CN115965843B - 一种可见光和红外图像融合方法 - Google Patents

一种可见光和红外图像融合方法 Download PDF

Info

Publication number
CN115965843B
CN115965843B CN202310007084.0A CN202310007084A CN115965843B CN 115965843 B CN115965843 B CN 115965843B CN 202310007084 A CN202310007084 A CN 202310007084A CN 115965843 B CN115965843 B CN 115965843B
Authority
CN
China
Prior art keywords
visible light
feature point
ivr
image
identification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310007084.0A
Other languages
English (en)
Other versions
CN115965843A (zh
Inventor
崔德琪
王岩
刘仙伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha Guanpu Infrared Technology Co ltd
Original Assignee
Changsha Guanpu Infrared Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha Guanpu Infrared Technology Co ltd filed Critical Changsha Guanpu Infrared Technology Co ltd
Priority to CN202310007084.0A priority Critical patent/CN115965843B/zh
Publication of CN115965843A publication Critical patent/CN115965843A/zh
Application granted granted Critical
Publication of CN115965843B publication Critical patent/CN115965843B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供了一种可见光和红外图像融合方法,包括:获取目标对象的可见光图像和红外图像;基于n个设定区域,分别在所述可见光图像和所述红外图像中识别所述n个设定区域,得到可见光识别区域组GV和红外设定识别组GR;对GV和GR中任一区域的特征点进行识别,得到对应的特征点标识组;如果GV和GR中任一区域的特征点标识中相同的特征点标识数量大于设定数量阈值,则获取刚性变换矩阵;基于所述刚性变换矩阵,将所述红外图像中各像素点映射到所述可见光图像中。本发明能够提高图像融合的准确性。

Description

一种可见光和红外图像融合方法
技术领域
本发明涉及图像处理领域,特别是涉及一种可见光和红外图像融合方法。
背景技术
目前,在人脸识别领域,通常需要同时利用可见光相机和红外相机同时获取同一目标的图像信息,以通过对两种不同的图像进行融合,提高目标检测率及识别率。在现有的图像融合方案中,需要在可见光图像和红外图像中都识别到所有设定特征点时,才基于识别的设定特征点获取对应的刚性映射矩阵,然后基于获取的刚性映射矩阵对可见光图像和红外图像进行融合。然而,由于可见光拍摄装置和红外拍摄装置的特点,可能存在可见光和/或红外光不能全部识别到所有设定特征点的情况,只能识别设定数量的设定特征点,因此,如何基于识别的设定数量的设定特征点获取对应的刚性映射矩阵是值得研究的课题。
发明内容
针对上述技术问题,本发明采用的技术方案为:
本发明实施例提供一种可见光和红外图像融合方法,所述方法包括如下步骤:
S100,获取目标对象的可见光图像和红外图像。
S200,基于n个设定区域,分别在所述可见光图像和所述红外图像中识别所述n个设定区域,得到可见光识别区域组GV=(GV1,GV2,…,GVi,…,GVn)和红外设定识别组GR=(GR1,GR2,…,GRi,…,GRn),GVi为在所述可见光图像中识别到的第i个设定区域的标识,GRi为在所述红外图像中识别到的第i个设定区域的标识,i的取值为1到n。
S300,对GVi中的特征点进行识别,得到对应的特征点标识组KGVi={KGVi1,KGVi2,…,KGVij,…,KGViυ(i)};其中,KGVij为在GVi中识别到的第j个特征点的标识,KGVij∈{Ki1,Ki2,…,Kiz,…,Kif(i)}j的取值为1到υ(i),υ(i)为在GVi中识别到的特征点数量;其中,Kiz为设定的n个设定区域中的第i个设定区域中的第z个特征点对应的标识,z的取值为1到f(i),f(i)为设定的n个设定区域中的第i个设定区域中的特征点数量;Kiz对应的特征点被设置为均适合被可见光和红外光识别到。
S400,对GRi中的特征点进行识别,得到对应的特征点标识组KGRi={KGRi1,KGRi2,…,KGRir,…,KGRiγ(i)};其中,KGRir为在GRi中识别到的第r个特征点的标识,KGVir∈{Ki1,Ki2,…,Kiz,…,Kif(i),}r的取值为1到γ(i),γ(i)为在GRi中识别到的特征点数量。
S500,获取特征点标识交集组IVRS={IVR1,IVR2,…,IVRi,…,IVRn},其中,第i个元素表示的特征点标识交集IVRi=KGVi∩KGRi,如果IVRi中的特征点标识数量大于设定数量阈值D,执行S600。
S600,基于IVRA对应的特征点中的全部特征点或者部分特征点的坐标获取可见光图像对应的坐标系和红外图像对应的坐标系之间的刚性变换矩阵;IVRA=IVR1∪IVR2∪…∪IVRi∪…∪IVRn
S700,基于所述刚性变换矩阵,将所述红外图像中各像素点映射到所述可见光图像中。
本发明至少具有以下有益效果:
本发明实施例提供的可见光和红外图像融合方法,由于在可见光图像和红外图像中的识别到的属于各个设定区域的特征点数量均大于设定数量阈值时,才做刚性映射矩阵,从而能够使得用于做刚性映射矩阵的特征点在整个图像中是均匀分布的,进而使得图像融合更加准确。此外,相对于现有的需要识别所有的特征点的融合方案,能够节约计算时间。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的可见光和红外图像融合方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例提供的可见光和红外图像融合方法的流程图。
本发明实施例提供一种可见光和红外图像融合方法,如图1所示,所述方法可包括如下步骤:
S100,获取目标对象的可见光图像和红外图像。
在本发明实施例中,目标对象可为人。可通过现有的可见光相机和红外相机对目标对象进行拍摄,得到对应的可见光图像和红外图像。
在一个示意性实施例中,图像可为目标对象的脸部图像。在另一个示意性实施例中,图像可为目标对象的整个身体的图像。优选,为目标对象的整个身体的图像。
在本发明实施例中,红外图像可为经过预处理例如经过降噪、图像增强等处理后的图像。
S200,基于n个设定区域,分别在所述可见光图像和所述红外图像中识别所述n个设定区域,得到可见光识别区域组GV=(GV1,GV2,…,GVi,…,GVn)和红外设定识别组GR=(GR1,GR2,…,GRi,…,GRn),GVi为在所述可见光图像中识别到的第i个设定区域的标识,GRi为在所述红外图像中识别到的第i个设定区域的标识,i的取值为1到n。
在本发明实施例中,设定区域的划分可基于实际需要进行设置。相邻两个设定区域的中心之间的距离可大于设定阈值。设定阈值可为用户自定义或者经验值,只要能够使得设定区域内的特征点能够区分开即可。在图像为脸部的情况下,设定区域可为整个脸部。在图像为整个身体的情况下,设定区域可包括头部、上肢、躯干、下肢等区域。n个设定区域中的特征点可至少包括穴位。每个设定区域内的特征点可基于实际情况进行设置,例如,头部中的特征点可包括眉毛、眼睛、嘴巴、鼻子、耳朵、下巴等特征点,躯干中的特征点可包括穴位,上肢和下肢中的特征点可包括关节等。在本发明实施例中,设定区域的标识可为设定区域的名称或者为能够知晓该区域在图像中的位置的任何标识。
在本发明实施例中,设定区域可基于经训练的图像识别模型获取。经训练的图像识别模型可为神经网络模型,具体为深度神经网络模型。
S300,对GVi中的特征点进行识别,得到对应的特征点标识组KGVi={KGVi1,KGVi2,…,KGVij,…,KGViυ(i)};其中,KGVij为在GVi中识别到的第j个特征点的标识,KGVij∈{Ki1,Ki2,…,Kiz,…,Kif(i)},j的取值为1到υ(i),υ(i)为在GVi中识别到的特征点数量;其中,Kiz为设定的n个设定区域中的第i个设定区域中的第z个特征点对应的标识,z的取值为1到f(i),f(i)为设定的n个设定区域中的第i个设定区域中的特征点数量;Kiz对应的特征点被设置为均适合被可见光和红外光识别到。
在本发明实施例中,可基于经训练的图像识别模型获取可见光图像中的特征点。在本发明实施例中,特征点的标识可为特征点的名称或者为能够知晓该特征点在图像中的位置的任何标识。在一个示意性实施例中,第z个特征点对应的标识包括第z个特征点对应的标签名、几何信息、相邻区域像素特征中的一个或多个。
具体地,在S300中,对GVi中的特征点进行识别可包括以下步骤:
S301,将所述可见光图像输入到经训练后的图像识别模型中进行识别,得到对应的T个可见光图像特征点识别信息表,其中,第b个可见光图像特征点识别信息表中的第u行包括(Gu,Pbu),Gu为所述可见光图像中的第u个像素点,Pbu为所述可见光图像中的第u个像素点属于n个设定区域中的第b个特征点的概率,u的取值为1到M1,M1为所述可见光图像中的像素点数量,b的取值为1到T,T为n个设定区域中的特征点数量,T=f(1)+f(2)++…+f(i)+…+f(n)。
S302,遍历T个可见光图像特征点识别信息表,对于第b个可见光图像特征点识别信息表,如果PA b1>K2,则将PA b1对应的像素点作为n个设定区域中的第b个特征点;如果K1≤PA b1≤K2,执行S303;K1为第一设定阈值,K2为第二设定阈值;PA b1为将第b个特征点对应的概率集{Pb1,Pb2,…,Pbu,…,PbM1}按照降序排列后得到的概率集中PA b={PA b1,PA b2,…,PA bw,…,PA bM1}的第1个概率,PA bw为PA b中的第w个概率,w的取值为1到M1。
在该步骤中,K1和K2可基于实际情况进行设置,在一个示例中,K1可为0.7,K2可为0.8。
本领域技术人员知晓,如果PA b1<K1,则表示没有在可见光图像中识别到n个设定区域中的第b个特征点。
S303,如果PA b中的前Y1个概率对应的像素点满足[(xb1-xbq1)2+(yb1-ybq1)2]1/2≤D0,则将(xbc,ybc)作为n个设定区域中的第b个特征点的坐标;其中,xb1和yb1分别为PA b1对应的像素点的横坐标和纵坐标, PA bq1为PA b中满足[(xb1-xbq1)2+(yb1-ybq1)2]1/2≤D0的前Y1个概率中的第q1个概率,PSb=(PA b1+PA b2+…+PA bq1+…+PA bY1),xbq1和ybq1分别为PA bq1对应的像素点的横坐标和纵坐标;D0为设定距离阈值,Y1<M1。
在本发明一个优选实施例中,xbc=xb1*PA b1/(PA b1+PA b2)+xb2*PA b2/(PA b1+PA b2),ybc=yb1*PA b1/(PA b1+PA b2)+yb2*PA b2/(PA b1+PA b2),xb2和yb2分别为PA b2对应的像素点的横坐标和纵坐标。
在本发明实施例中,D0被设置为两个像素点容易混淆的值,可为用户自定义值或者经验值,例如,D0大于2个像素,但小于3个像素。
S303的技术效果在于,如果可见光图像中的所有像素点为某个特征点的最大概率小于K2但大于K1,并且所有像素点为某个特征点的第1大概率对应的像素点和第2大至第Y1大概率对应的像素点中的每个像素点之间的距离小于D0,则说明该特征点是容易混淆的像素点,则需要对该特征点的坐标进行修正,以使得用于刚性映射矩阵的特征点的坐标更加准确。
S400,对GRi中的特征点进行识别,得到对应的特征点标识组KGRi={KGRi1,KGRi2,…,KGRir,…,KGRiγ(i)};其中,KGRir为在GRi中识别到的第r个特征点的标识,KGVir∈{Ki1,Ki2,…,Kiz,…,Kif(i)},r的取值为1到γ(i),γ(i)为在GRi中识别到的特征点数量。
在本发明实施例中,可基于经训练的图像识别模型获取红外图像中的特征点。
具体地,在S400中,对GRi中的特征点进行识别可包括以下步骤:
S401,将所述红外图像输入到经训练后的图像识别模型中进行识别,得到对应的T个红外图像特征点识别信息表,其中,第d个红外图像特征点识别信息表中的第v行包括(Gv,Pdv),Gv为所述红外图像中的第v个像素点,Pdv为所述红外图像中的第v个像素点属于n个设定区域中的第d个特征点的概率,v的取值为1到M2,M2为所述红外图像中的像素点数量,d的取值为1到T。
S402,遍历T个可见光图像特征点识别信息表,对于第d个红外图像特征点识别信息表,如果PA d1>K2,则将PA d1对应的像素点作为n个设定区域中的第d个特征点;如果K1≤PA d1≤K2,执行S403;K1为第一设定阈值,K2为第二设定阈值;PA d1为将第d个特征点对应的概率集{Pd1,Pd2,…,Pdv,…,PdM2}按照降序排列后得到的概率集中PA d={PA d1,PA d2,…,PA dg,…,PA dM2}的第1个概率,PA dg为PA d中的第g个概率,g的取值为1到M2。
本领域技术人员知晓,如果PA d1<K1,则表示没有在红外图像中识别到n个设定区域中的第b个特征点。
S403,如果PA d中的前Y2个概率对应的像素点满足[(xd1-xdq2)2+(yd1-ydq2)2]1/2≤D0,则将(xdc,ydc)作为n个设定区域中的第d个特征点的坐标;其中,xd1和yd1分别为PA d1对应的像素点的横坐标和纵坐标, PA dq2为PA d中满足[(xd1-xdq2)2+(yd1-ydq2)2]1/2≤D0的前Y2个概率中的第q2个概率,PSd=(PA d1+PA d2+…+PA dq2+…+PA dY2),xdq2和ydq2分别为,PA dq2对应的像素点的横坐标和纵坐标;D0为设定距离阈值,Y2<M2。
在本发明一个优选实施例中,在本发明一个优选实施例中,xdc=xd1*PA d1/(PA d1+PA b2)+xd2*PA b2/(PA d1+PA b2),ydc=yd1*PA d1/(PA d1+PA b2)+yd2*PA b2/(PA d1+PA b2),xd2和yd2分别为PA d2对应的像素点的横坐标和纵坐标。
S403的技术效果在于,如果红外图像中的所有像素点为某个特征点的最大概率小于K2但大于K1,并且所有像素点为某个特征点的第1大概率对应的像素点和第2大至第Y1大概率对应的像素点中的每个像素点之间的距离小于D0,则说明该特征点是容易混淆的像素点,则需要对该特征点的坐标进行修正,以使得用于刚性映射矩阵的特征点的坐标更加准确。
S500,获取特征点标识交集组IVRS={IVR1,IVR2,…,IVRi,…,IVRn},其中,第i个元素表示的特征点标识交集IVRi=KGVi∩KGRi,如果IVRi中的特征点标识数量大于设定数量阈值D,即可见光图像和红外图像中的每个设定区域内的相同特征点标识数量均大于D,执行S600。
在本发明实施例中,D≥3。优选,D的取值为4至6。
本领域技术人员知晓,如果IVRi中的特征点标识数量小于设定数量阈值D,即可见光图像和红外图像中存在相同特征点标识数量小于D的设定区域,则说明当前的可见光图像和红外图像无法准确进行匹配,则需要重新获取目标对象的可见光图像和红外图像。
S600,基于IVRA对应的特征点中的全部特征点或者部分特征点的坐标获取可见光图像对应的坐标系和红外图像对应的坐标系之间的刚性变换矩阵;IVRA=IVR1∪IVR2∪…∪IVRi∪…∪IVRn
在一个示意性实施例中,基于IVRA对应的特征点中的全部特征点的坐标获取可见光图像对应的坐标系和红外图像对应的坐标系之间的刚性变换矩阵。
在另一个示意性实施例中,基于IVRA对应的特征点中的部分特征点的坐标获取可见光图像对应的坐标系和红外图像对应的坐标系之间的刚性变换矩阵,具体可包括:
S601,获取第i个设定区域对应的最大位置差值maxdi=max{di1,di2,…,diw,…,dig(i)},diw为IVRi中的第w个特征点标识对应的特征点分别在可见光图像和红外图像中的坐标之间的坐标差值,w的取值为1到g(i),g(i)为IVRi中的特征点标识数量。
在本发明实施例中,diw=(x1iw-x2iw)2+(y1iw-y2iw)2,x1iw和y1iw分别为IVRi中的第w个特征点标识对应的特征点在可见光图像中的横坐标和纵坐标,x2iw和y2iw分别为IVRi中的第w个特征点标识对应的特征点在红外图像中的横坐标和纵坐标。
S602,将maxd1,maxd2,…,maxdi,…,maxdn按照位置差值由小到大的顺序进行排序,得到排序后的序列,并获取排序后的序列中的前X个坐标差值对应的特征点标识交集的并集作为目标特征点标识集,X<n。
在一个示意性实施例中,如果排序后的序列中的第e个元素小于设定值但是第e+1个元素大于设定值,则第e个元素在序列中的位置序号为X。在一个示意性实施例中,设定值可等于(max1d1+max1dn)/2,max1d1和max1dn分别为排序后的序列中的第一个和最后一个元素。在另一个示意性实施例中,X=[n*k1],k1为设定系数,0<k1≤1,例如k1可为自定义值,只要能够排除掉干扰噪声即可,例如可为0.85~0.95。
S603,根据所述目标特征点标识集对应的特征点的坐标获取可见光图像对应的坐标系和红外图像对应的坐标系之间的刚性变换矩阵。
本领域技术人员知晓,任何基于目标特征点标识交集对应的特征点的坐标获取可见光图像对应的坐标系和红外图像对应的坐标系之间的刚性变换矩阵的方法均属于本发明的保护范围。
S601~S603的技术效果在于,能够将特征点位置之间的差值大的区域剔除,削减镜头畸变或噪声对特征点检测识别的影响,只选择特征点位置之间的差值小的多个区域用作刚性变换矩阵,与直接利用所有区域对应的共同特征点的坐标即IVRA对应的特征点的坐标获取可见光图像对应的坐标系和红外图像对应的坐标系之间的刚性变换矩阵相比,能够进一步提高刚性变换矩阵的准确性。
S700,基于所述刚性变换矩阵,将所述红外图像中各像素点映射到所述可见光图像中。
本领域技术人员知晓,任何基于所述刚性变换矩阵,将所述红外图像中各像素点映射到所述可见光图像中的方法均属于本发明的保护范围。
本发明实施例提供的可见光和红外图像融合方法,由于在可见光图像和红外图像中的识别到的属于各个设定区域的特征点数量均大于设定数量阈值时,才做刚性映射矩阵,从而能够使得用于做刚性映射矩阵的特征点在整个图像中是均匀分布的,进而使得图像融合更加准确。此外,相对于现有的需要识别所有的特征点的融合方案,能够节约计算时间。
进一步地,在本发明实施例中,在S600之后还包括:
S610,将GRi中的任一特征点的温度与对应的设定温度进行比较,如果不一致,则将该特征点作为目标特征点,执行S710。
在本发明实施例中,获取目标特征点的方法可采用现有方式,例如,可基于中医理论。S700被替换为:
S710,基于所述刚性变换矩阵,将红外图像中所有的目标特征点映射到所述可见光图像对应的位置处。
S610和S710的技术效果在于,能够在融合后的图像中更好的定位到目标特征点。
进一步地,在本发明实施例中,S700可具体包括:
基于所述刚性变换矩阵,将所述红外图像中所有像素点进行半透明处理并映射到所述可见光图像对应的位置处。
本领域技术人员知晓,任何将所述红外图像中所有像素点进行半透明处理的方法均属于本发明的保护范围。
本发明实施例中,将红外图像中所有像素点进行半透明处理后再映射到所述可见光图像对应的位置处,能够使得融合图像可视化效果更好。
进一步地,在本发明另一实施例中,S500被替换为:
S510,获取特征点标识交集IVRS={IVR1,IVR2,…,IVRi,…,IVRn},其中,第i个特征点标识交集IVRi=KGVi∩KGRi,如果IVRi中的特征点标识数量大于设定数量阈值D,并且IVRi∩(KCi1,KCi2,…,KCis,…,KCih(i))≥D1,执行S600;KCis为n个设定区域中的第i个设定区域中的第s个关键特征点,h(i)为n个设定区域中的第i个设定区域中的关键特征点数量,h(i)≤f(i),D1为预设数量,可为经验值,例如,优选,0.8≤g≤1,/>表示向上取整。
在本发明实施例中,每个设定区域的关键特征点可基于实际情况进行设置。
S510的技术效果在于,只有在红外图像和可见光图像中的每个设定区域内的相同特征点的数量大于设定数量阈值并且相同特征点和该设定区域对应的关键特征点之间的交集的数量大于预设数量时,才获取刚性映射矩阵,从而能够使得获取的刚性映射矩阵更加准确。
进一步地,在本发明另一实施例中,S500被替换为:
S520,获取特征点标识交集IVRS={IVR1,IVR2,…,IVRi,…,IVRn},其中,第i个特征点标识交集IVRi=KGVi∩KGRi,如果IVRi中的特征点标识数量大于设定数量阈值D,并且IVRi∈(KCi1,KCi2,…,KCis,…,KCih(i)),执行S600;KCis为n个设定区域中的第i个设定区域中的第s个关键特征点,h(i)为n个设定区域中的第i个设定区域中的关键特征点数量,h(i)≤f(i)。
S520的技术效果在于,只有在红外图像和可见光图像中的每个设定区域内的相同特征点的数量大于设定数量阈值并且相同特征点全部属于该设定区域对应的关键特征点时,才获取刚性映射矩阵,与S510相比,能够进一步使得获取的刚性映射矩阵更加准确。
进一步地,本发明实施例提供的方法还可包括:
S800,将所述刚性变换矩阵进行存储,当接收到与所述刚性变换矩阵对应的图像拍摄条件拍摄的新的红外图像和可见光图像时,利用所述刚性变换矩阵将接收到的新的红外图像中各像素点映射到接收到的新的可见光图像中。
在本发明实施例中,通过将刚性变换矩阵进行存储,当下次使用同样的拍摄条件得到的红外图像和可见光图像时,可以直接之前得到的刚性变换矩阵进行变换,能够提高图像匹配效率。
本发明的实施例还提供了一种非瞬时性计算机可读存储介质,该存储介质可设置于电子设备之中以保存至少一条指令或至少一段程序,该至少一条指令或该至少一段程序由处理器加载并执行以实现上述实施例提供的方法。
本发明的实施例还提供了一种电子设备,包括处理器和前述的非瞬时性计算机可读存储介质。
本发明的实施例还提供一种计算机程序产品,其包括程序代码,当所述程序产品在电子设备上运行时,所述程序代码用于使该电子设备执行本说明书上述描述的根据本发明各种示例性实施方式的方法中的步骤。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员还应理解,可以对实施例进行多种修改而不脱离本发明的范围和精神。本发明公开的范围由所附权利要求来限定。

Claims (8)

1.一种可见光和红外图像融合方法,其特征在于,所述方法包括如下步骤:
S100,获取目标对象的可见光图像和红外图像;
S200,基于n个设定区域,分别在所述可见光图像和所述红外图像中识别所述n个设定区域,得到可见光识别区域组GV=(GV1,GV2,…,GVi,…,GVn)和红外设定识别组GR=(GR1,GR2,…,GRi,…,GRn),GVi为在所述可见光图像中识别到的第i个设定区域的标识,GRi为在所述红外图像中识别到的第i个设定区域的标识,i的取值为1到n;
S300,对GVi中的特征点进行识别,得到对应的特征点标识组KGVi={KGVi1,KGVi2,…,KGVij,…,KGViυ(i)};其中,KGVij为在GVi中识别到的第j个特征点的标识,KGVij∈{Ki1,Ki2,…,Kiz,…,Kif(i)},j的取值为1到υ(i),υ(i)为在GVi中识别到的特征点数量;其中,Kiz为设定的n个设定区域中的第i个设定区域中的第z个特征点的标识,z的取值为1到f(i),f(i)为设定的n个设定区域中的第i个设定区域中的特征点数量;Kiz对应的特征点被设置为均适合被可见光和红外光识别到;
S400,对GRi中的特征点进行识别,得到对应的特征点标识组KGRi={KGRi1,KGRi2,…,KGRir,…,KGRiγ(i)};其中,KGRir为在GRi中识别到的第r个特征点的标识,KGRir∈{Ki1,Ki2,…,Kiz,…,Kif(i)},r的取值为1到γ(i),γ(i)为在GRi中识别到的特征点数量;
S500,获取特征点标识交集组IVRS={IVR1,IVR2,…,IVRi,…,IVRn},其中,IVRi为IVRS中的第i个特征点标识交集,IVRi=KGVi∩KGRi,如果IVRi中的特征点标识数量大于设定数量阈值D,执行S600;
S600,基于IVRA对应的特征点中的全部特征点或者部分特征点的坐标获取可见光图像对应的坐标系和红外图像对应的坐标系之间的刚性变换矩阵;其中,IVRA=IVR1∪IVR2∪…∪IVRi∪…∪IVRn
S700,基于所述刚性变换矩阵,将所述红外图像中各像素点映射到所述可见光图像中;
其中,在S300中,对GVi中的特征点进行识别包括以下步骤:
S301,将所述可见光图像输入到经训练后的可见光图像识别模型中进行识别,得到对应的T个可见光图像特征点识别信息表,其中,第b个可见光图像特征点识别信息表中的第u行包括Gu和Pbu,Gu为所述可见光图像中的第u个像素点,Pbu为所述可见光图像中的第u个像素点属于n个设定区域中的第b个特征点的概率,u的取值为1到M1,M1为所述可见光图像中的像素点数量,b的取值为1到T,T为n个设定区域中的特征点的数量,T=f(1)+f(2)+…+f(i)+…+f(n);
S302,遍历T个可见光图像特征点识别信息表,对于第b个可见光图像特征点识别信息表,如果PA b1>K2,则将PA b1对应的像素点作为n个设定区域中的第b个特征点;如果K1≤PA b1≤K2,执行S303;其中,K1为第一设定阈值,K2为第二设定阈值;PA b1为将第b个特征点对应的概率集{Pb1,Pb2,…,Pbu,…,PbM1}按照降序排列后得到的概率集PA b={PA b1,PA b2,…,PA bw,…,PA bM1}中的第1个概率,PA bw为PA b中的第w个概率,w的取值为1到M1;
S303,如果PA b中的前Y1个概率对应的像素点满足[(xb1-xbq1)2+(yb1-ybq1)2]1/2≤D0,则将(xbc,ybc)作为n个设定区域中的第b个特征点的坐标;其中,xb1和yb1分别为PA b1对应的像素点的横坐标和纵坐标,PA bq1为PA b中的前Y1个概率中的第q1个概率,PSb=(PA b1+PA b2+…+PA bq1+…+PA bY1),xbq1和ybq1分别为PA bq1对应的像素点的横坐标和纵坐标;D0为设定距离阈值,Y1<M1;
在S400中,对GRi中的特征点进行识别包括以下步骤:
S401,将所述红外图像输入到经训练后的红外图像识别模型中进行识别,得到对应的T个红外图像特征点识别信息表,其中,第d个红外图像特征点识别信息表中的第v行包括Gv和Pdv,Gv为所述红外图像中的第v个像素点,Pdv为所述红外图像中的第v个像素点属于n个设定区域中的第d个特征点的概率,v的取值为1到M2,M2为所述红外图像中的像素点数量,d的取值为1到T,T为n个设定区域中的特征点的数量,T=f(1)+f(2)+…+f(i)+…+f(n);
S402,遍历T个红外图像特征点识别信息表,对于第d个红外图像特征点识别信息表,如果PA d1>K2,则将PA d1对应的像素点作为n个设定区域中的第d个特征点;如果K1≤PA d1≤K2,执行S403;其中,K1为第一设定阈值,K2为第二设定阈值;PA d1为将第d个特征点对应的概率集{Pd1,Pd2,…,Pdv,…,PdM2}按照降序排列后得到的概率集PA d={PA d1,PA d2,…,PA dg,…,PA dM2}中的第1个概率,PA dg为PA d中的第g个概率,g的取值为1到M2;
S403,如果PA d中的前Y2个概率对应的像素点满足[(xd1-xdq2)2+(yd1-ydq2)2]1/2≤D0,则将(xdc,ydc)作为n个设定区域中的第d个特征点的坐标;其中,xd1和yd1分别为PA d1对应的像素点的横坐标和纵坐标,PA dq2为PA d中的前Y2个概率中的第q2个概率,PSd=(PA d1+PA d2+…+PA dq2+…+PA dY2),xdq2和ydq2分别为PA dq2对应的像素点的横坐标和纵坐标;D0为设定距离阈值,Y2<M2。
2.根据权利要求1所述的方法,其特征在于,
S600具体包括:
S601,获取maxdi=max{di1,di2,…,diw,…,dig(i)},其中,diw为IVRi中的第w个特征点标识对应的特征点分别在可见光图像和红外图像中的坐标之间的坐标差值,w的取值为1到g(i),g(i)为IVRi中的特征点标识数量;
S602,将maxd1,maxd2,…,maxdi,…,maxdn按照坐标差值由小到大的顺序进行排序,得到排序后的序列,并获取排序后的序列中的前X个坐标差值对应的特征点标识交集的并集作为目标特征点标识集,X<n;
S603,根据所述目标特征点标识集对应的特征点的坐标获取可见光图像对应的坐标系和红外图像对应的坐标系之间的刚性变换矩阵。
3.根据权利要求1所述的方法,其特征在于,相邻两个设定区域的中心之间的距离大于设定区域距离阈值。
4.根据权利要求1所述的方法,其特征在于,在S600之后还包括:
S610,将GRi中的任一特征点的温度与对应的设定温度进行比较,如果不一致,则将该特征点作为目标特征点,执行S710,而不执行S700;
S710,基于所述刚性变换矩阵,将红外图像中所有的目标特征点映射到所述可见光图像对应的位置处。
5.根据权利要求1所述的方法,其特征在于,S700具体包括:
基于所述刚性变换矩阵,将所述红外图像中所有像素点进行半透明处理并映射到所述可见光图像对应的位置处。
6.根据权利要求1所述的方法,其特征在于,S500还能通过以下步骤:
S520,获取特征点标识交集组IVRS={IVR1,IVR2,…,IVRi,…,IVRn},其中,IVRi为IVRS中的第i个特征点标识交集,IVRi=KGVi∩KGRi,如果IVRi中的特征点标识数量大于设定数量阈值D,并且执行S600;KCis为n个设定区域中的第i个设定区域中的第s个关键特征点,h(i)为n个设定区域中的第i个设定区域中的关键特征点数量,h(i)≤f(i)。
7.根据权利要求1所述的方法,其特征在于,第z个特征点对应的标识包括第z个特征点对应的标签名、几何信息、相邻区域像素特征中的一个或多个。
8.根据权利要求1所述的方法,其特征在于,所述方法还包括:
S1000,将所述刚性变换矩阵进行存储,当接收到与所述刚性变换矩阵对应的图像拍摄条件拍摄的新的红外图像和可见光图像时,利用所述刚性变换矩阵将接收到的新的红外图像中各像素点映射到接收到的新的可见光图像中。
CN202310007084.0A 2023-01-04 2023-01-04 一种可见光和红外图像融合方法 Active CN115965843B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310007084.0A CN115965843B (zh) 2023-01-04 2023-01-04 一种可见光和红外图像融合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310007084.0A CN115965843B (zh) 2023-01-04 2023-01-04 一种可见光和红外图像融合方法

Publications (2)

Publication Number Publication Date
CN115965843A CN115965843A (zh) 2023-04-14
CN115965843B true CN115965843B (zh) 2023-09-29

Family

ID=87361226

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310007084.0A Active CN115965843B (zh) 2023-01-04 2023-01-04 一种可见光和红外图像融合方法

Country Status (1)

Country Link
CN (1) CN115965843B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117808685B (zh) * 2024-02-29 2024-05-07 广东琴智科技研究院有限公司 一种红外图像数据增强的方法、装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051716B1 (ko) * 2010-11-12 2011-07-26 삼성탈레스 주식회사 다중센서 영상융합 방법
CN107993258A (zh) * 2017-11-23 2018-05-04 浙江大华技术股份有限公司 一种图像配准方法及装置
CN109389630A (zh) * 2018-09-30 2019-02-26 北京精密机电控制设备研究所 可见光图像与红外图像特征点集确定、配准方法及装置
CN110969670A (zh) * 2019-11-22 2020-04-07 大连理工大学 基于显著特征的多光谱相机动态立体标定算法
CN111369605A (zh) * 2020-02-27 2020-07-03 河海大学 一种基于边缘特征的红外与可见光图像的配准方法和系统
CN111667520A (zh) * 2020-06-09 2020-09-15 中国人民解放军63811部队 红外图像和可见光图像的配准方法、装置及可读存储介质
CN111899288A (zh) * 2020-06-01 2020-11-06 上海大学 基于红外和可见光图像融合的隧道渗漏水区域检测与识别方法
CN112418251A (zh) * 2020-12-10 2021-02-26 研祥智能科技股份有限公司 红外体温检测方法及系统
CN112613568A (zh) * 2020-12-29 2021-04-06 清华大学 基于可见光及红外多光谱图像序列的目标识别方法和装置
CN114255197A (zh) * 2021-12-27 2022-03-29 西安交通大学 一种红外与可见光图像自适应融合对齐方法及系统
CN114399450A (zh) * 2021-12-10 2022-04-26 浙江大华技术股份有限公司 图像融合方法、目标特征识别方法、装置和电子设备
CN114612698A (zh) * 2022-02-28 2022-06-10 国网山东省电力公司电力科学研究院 一种基于层级匹配的红外与可见光图像配准方法及系统
CN114972458A (zh) * 2022-05-27 2022-08-30 广东亿嘉和科技有限公司 一种可见光与红外热成像图像配准的方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461168B (zh) * 2018-10-15 2021-03-16 腾讯科技(深圳)有限公司 目标对象的识别方法和装置、存储介质、电子装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051716B1 (ko) * 2010-11-12 2011-07-26 삼성탈레스 주식회사 다중센서 영상융합 방법
CN107993258A (zh) * 2017-11-23 2018-05-04 浙江大华技术股份有限公司 一种图像配准方法及装置
CN109389630A (zh) * 2018-09-30 2019-02-26 北京精密机电控制设备研究所 可见光图像与红外图像特征点集确定、配准方法及装置
CN110969670A (zh) * 2019-11-22 2020-04-07 大连理工大学 基于显著特征的多光谱相机动态立体标定算法
CN111369605A (zh) * 2020-02-27 2020-07-03 河海大学 一种基于边缘特征的红外与可见光图像的配准方法和系统
CN111899288A (zh) * 2020-06-01 2020-11-06 上海大学 基于红外和可见光图像融合的隧道渗漏水区域检测与识别方法
CN111667520A (zh) * 2020-06-09 2020-09-15 中国人民解放军63811部队 红外图像和可见光图像的配准方法、装置及可读存储介质
CN112418251A (zh) * 2020-12-10 2021-02-26 研祥智能科技股份有限公司 红外体温检测方法及系统
CN112613568A (zh) * 2020-12-29 2021-04-06 清华大学 基于可见光及红外多光谱图像序列的目标识别方法和装置
CN114399450A (zh) * 2021-12-10 2022-04-26 浙江大华技术股份有限公司 图像融合方法、目标特征识别方法、装置和电子设备
CN114255197A (zh) * 2021-12-27 2022-03-29 西安交通大学 一种红外与可见光图像自适应融合对齐方法及系统
CN114612698A (zh) * 2022-02-28 2022-06-10 国网山东省电力公司电力科学研究院 一种基于层级匹配的红外与可见光图像配准方法及系统
CN114972458A (zh) * 2022-05-27 2022-08-30 广东亿嘉和科技有限公司 一种可见光与红外热成像图像配准的方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王晗 等.自适应特征点检测的可见―红外图像配准.中国图象图形学报.2017,(第02期),全文. *
胡开群 等.基于Dense SIFT兴趣点提取的红外与可见光融合.光电子・激光.2018,(第08期),全文. *

Also Published As

Publication number Publication date
CN115965843A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
US11961227B2 (en) Method and device for detecting and locating lesion in medical image, equipment and storage medium
US11487995B2 (en) Method and apparatus for determining image quality
CN108197587B (zh) 一种通过人脸深度预测进行多模态人脸识别的方法
CN110427937B (zh) 一种基于深度学习的倾斜车牌矫正和不定长车牌识别方法
CN110837870B (zh) 基于主动学习的声呐图像目标识别方法
US9602783B2 (en) Image recognition method and camera system
US11837017B2 (en) System and method for face recognition based on dynamic updating of facial features
CN108764048A (zh) 人脸关键点检测方法及装置
CN108268838B (zh) 人脸表情识别方法及人脸表情识别系统
CN102592260B (zh) 证照图像裁剪方法及系统
US11194997B1 (en) Method and system for thermal infrared facial recognition
CN115965843B (zh) 一种可见光和红外图像融合方法
CN110909618B (zh) 一种宠物身份的识别方法及装置
TW200422971A (en) Statistical facial feature extraction method
US11004204B2 (en) Segmentation-based damage detection
WO2022179046A1 (zh) 人脸识别方法、装置、计算机设备和存储介质
CN111428552A (zh) 黑眼圈识别方法、装置、计算机设备和存储介质
CN116030519A (zh) 一种直播教学平台的学习注意力检测与评估方法
KR101089847B1 (ko) 얼굴 인식을 위한 sift 알고리즘을 이용한 키포인트 매칭 시스템 및 방법
CN110472605B (zh) 一种基于深度学习人脸分区的皮肤问题分类方法
WO2022042203A1 (zh) 一种人体关键点的检测方法及装置
CN114359963A (zh) 姿态识别方法及通信系统
CN110427804B (zh) 一种基于二次迁移学习的虹膜身份验证方法
US20210334701A1 (en) Machine learning method
CN116798087A (zh) 员工在岗状态检测方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant