CN115967105A - 一种多时间尺度储能电站调频控制方法和系统 - Google Patents

一种多时间尺度储能电站调频控制方法和系统 Download PDF

Info

Publication number
CN115967105A
CN115967105A CN202211498469.3A CN202211498469A CN115967105A CN 115967105 A CN115967105 A CN 115967105A CN 202211498469 A CN202211498469 A CN 202211498469A CN 115967105 A CN115967105 A CN 115967105A
Authority
CN
China
Prior art keywords
energy storage
frequency modulation
time
particle
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211498469.3A
Other languages
English (en)
Inventor
司瑞华
王传捷
孟高军
蒋小亮
李�杰
邢鹏翔
程昱明
张丽华
刘万勋
邵红博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Economic and Technological Research Institute of State Grid Henan Electric Power Co Ltd
Original Assignee
Nanjing Institute of Technology
Economic and Technological Research Institute of State Grid Henan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology, Economic and Technological Research Institute of State Grid Henan Electric Power Co Ltd filed Critical Nanjing Institute of Technology
Priority to CN202211498469.3A priority Critical patent/CN115967105A/zh
Publication of CN115967105A publication Critical patent/CN115967105A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供一种多时间尺度储能电站调频控制方法,属于电力系统储能电站频率控制技术领域,针对储能系统一次调频稳定时间短,在事故发生时达不到一次调频的理论值的问题,提出一次调频和二次调频协调多时间尺度控制技术。在储能电站一次调频动作后,二次调频ACG延时启动,启动判据为|Δf|>0.033Hz;根据储能充电功率预测、负荷功率预测和修正后的次日调度放电计划调整各个储能单元的SOC;采用微粒引力场算法以经济最优为目标,确定AGC指令中各个储能单元的功率输出。本发明还提出了一种多时间尺度储能电站调频控制系统,该系统实现上述方法。本发明弥补了传统火电机组一次调频量不足和二次调频响应时间长的缺陷,使调频更灵活精准,增强了电力系统的稳定性。

Description

一种多时间尺度储能电站调频控制方法和系统
技术领域
本发明属于电力系统储能频率控制技术领域,具体涉及一种多时间尺度储能电站调频控制方法。
背景技术
频率是衡量电能质量的重要指标之一。对电网而言,系统的频率波动反映了电能供需的平衡状况,若发电量大于负荷消耗,则系统频率升高,若发电量小于负荷消耗,系统频率降低。电力系统的频率变动对用户、发电厂和电力系统本身都会产生不利影响,所以必须保持频率在额定值50Hz上下,且偏移不能超过一定范围。随着新能源发电机组大量接入电网,具有冲击性的负荷随之增多,为了保证电网的安全经济运行,提高用户的用电质量,电网对机组的调频要求越来越高。目前,在中国各大区域电网中,大型水电与火电机组为主要的调频电源,通过不断地调整调频电源出力来响应系统频率变化,但是,它们各自具有一定的限制与不足,影响着电网频率的安全与品质。现有调频容量不足的问题突显,亟需新的调频手段的出现。
