚氨酯胶粘剂,70份骨料,在容器中混合搅拌2分钟。最后,把新制备的聚氨酯混凝土注入钢制模具中,并用振动器压实。聚氨酯混凝土在1小时之后脱模,并在室温下固化4小时。With 30 parts of polyurethane adhesives in the above-mentioned embodiment 1, 70 parts of aggregates were mixed and stirred in a container for 2 minutes. Finally, the freshly prepared polyurethane concrete is poured into steel molds and compacted with a vibrator. The polyurethane concrete was demoulded after 1 hour and allowed to cure for 4 hours at room temperature.
实施例6Example 6
将30份上述实施例1中的聚氨酯胶粘剂,70份骨料,在容器中混合搅拌2分钟。最后,把新制备的聚氨酯混凝土注入钢制模具中,并用振动器压实。聚氨酯混凝土在1小时之后脱模,并在室温下固化4小时。With 30 parts of polyurethane adhesives in the above-mentioned embodiment 1, 70 parts of aggregates were mixed and stirred in a container for 2 minutes. Finally, the freshly prepared polyurethane concrete is poured into steel molds and compacted with a vibrator. The polyurethane concrete was demoulded after 1 hour and allowed to cure for 4 hours at room temperature.
实施例7Example 7
将30份上述实施例2中的聚氨酯胶粘剂,70份骨料,在容器中混合搅拌2分钟。最后,把新制备的聚氨酯混凝土注入钢制模具中,并用振动器压实。聚氨酯混凝土在1小时之后脱模,并在室温下固化4小时。30 parts of the polyurethane adhesive in the above-mentioned
实施例8Example 8
将30份上述实施例4中的聚氨酯胶粘剂,70份骨料,以及改性的玻璃纤维粉粒子混合在一起,在容器中混合搅拌2分钟。最后,把新制备的聚氨酯混凝土注入钢制模具中,并用振动器压实。聚氨酯混凝土在1小时之后脱模,并在室温下固化4小时。30 parts of polyurethane adhesive in the above-mentioned
附图1,2中聚氨酯混凝土的样品的抗压强度和静态弹性模量测试;每组聚氨酯混凝土样品有三个,每个样品都是20mm×20mm×60mm尺寸的立方块。采用20吨载荷能力的万能拉力机(SFMIT,WDW-2H)被用于测试室温下聚氨酯混凝土抗压应力应变曲线。抗压测试符合ASTM 579-01标准,在室温下按照十字头速率40MPa/min对样品进行测试。样品是20mm×20mm的一面朝上放置,开始测试直到被压碎。记录抗压应力应曲线,从而得到抗压强度和静态弹性模量。The compressive strength and static modulus of elasticity of the samples of polyurethane concrete in accompanying
附图1中聚氨酯混凝土行为与弹性体类似。相比于水泥混凝土,聚氨酯混凝土具有较低的静态弹性模量和更高的弹性形变能力。参考先前的聚氨酯混凝土的文献,本实验的抗压应力应变曲线在达到最大抗压应变之前分为三个变形阶段。第一个阶段是应变区间位于0-1%,并且具有最小的斜率。这个阶段主要和聚氨酯基材被压实有关。第二个变形阶段位于应变1-4%,具有更大的斜率。这是因为聚氨酯基材在第一阶段被压实之后,耐压性能得到了提升。第三个阶段在4-20%,这是由于聚氨酯基材和改性玻璃纤维粒子之间界面的断裂,因此,斜率逐渐下降直到抗压应力达到最大值。The behavior of polyurethane concrete in Figure 1 is similar to that of elastomers. Compared with cement concrete, polyurethane concrete has a lower static elastic modulus and higher elastic deformation capacity. Referring to the previous literature on polyurethane concrete, the compressive stress-strain curves of this experiment are divided into three deformation stages before reaching the maximum compressive strain. The first stage is the strain interval between 0-1%, and has the smallest slope. This stage is mainly related to the compaction of the polyurethane substrate. The second deformation stage is located at strain 1-4%, with a larger slope. This is due to the improved pressure resistance of the polyurethane substrate after it has been compacted in the first stage. The third stage is at 4-20%, which is due to the fracture of the interface between the polyurethane substrate and the modified glass fiber particles, therefore, the slope gradually decreases until the compressive stress reaches the maximum value.
附图2展示了含有不同改性玻璃纤维粒子质量分数的聚氨酯混凝土的抗压性能,包括抗压强度和静态弹性模量。结果表明,聚氨酯混凝土中添加改性玻璃纤维粒子,能有效地提高材料的静态弹性模量。在改性玻璃纤维粒子含量在0-15wt%之间,聚氨酯混凝土的静态弹性模量随着改性玻璃纤维粒子含量的增加而增加,当改性玻璃纤维粒子含量超过15wt%时,静态弹性模量下降。最大的静态弹性模量是10wt%改性玻璃纤维粒子制备的聚合物混凝土,静态弹性模量216.11±13.16MPa,比纯的聚氨酯混凝土强度154.97±11.62MPa高了39.5%。改性玻璃纤维粒子的增强效应归因于聚氨酯基材和改性玻璃纤维粒子之间强的界面粘接能力,这个粘接能力限制了聚氨酯基材的链段运动。当改性玻璃纤维粒子含量超过20wt%时,静态弹性模量显著下降,这是因为填料的聚集引入了应力集中导致了性能的下降。Figure 2 shows the compressive properties of polyurethane concrete containing different mass fractions of modified glass fiber particles, including compressive strength and static modulus of elasticity. The results show that adding modified glass fiber particles to polyurethane concrete can effectively improve the static elastic modulus of the material. When the content of modified glass fiber particles is between 0-15wt%, the static elastic modulus of polyurethane concrete increases with the increase of modified glass fiber particle content, when the modified glass fiber particle content exceeds 15wt%, the static elastic modulus Volume down. The largest static elastic modulus is the polymer concrete prepared with 10wt% modified glass fiber particles, the static elastic modulus is 216.11±13.16MPa, which is 39.5% higher than the strength of pure polyurethane concrete 154.97±11.62MPa. The reinforcing effect of the modified glass fiber particles was attributed to the strong interfacial bonding ability between the polyurethane substrate and the modified glass fiber particles, which restricted the segmental motion of the polyurethane substrate. When the content of modified glass fiber particles exceeds 20wt%, the static modulus of elasticity decreases significantly, because the aggregation of fillers introduces stress concentration and leads to performance degradation.
附图3,4中聚氨酯混凝土的样品的抗折强度和抗折模量测试:根据ISO 178:2010标准,尺寸为10mm×20mm×200mm的棱柱型样条进行了三点抗折测试。样条对称地放在两个跨距为160mm的支架上。在室温条件下,0.07mm/s的位移速率下记录抗折应力应变曲线。Flexural strength and flexural modulus tests of polyurethane concrete samples in Figures 3 and 4: According to the ISO 178:2010 standard, a three-point flexural test was performed on a prismatic spline with a size of 10mm×20mm×200mm. The splines are placed symmetrically on two supports with a span of 160mm. At room temperature, the flexural stress-strain curve was recorded at a displacement rate of 0.07mm/s.
附图3为聚合物混凝土的胶黏剂的聚合物混凝土的抗压曲线。附图4为聚合物混凝土的胶黏剂的聚合物混凝土的抗折强度和静态弹性模量。对比例聚氨酯混凝土抗压强度和抗折强度分别是8.06±0.61MPa和299.66±38.84MPa。很明显,抗折强度和抗折模量随着改性玻璃纤维粒子含量的增加而显著增加,当改性玻璃纤维粒子含量达到15wt%时,聚氨酯混凝土的抗折强度和抗折模量达到最大值。比纯的聚氨酯混凝土对应的参数分别高了112.0%和225.3%。在改性玻璃纤维粒子含量达到20wt%时,改性玻璃纤维粒子开始团聚,造成了应力集中,从而导致抗折强度和抗折模量的下降。值得注意的是,改性玻璃纤维粒子对抗折强度的增强作用明显大于对抗压强度的增强作用。这表明抗折强度的大小受到粒子和有机基材之间的相互作用力影响很大。虽然聚氨酯混凝土的抗压强度低于水泥混凝土,但聚氨酯混凝土的抗折强度明显高于水泥混凝土。Accompanying drawing 3 is the compressive curve of the polymer concrete of the adhesive of polymer concrete. Accompanying drawing 4 is the flexural strength and the static modulus of elasticity of the polymer concrete of the polymer concrete adhesive. The compressive strength and flexural strength of the polyurethane concrete of the comparative example are 8.06±0.61MPa and 299.66±38.84MPa, respectively. Obviously, the flexural strength and flexural modulus increase significantly with the increase of modified glass fiber particle content, and when the modified glass fiber particle content reaches 15wt%, the flexural strength and flexural modulus of polyurethane concrete reach the maximum value. Compared with the corresponding parameters of pure polyurethane concrete, they are 112.0% and 225.3% higher respectively. When the content of the modified glass fiber particles reaches 20wt%, the modified glass fiber particles begin to agglomerate, causing stress concentration, which leads to a decrease in the flexural strength and flexural modulus. It is worth noting that the enhanced effect of modified glass fiber particles on the flexural strength is significantly greater than that on the compressive strength. This indicates that the magnitude of the flexural strength is greatly influenced by the interaction force between the particles and the organic substrate. Although the compressive strength of polyurethane concrete is lower than that of cement concrete, the flexural strength of polyurethane concrete is significantly higher than that of cement concrete.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。The above descriptions are only preferred embodiments of the present invention, and do not limit the present invention in any form. Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person familiar with the art, without departing from the spirit and technical solutions of the present invention, can use the methods and technical content disclosed above to make many possible changes and modifications to the technical solutions of the present invention, or modify them to be equivalent Variations of equivalent embodiments. Therefore, any simple modifications, equivalent replacements, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not deviate from the technical solutions of the present invention, still fall within the protection scope of the technical solutions of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211692078.5A CN116003023A (en) | 2022-12-28 | 2022-12-28 | A kind of modified glass fiber powder reinforced polyurethane concrete and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211692078.5A CN116003023A (en) | 2022-12-28 | 2022-12-28 | A kind of modified glass fiber powder reinforced polyurethane concrete and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116003023A true CN116003023A (en) | 2023-04-25 |
Family
ID=86026223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211692078.5A Withdrawn CN116003023A (en) | 2022-12-28 | 2022-12-28 | A kind of modified glass fiber powder reinforced polyurethane concrete and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116003023A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117567124A (en) * | 2023-11-17 | 2024-02-20 | 青岛德辰新材料科技有限公司 | Green inorganic toughness TBM wall post-grouting material and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4637956A (en) * | 1985-03-29 | 1987-01-20 | Ppg Industries, Inc. | Sized glass fibers and reinforced polymers containing same |
CN101328038A (en) * | 2006-12-05 | 2008-12-24 | 尼古拉斯·费尔南多·特哈达·华雷斯 | polymer concrete composition |
US20140357756A1 (en) * | 2013-05-30 | 2014-12-04 | Laticrete International, Inc. | Premixed hybrid grout |
US20200247962A1 (en) * | 2019-02-05 | 2020-08-06 | Asahi Kasei Kabushiki Kaisha | Resin reinforcing fiberglass and thermoplastic resin composition |
CN112480656A (en) * | 2020-12-28 | 2021-03-12 | 无锡琛华复合材料有限公司 | Environment-friendly polyurethane glass fiber composite material and preparation method thereof |
CN112479632A (en) * | 2020-11-12 | 2021-03-12 | 马鞍山十七冶工程科技有限责任公司 | Unsaturated polyester concrete for pavement restoration and preparation method thereof |
CN114409307A (en) * | 2022-02-17 | 2022-04-29 | 黑龙江大学 | A kind of high strength and high toughness polyurethane concrete and preparation method and application |
-
2022
- 2022-12-28 CN CN202211692078.5A patent/CN116003023A/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4637956A (en) * | 1985-03-29 | 1987-01-20 | Ppg Industries, Inc. | Sized glass fibers and reinforced polymers containing same |
CN101328038A (en) * | 2006-12-05 | 2008-12-24 | 尼古拉斯·费尔南多·特哈达·华雷斯 | polymer concrete composition |
US20140357756A1 (en) * | 2013-05-30 | 2014-12-04 | Laticrete International, Inc. | Premixed hybrid grout |
US20200247962A1 (en) * | 2019-02-05 | 2020-08-06 | Asahi Kasei Kabushiki Kaisha | Resin reinforcing fiberglass and thermoplastic resin composition |
CN112479632A (en) * | 2020-11-12 | 2021-03-12 | 马鞍山十七冶工程科技有限责任公司 | Unsaturated polyester concrete for pavement restoration and preparation method thereof |
CN112480656A (en) * | 2020-12-28 | 2021-03-12 | 无锡琛华复合材料有限公司 | Environment-friendly polyurethane glass fiber composite material and preparation method thereof |
CN114409307A (en) * | 2022-02-17 | 2022-04-29 | 黑龙江大学 | A kind of high strength and high toughness polyurethane concrete and preparation method and application |
Non-Patent Citations (1)
Title |
---|
HAO HUANG ET AL.: ""Synthesis and characterization of ground glass fiber reinforced polyurethane-based polymer concrete as a cementitious runway repair material"", 《 CONSTRUCTION AND BUILDING MATERIALS》, vol. 242, pages 1 - 14 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117567124A (en) * | 2023-11-17 | 2024-02-20 | 青岛德辰新材料科技有限公司 | Green inorganic toughness TBM wall post-grouting material and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103980697B (en) | A kind of nano-silicon dioxide modified polyurethane elastomer and preparation method thereof | |
Huang et al. | Synthesis and characterization of ground glass fiber reinforced polyurethane-based polymer concrete as a cementitious runway repair material | |
CN111825388B (en) | Modified epoxy asphalt concrete and processing technology thereof | |
CN100408610C (en) | Rigid polyurethane foam ternary composite material and preparation method thereof | |
CN110550914A (en) | high-strength concrete and preparation method thereof | |
CN114409307B (en) | High-strength high-toughness polyurethane concrete and preparation method and application thereof | |
CN101899262A (en) | A kind of polyurethane-urea waterproof coating and preparation method thereof | |
CN112723792A (en) | Modified asphalt mixture and preparation method thereof | |
CN113354356B (en) | A kind of water-based polyurethane-cement-based repair material and preparation method thereof | |
CN113880522A (en) | Pervious concrete and preparation method thereof | |
CN116003023A (en) | A kind of modified glass fiber powder reinforced polyurethane concrete and its preparation method | |
CN111718677A (en) | Anchor-type clad steel reinforcement bonding material and reinforcement construction method | |
CN116354679B (en) | Strain hardening type recycled coarse aggregate concrete and preparation method thereof | |
CN104448227B (en) | Polyurethane composite material and preparation method thereof | |
CN108911583A (en) | A kind of high strength epoxy resin concrete material and preparation method thereof | |
CN115073097A (en) | High-strength recycled aggregate concrete and preparation method thereof | |
CN110294926A (en) | A kind of silicane-modified polyurethane material and its preparation method and application method | |
CN114716185A (en) | High-performance asphalt mixture and preparation process thereof | |
CN116854422B (en) | Polyurea particle fiber concrete and preparation method thereof | |
CN113845318B (en) | High-fracture-resistance composite portland cement, concrete part prepared from cement and preparation process of concrete part | |
CN116283159A (en) | Process for preparing wear-resistant interlocking block by using iron ore screening material | |
CN116332567A (en) | Asphalt concrete and preparation method thereof | |
CN111592299B (en) | High-strength low-elasticity hydraulic anti-abrasion concrete and preparation method thereof | |
CN108503306A (en) | A kind of preparation method of lower shrinkage grouting material | |
CN114075807B (en) | Cement pavement staggered platform repairing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20230425 |