储能技术被国内外专家一致认为是实现光伏、风电等大规模可再生新能源并网的关键技术环节,由于目前对电化学储能的研究尚未完全成熟,尤其是其控制策略和技术需要进一步研究,才能够有效解决大规模可再生能源并入大电网面临的诸多问题。先进的储能技术可以提高可再生能源的利用率,有效改善弃光、弃风现象,同时新能源并网系统的稳定性和可控性将进一步改善。电池储能电站是将大规模的电池组通过系统集成后所形成的,能够接纳也能够输出电能,其容量越大,平抑大规模新能源波动的能力将会越强,分布结构和可再生能源属于并联,可以共同接入电网同步运行,其特点主要有稳定性、高效性、准确性。
电池储能系统具有快速响应、精确跟踪的特点,使得其比传统调频手段更为高效。近年来,将大规模储能系统取代发电厂进行调频,已受到业界的关注。与传统电源相比,储能为电网提供调频的技术优势较明显,并且经济性也将逐渐呈现,能有效改善电力系统的运行效率。
国内不少专家学者已对储能参与电网调频的控制策略和方法展开了深入的研究。对于储能参与电网调频控制策略的研究可归结于储能机组和传统调频电源机组的功率分配问题。传统的调频电源相对储能机组而言具有可发容量大的优势,但其却具有响应时滞长、爬坡率低等劣势;而储能机组出力迅速的特点可恰好弥补传统调频电源的不足。在国内目前已有的研究成果中已有采用粒子群算法来优化二次调频的AGC输出指令,调节各个储能单元功率分配的相关研究,但是少有研究将储能电站的各项成本参数如:储能变流器的效率、储能单元的运行成本、储能单元的寿命折损和储能单元的定期检修成本计及到储能电站的经济性考量之中,因此在考虑多项储能电站的运行成本的基础上,优化储能电站的二次调频,对提升储能电站运行的经济效益具有重大意义。
发明内容
本发明针对现有技术中的不足,提供一种多时间尺度储能电站调频控制方法和系统。
为实现上述目的,本发明采用以下技术方案:
一种多时间尺度储能电站调频控制方法,包括以下步骤:
步骤1:实时监测受端电网的频率波动,采集受端电网的频率值与标准频率的频率偏差Δf;
步骤2:判断频率偏差的绝对值|Δf|是否超过阈值,若频率偏差的绝对值|Δf|超过阈值,启动一次调频,控制储能单元在一次调频稳定时间内输出稳定功率;
步骤3:若到达一次调频稳定时间结束前的缓冲时间点,频率偏差的绝对值|Δf|依然超过阈值,则启动二次调频;构建储能电站经济调度目标函数,运用微粒引力场算法求解储能电站经济调度目标函数,得到需要参加调频的储能单元及参加调频的储能单元的有功出力Pi;以算得的参加调频的储能单元的有功出力Pi为依据,控制储能单元在二次调频稳定时间内输出稳定功率;
步骤4:若到达二次调频稳定时间结束前的缓冲时间点,频率偏差的绝对值|Δf|依然超过阈值,则常规机组补偿功率缺额;
步骤5:当受端电网的频率值到达稳定状态时,兼顾储能单元充电功率预测值和负荷功率预测值,调整储能单元的SOC。
为优化上述技术方案,采取的具体措施还包括:
进一步地,步骤3中,所述构建储能电站经济调度目标函数具体为:
考虑储能变流器的效率、储能单元的运行成本、储能单元的寿命折损、储能单元的定期检修成本和各个储能单元的SOC对输出功率的影响,构建储能电站经济调度目标函数;所述储能电站经济调度目标函数如下:
Figure BDA0003965934310000021
式中,FT为储能电站的调频成本;N为储能单元的总个数;ρi为储能单元运行成本系数,βi为储能变流器效率,αi为储能单元的寿命折损系数,
Figure BDA0003965934310000031
为储能单元的定期检修成本系数;Pi为第i个储能单元的出力,Pi,min为第i个储能单元的最小出力;fi为第i个储能单元的SOC。
进一步地,步骤3中,所述运用微粒引力场算法求解储能电站经济调度目标函数,得到需要参加调频的储能单元及参加调频的储能单元的有功出力Pi具体为:
将每个储能单元视为单个微粒,运用微粒的位置信息Xi来表征储能单元的有功出力Pi,一个具有N个微粒的d维引力场,用Xi=(xi (1),xi (2),xi (3),…,xi (d))来描述微粒i在引力场的位置坐标,i=1,2,3,…,N;t时刻微粒i从微粒j处获得d维的引力Fij (d)(t)为:
Figure BDA0003965934310000032
其中:
Rij(t)=||Xi(t)-Xj(t)||                           (3)
Figure BDA0003965934310000033
式中,δ为微小常量;mi(t)为微粒i的质量,mj(t)为微粒j的质量;Rij(t)为t时刻微粒i与微粒j之间的欧氏距离;Xi(t)为t时刻微粒i在引力场的位置,Xj(t)为t时刻微粒j在引力场的位置;H(t)为修正量,H0为初始修正量;Tmax为最大迭代次数,
Figure BDA0003965934310000034
为t时刻微粒j的d维坐标,
Figure BDA0003965934310000035
为t时刻微粒i的d维坐标;e为自然常数;
微粒i的质量由以下公式计算得到:
Figure BDA0003965934310000036
其中,gi(t)为t时刻微粒i的适应度;gb为t时刻微粒群中微粒适应度的最佳值,gw为t时刻微粒群中微粒适应度的最劣值;
计及引力场中的所有微粒,t时刻微粒i受到的来自所有微粒的引力Fi (d)(t)为:
Figure BDA0003965934310000037
根据公式(5)和公式(6)进一步求解得到微粒i在t时刻d维的加速度ai (d)(t):
Figure BDA0003965934310000038
计及引力场中其他微粒对微粒i的引力作用,微粒i在t+1时刻的速度为:
Figure BDA0003965934310000039
式中,Vi (d)(t+1)为微粒i在t+1时刻第d维的速度;ω为上一时间段的速度权重;Vi (d)(t)为微粒i在t时刻第d维的速度;r1和r2为加速度系数;c1和c2为随机数;ai (d)(t)为微粒i在t时刻d维的加速度;Pgd(t)为微粒i在t时刻第d维的全局极值;Xid(t)为微粒i在t时刻第d维的位置坐标;
速度权重ω的计算公式为:
Figure BDA0003965934310000041
式中,ωmax为速度权重上限,ωmin为速度权重下限,gi(t)为t时刻微粒i的适应度;gb为t时刻微粒群中微粒适应度的最佳值,gw为t时刻微粒群中微粒适应度的最劣值;
更新微粒i在d维的位置坐标:
Figure BDA0003965934310000042
式中,
Figure BDA0003965934310000043
为约束系数;Vi (d)(t+1)为微粒i在t+1时刻第d维的速度,Xid(t)为更新前的位置坐标,Xid(t+1)为更新后的位置坐标;
当微粒引力场算法达到稳定时得到经济性最优情况下的需要参加调频的储能单元及该储能单元的有功出力Pi
本发明还提出了一种多时间尺度储能电站调频控制系统,实现多时间尺度储能电站调频控制方法,所述系统包括:调度中心、远程测控单元、储能电站EMS系统、储能协调控制器和储能单元;
所述储能协调控制器实时监测受端电网的频率波动,采集受端电网的频率值与标准频率的频率偏差Δf,判断频率偏差的绝对值|Δf|是否超过阈值,若频率偏差的绝对值|Δf|超过阈值,则所述储能协调控制器向储能单元发送控制指令,启动一次调频,控制储能单元在一次调频稳定时间内输出稳定功率;所述储能协调控制器在二次调频时接收AGC指令并下达控制指令到每个储能单元;
所述储能电站EMS系统将储能变流器的效率、储能单元的运行成本、储能单元的寿命折损和储能单元的定期检修成本传送给调度中心;储能电站EMS系统向远程测控单元提供AGC指令的投入状态和储能单元的有功出力数据;
所述调度中心在一次调频未取得理想效果时启动二次调频,根据计算结果向远程测控单元发送调频指令;
所述远程测控单元向储能协调控制器发送AGC指令,使储能协调控制器控制储能单元在二次调频稳定时间内输出稳定功率。
为优化上述技术方案,采取的具体措施还包括:
进一步地,所述储能单元包括电池管理系统、电池组和储能变流器;
所述电池管理系统监测电池组的状态,将电池信息传送至储能协调控制器;所述储能变流器接收储能协调控制器发送的控制指令后向电网输送交流功率。
进一步地,所述调度中心在一次调频未取得理想效果时启动二次调频,根据计算结果向远程测控单元发送调频指令具体为:
所述调度中心根据储能电站EMS系统提供的储能变流器的效率、储能单元的运行成本、储能单元的寿命折损和储能单元的定期检修成本构建储能电站经济调度目标函数,运用微粒引力场算法求解储能电站经济调度目标函数,得到需要参加调频的储能单元及参加调频的储能单元的有功出力Pi;根据计算结果整合AGC指令并传送至储能协调控制器。
本发明的有益效果是:本发明有效利用储能电站对电能的储存和释放,调动储能单元通过充放电来调节电力系统的频率,利用储能电站响应速度快的优势实现高效的一次调频,同时配合不同时间尺度的二次调频,使得调频更加灵活精准,提高了电力系统的频率稳定性。
附图说明
图1为本发明的频率控制原理图;
图2为多时间尺度调频示意图;
图3为储能电站架构图。
具体实施方式
现在结合附图对本发明作进一步详细的说明。
在一实施例中,本发明提出了一种多时间尺度储能电站调频控制方法,所述方法的原理图如图1所示,该方法包括以下步骤:
步骤1:实时监测受端电网的频率波动,采集受端电网的频率值与标准频率的频率偏差Δf;
步骤2:判断频率偏差的绝对值|Δf|是否超过阈值,若频率偏差的绝对值|Δf|超过阈值,启动一次调频,控制储能单元在一次调频稳定时间内输出稳定功率;
步骤3:若到达一次调频稳定时间结束前的缓冲时间点,频率偏差的绝对值|Δf|依然超过阈值,则启动二次调频;
考虑储能变流器的效率、储能单元的运行成本、储能单元的寿命折损、储能单元的定期检修成本和各个储能单元的SOC(State of Charge)对输出功率的影响,构建储能电站经济调度目标函数;所述储能电站经济调度目标函数如下:
Figure BDA0003965934310000061
式中,FT为储能电站的调频成本;N为储能单元的总个数;ρi为储能单元运行成本系数,βi为储能变流器效率,αi为储能单元的寿命折损系数,
Figure BDA0003965934310000062
为储能单元的定期检修成本系数;Pi为第i个储能单元的出力,Pi,min为第i个储能单元的最小出力;fi为第i个储能单元的SOC。
运用微粒引力场算法求解储能电站经济调度目标函数,得到需要参加调频的储能单元及参加调频的储能单元的有功出力Pi;以算得的参加调频的储能单元的有功出力Pi为依据,控制储能单元在二次调频稳定时间内输出稳定功率;
运用微粒引力场算法求解储能电站经济调度目标函数具体为:
将每个储能单元视为单个微粒,运用微粒的位置信息Xi来表征储能单元的有功出力Pi,一个具有N个微粒的d维引力场,用Xi=(xi (1),xi (2),xi (3),…,xi (d))来描述微粒i在引力场的位置坐标,i=1,2,3,…,N;t时刻微粒i从微粒j处获得d维的引力Fij (d)(t)为:
Figure BDA0003965934310000063
其中:
Rij(t)=||Xi(t)-Xj(t)||                           (3)
Figure BDA0003965934310000064
式中,δ为微小常量;mi(t)为微粒i的质量,mj(t)为微粒j的质量;Rij(t)为t时刻微粒i与微粒j之间的欧氏距离;Xi(t)为t时刻微粒i在引力场的位置,Xj(t)为t时刻微粒j在引力场的位置;H(t)为修正量,H0为初始修正量,H0一般取值为1;Tmax为最大迭代次数,
Figure BDA0003965934310000065
为t时刻微粒j的d维坐标,
Figure BDA0003965934310000066
为t时刻微粒i的d维坐标;e为自然常数;
微粒i的质量由以下公式计算得到:
Figure BDA0003965934310000067
其中,gi(t)为t时刻微粒i的适应度;gb为t时刻微粒群中微粒适应度的最佳值,gw为t时刻微粒群中微粒适应度的最劣值;
计及引力场中的所有微粒,t时刻微粒i受到的来自所有微粒的引力Fi (d)(t)为:
Figure BDA0003965934310000068
根据公式(5)和公式(6)进一步求解得到微粒i在t时刻d维的加速度ai (d)(t):
Figure BDA0003965934310000071
计及引力场中其他微粒对微粒i的引力作用,微粒i在t+1时刻的速度为:
Figure BDA0003965934310000072
式中,Vi (d)(t+1)为微粒i在t+1时刻第d维的速度;ω为上一时间段的速度权重;Vi (d)(t)为微粒i在t时刻第d维的速度;r1和r2为加速度系数;c1和c2为随机数,c1和c2∈rand(0,1);ai (d)(t)为微粒i在t时刻d维的加速度;Pgd(t)为微粒i在t时刻第d维的全局极值;Xid(t)为微粒i在t时刻第d维的位置坐标;
速度权重ω的计算公式为:
Figure BDA0003965934310000073
式中,ωmax为速度权重上限,ωmin为速度权重下限,gi(t)为t时刻微粒i的适应度;gb为t时刻微粒群中微粒适应度的最佳值,gw为t时刻微粒群中微粒适应度的最劣值;
更新微粒i在d维的位置坐标:
Figure BDA0003965934310000074
式中,
Figure BDA0003965934310000075
为约束系数;Vi (d)(t+1)为微粒i在t+1时刻第d维的速度,Xid(t)为更新前的位置坐标,Xid(t+1)为更新后的位置坐标;
当微粒引力场算法达到稳定时得到经济性最优情况下的需要参加调频的储能单元及该储能单元的有功出力Pi
步骤4:若到达二次调频稳定时间结束前的缓冲时间点,频率偏差的绝对值|Δf|依然超过阈值,则常规机组补偿功率缺额;
多时间尺度调频的时序如图2所示,储能电站具有一次调频响应迅速的特性,可以提供40s的稳定功率输出,若在一次调频启动35s后,频率偏差的绝对值|Δf|>0.033Hz,即频率偏差Δf依然超出死区,则视为一次调频没有达到预定要求,需要二次调频参与,储能电站二次调频稳定时间为3min。大多数情况下的负荷扰动可以通过储能电站将频率拉回正常范围内,若电力系统出现严重的事故,储能电站的稳定时间没有办法满足调频的需求时,常规机组介入调频。在2min40s时若频率偏差Δf仍未降至死区以内,则储能协调控制器发出指令,储能电站在一次调频启动3min之后退出调频,同时常规火电或水电机组增发功率,补偿功率缺额。
步骤5:当受端电网的频率值到达稳定状态时,在不影响电网频率越过死区的情况下,兼顾储能单元充电功率预测值和负荷功率预测值,调整储能单元的SOC;保持储能单元容量位于一定范围内,为下一次调频做好准备。储能电站的架构图如图3所示。
在另一实施例中,本发明提出了一种多时间尺度储能电站调频控制系统,该系统实现多时间尺度储能电站调频控制方法,该系统包括:调度中心、远程测控单元(RemoteTerminal Unit,RTU)、储能电站EMS(Energy Management System)系统、储能协调控制器和储能单元;
储能协调控制器实时监测受端电网的频率波动,采集受端电网的频率值与标准频率的频率偏差Δf,判断频率偏差的绝对值|Δf|是否超过阈值,若频率偏差的绝对值|Δf|超过阈值,则储能协调控制器向储能单元发送控制指令,启动一次调频,控制储能单元在一次调频稳定时间内输出稳定功率;所述储能协调控制器在二次调频时接收AGC指令并下达控制指令到每个储能单元,控制储能单元通过储能变流器(PCS),向电网输送合适的交流功率;储能协调控制器控制储能单元的切投,避免过度充放影响储能电站的整体寿命。
储能电站EMS系统将储能变流器的效率、储能单元的运行成本、储能单元的寿命折损和储能单元的定期检修成本传送给调度中心;储能电站EMS系统向远程测控单元提供AGC指令的投入状态和储能单元的有功出力数据;
调度中心在一次调频未取得理想效果时启动二次调频,根据计算结果向远程测控单元发送调频指令;具体为:调度中心根据储能电站EMS系统提供的储能变流器的效率、储能单元的运行成本、储能单元的寿命折损和储能单元的定期检修成本构建储能电站经济调度目标函数,运用微粒引力场算法求解储能电站经济调度目标函数,得到需要参加调频的储能单元及参加调频的储能单元的有功出力Pi;根据计算结果整合AGC指令并传送至储能协调控制器。
远程测控单元向储能协调控制器发送AGC指令,使储能协调控制器控制储能单元在二次调频稳定时间内输出稳定功率。
储能单元包括电池管理系统(BMS)、电池组和储能变流器(PCS);电池管理系统监测电池组的状态,将电池信息传送至储能协调控制器;储能变流器接收储能协调控制器发送的控制指令后向电网输送交流功率。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (6)

1.一种多时间尺度储能电站调频控制方法,其特征在于,所述方法包括以下步骤:
步骤1:实时监测受端电网的频率波动,采集受端电网的频率值与标准频率的频率偏差Δf;
步骤2:判断频率偏差的绝对值|Δf|是否超过阈值,若频率偏差的绝对值|Δf|超过阈值,启动一次调频,控制储能单元在一次调频稳定时间内输出稳定功率;
步骤3:若到达一次调频稳定时间结束前的缓冲时间点,频率偏差的绝对值|Δf|依然超过阈值,则启动二次调频;构建储能电站经济调度目标函数,运用微粒引力场算法求解储能电站经济调度目标函数,得到需要参加调频的储能单元及参加调频的储能单元的有功出力Pi;以算得的参加调频的储能单元的有功出力Pi为依据,控制储能单元在二次调频稳定时间内输出稳定功率;
步骤4:若到达二次调频稳定时间结束前的缓冲时间点,频率偏差的绝对值|Δf|依然超过阈值,则常规机组补偿功率缺额;
步骤5:当受端电网的频率值到达稳定状态时,兼顾储能单元充电功率预测值和负荷功率预测值,调整储能单元的SOC。
2.根据权利要求1所述的多时间尺度储能电站调频控制方法,其特征在于,步骤3中,所述构建储能电站经济调度目标函数具体为:
考虑储能变流器的效率、储能单元的运行成本、储能单元的寿命折损、储能单元的定期检修成本和各个储能单元的SOC对输出功率的影响,构建储能电站经济调度目标函数;所述储能电站经济调度目标函数如下:
Figure FDA0003965934300000011
式中,FT为储能电站的调频成本;N为储能单元的总个数;ρi为储能单元运行成本系数,βi为储能变流器效率,αi为储能单元的寿命折损系数,
Figure FDA0003965934300000012
为储能单元的定期检修成本系数;Pi为第i个储能单元的出力,Pi,min为第i个储能单元的最小出力;fi为第i个储能单元的SOC。
3.根据权利要求1所述的多时间尺度储能电站调频控制方法,其特征在于,步骤3中,所述运用微粒引力场算法求解储能电站经济调度目标函数,得到需要参加调频的储能单元及参加调频的储能单元的有功出力Pi具体为:
将每个储能单元视为单个微粒,运用微粒的位置信息Xi来表征储能单元的有功出力Pi,一个具有N个微粒的d维引力场,用Xi=(xi (1),xi (2),xi (3),…,xi (d))来描述微粒i在引力场的位置坐标,i=1,2,3,…,N;t时刻微粒i从微粒j处获得d维的引力Fij (d)(t)为:
Figure FDA0003965934300000021
其中:
Rij(t)=||Xi(t)-Xj(t)||    (3)
Figure FDA0003965934300000022
式中,δ为微小常量;mi(t)为微粒i的质量,mj(t)为微粒j的质量;Rij(t)为t时刻微粒i与微粒j之间的欧氏距离;Xi(t)为t时刻微粒i在引力场的位置,Xj(t)为t时刻微粒j在引力场的位置;H(t)为修正量,H0为初始修正量;Tmax为最大迭代次数,
Figure FDA0003965934300000023
为t时刻微粒j的d维坐标,
Figure FDA0003965934300000024
为t时刻微粒i的d维坐标;e为自然常数;
微粒i的质量由以下公式计算得到:
Figure FDA0003965934300000025
其中,gi(t)为t时刻微粒i的适应度;gb为t时刻微粒群中微粒适应度的最佳值,gw为t时刻微粒群中微粒适应度的最劣值;
计及引力场中的所有微粒,t时刻微粒i受到的来自所有微粒的引力Fi (d)(t)为:
Figure FDA0003965934300000026
根据公式(5)和公式(6)进一步求解得到微粒i在t时刻d维的加速度ai (d)(t):
Figure FDA0003965934300000027
计及引力场中其他微粒对微粒i的引力作用,微粒i在t+1时刻的速度为:
Figure FDA0003965934300000028
式中,Vi (d)(t+1)为微粒i在t+1时刻第d维的速度;ω为上一时间段的速度权重;Vi (d)(t)为微粒i在t时刻第d维的速度;r1和r2为加速度系数;c1和c2为随机数;ai (d)(t)为微粒i在t时刻d维的加速度;Pgd(t)为微粒i在t时刻第d维的全局极值;Xid(t)为微粒i在t时刻第d维的位置坐标;
速度权重ω的计算公式为:
Figure FDA0003965934300000029
式中,ωmax为速度权重上限,ωmin为速度权重下限,gi(t)为t时刻微粒i的适应度;gb为t时刻微粒群中微粒适应度的最佳值,gw为t时刻微粒群中微粒适应度的最劣值;
更新微粒i在d维的位置坐标:
Figure FDA0003965934300000031
式中,
Figure FDA0003965934300000032
为约束系数;Vi (d)(t+1)为微粒i在t+1时刻第d维的速度,Xid(t)为更新前的位置坐标,Xid(t+1)为更新后的位置坐标;
当微粒引力场算法达到稳定时得到经济性最优情况下的需要参加调频的储能单元及该储能单元的有功出力Pi
4.一种多时间尺度储能电站调频控制系统,其特征在于,所述系统实现多时间尺度储能电站调频控制方法,所述系统包括:调度中心、远程测控单元、储能电站EMS系统、储能协调控制器和储能单元;
所述储能协调控制器实时监测受端电网的频率波动,采集受端电网的频率值与标准频率的频率偏差Δf,判断频率偏差的绝对值|Δf|是否超过阈值,若频率偏差的绝对值|Δf|超过阈值,则所述储能协调控制器向储能单元发送控制指令,启动一次调频,控制储能单元在一次调频稳定时间内输出稳定功率;所述储能协调控制器在二次调频时接收AGC指令并下达控制指令到每个储能单元;
所述储能电站EMS系统将储能变流器的效率、储能单元的运行成本、储能单元的寿命折损和储能单元的定期检修成本传送给调度中心;储能电站EMS系统向远程测控单元提供AGC指令的投入状态和储能单元的有功出力数据;
所述调度中心在一次调频未取得理想效果时启动二次调频,根据计算结果向远程测控单元发送调频指令;
所述远程测控单元向储能协调控制器发送AGC指令,使储能协调控制器控制储能单元在二次调频稳定时间内输出稳定功率。
5.根据权利要求4所述的多时间尺度储能电站调频控制系统,其特征在于:所述储能单元包括电池管理系统、电池组和储能变流器;
所述电池管理系统监测电池组的状态,将电池信息传送至储能协调控制器;所述储能变流器接收储能协调控制器发送的控制指令后向电网输送交流功率。
6.根据权利要求4所述的多时间尺度储能电站调频控制系统,其特征在于,所述调度中心在一次调频未取得理想效果时启动二次调频,根据计算结果向远程测控单元发送调频指令具体为:
所述调度中心根据储能电站EMS系统提供的储能变流器的效率、储能单元的运行成本、储能单元的寿命折损和储能单元的定期检修成本构建储能电站经济调度目标函数,运用微粒引力场算法求解储能电站经济调度目标函数,得到需要参加调频的储能单元及参加调频的储能单元的有功出力Pi;根据计算结果整合AGC指令并传送至储能协调控制器。
CN202211498469.3A 2022-11-28 2022-11-28 一种多时间尺度储能电站调频控制方法和系统 Pending CN115967105A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211498469.3A CN115967105A (zh) 2022-11-28 2022-11-28 一种多时间尺度储能电站调频控制方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211498469.3A CN115967105A (zh) 2022-11-28 2022-11-28 一种多时间尺度储能电站调频控制方法和系统

Publications (1)

Publication Number Publication Date
CN115967105A true CN115967105A (zh) 2023-04-14

Family

ID=87358865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211498469.3A Pending CN115967105A (zh) 2022-11-28 2022-11-28 一种多时间尺度储能电站调频控制方法和系统

Country Status (1)

Country Link
CN (1) CN115967105A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117713143A (zh) * 2024-02-06 2024-03-15 西安热工研究院有限公司 一种新型的火电耦合储能多时间尺度协调控制方法和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117713143A (zh) * 2024-02-06 2024-03-15 西安热工研究院有限公司 一种新型的火电耦合储能多时间尺度协调控制方法和系统
CN117713143B (zh) * 2024-02-06 2024-04-30 西安热工研究院有限公司 一种火电耦合储能多时间尺度协调控制方法和系统

Similar Documents

Publication Publication Date Title
CN109301849B (zh) 一种用户侧电池储能电站的能量管理组合控制策略
CN110768273B (zh) 一种储能联合火电参与电网二次调频的控制方法
CN110854927B (zh) 一种孤岛型微电网分布式协同控制方法
CN109742812A (zh) 一种提高新能源消纳的源-荷-储协调调度方法
CN109888796A (zh) 一种用于电网一次调频的电池储能电站控制方法和系统
CN111555366B (zh) 一种基于多时间尺度的微网三层能量优化管理方法
CN112260324A (zh) 利用储能消弭新能源并网风险的调频方法
CN112838603B (zh) 一种风光储抽多源能源agc协调互补控制方法和装置
CN110112783A (zh) 光伏蓄电池微电网调度控制方法
CN111384719A (zh) 一种光伏并网时的分布式储能电站削峰填谷优化调度方法
US20170317521A1 (en) Methods for operating a separate power supply system
CN114039386A (zh) 一种储能和风电联合一次调频优化控制方法
CN112202187B (zh) 一种储能辅助火电机组调频中储能出力确定的方法
CN110165665A (zh) 一种基于改进多目标粒子群算法的源-荷-储调度方法
CN113949055A (zh) 一种基于数字储能的直流微电网系统的控制方法
KR102378905B1 (ko) 에너지 저장 시스템
CN109193728B (zh) 一种储能系统主动调频闭环控制方法
CN115967105A (zh) 一种多时间尺度储能电站调频控制方法和系统
CN110048459A (zh) 一种基于弃风利用的塔筒电梯储能系统优化配置方法
CN113722903A (zh) 一种全可再生能源送端系统光热发电容量配置方法
CN113541177B (zh) 电网侧电化学储能单元及电站agc控制方法
CN117318251B (zh) 一种储能系统
CN114336775A (zh) 一种包含分布式能源接入的配电网调度控制系统及方法
CN112865139A (zh) 储能电站安全参与电网一次调频的优化控制策略
CN110429626B (zh) 一种适用于并网型储能系统的能量管理系统及管理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination