CN115948821B - A hollow, porous, multi-layered polyacrylonitrile-based carbon fiber and its preparation method - Google Patents
A hollow, porous, multi-layered polyacrylonitrile-based carbon fiber and its preparation method Download PDFInfo
- Publication number
- CN115948821B CN115948821B CN202310153632.0A CN202310153632A CN115948821B CN 115948821 B CN115948821 B CN 115948821B CN 202310153632 A CN202310153632 A CN 202310153632A CN 115948821 B CN115948821 B CN 115948821B
- Authority
- CN
- China
- Prior art keywords
- porous
- polyacrylonitrile
- hollow
- core
- coaxial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920002239 polyacrylonitrile Polymers 0.000 title claims abstract description 89
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 39
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 39
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 238000002360 preparation method Methods 0.000 title claims description 16
- 239000000835 fiber Substances 0.000 claims abstract description 82
- 238000009987 spinning Methods 0.000 claims abstract description 78
- 238000002166 wet spinning Methods 0.000 claims abstract description 16
- 238000007711 solidification Methods 0.000 claims abstract description 7
- 230000008023 solidification Effects 0.000 claims abstract description 7
- 239000011261 inert gas Substances 0.000 claims abstract description 6
- 238000011282 treatment Methods 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 65
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 40
- 238000005345 coagulation Methods 0.000 claims description 37
- 230000015271 coagulation Effects 0.000 claims description 37
- 239000012792 core layer Substances 0.000 claims description 35
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 31
- 239000007788 liquid Substances 0.000 claims description 30
- 239000007864 aqueous solution Substances 0.000 claims description 23
- 239000008367 deionised water Substances 0.000 claims description 22
- 229910021641 deionized water Inorganic materials 0.000 claims description 22
- 238000003756 stirring Methods 0.000 claims description 18
- 239000000843 powder Substances 0.000 claims description 16
- 239000007787 solid Substances 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 238000009210 therapy by ultrasound Methods 0.000 claims description 13
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 11
- 239000001110 calcium chloride Substances 0.000 claims description 11
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 11
- 239000011149 active material Substances 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 238000006136 alcoholysis reaction Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 3
- -1 polypropylene Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- 150000002825 nitriles Chemical class 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims description 2
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 claims 3
- 230000001054 cortical effect Effects 0.000 claims 1
- 150000003457 sulfones Chemical class 0.000 claims 1
- 239000002904 solvent Substances 0.000 abstract description 15
- 238000005191 phase separation Methods 0.000 abstract description 13
- 238000001035 drying Methods 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 37
- 239000011148 porous material Substances 0.000 description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 14
- 239000006185 dispersion Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000007872 degassing Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 239000004594 Masterbatch (MB) Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000007493 shaping process Methods 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 239000005457 ice water Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 239000012510 hollow fiber Substances 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000003763 carbonization Methods 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 239000003361 porogen Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000002149 hierarchical pore Substances 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
Abstract
Description
技术领域Technical field
本发明涉及多孔碳纤维制备技术领域,尤其是涉及一种中空、多孔、多层级聚丙烯腈基碳纤维及其制备方法。The present invention relates to the technical field of porous carbon fiber preparation, and in particular to a hollow, porous, multi-layered polyacrylonitrile-based carbon fiber and a preparation method thereof.
背景技术Background technique
多孔纤维具有比表面积大、吸附性强、孔隙率高等诸多优点,被广泛运用于吸附、催化、过滤、电、热储能材料等领域的材料。Porous fibers have many advantages such as large specific surface area, strong adsorption, and high porosity. They are widely used in adsorption, catalysis, filtration, electricity, thermal energy storage materials and other fields.
目前制备多孔纤维较常见的方法包括活化法、模板法和相分离法。活化法指通过氧化性气体或者化学试剂对已成形的碳纤维材料进行刻蚀从而引入孔隙结构的方法,具体包括物理活化和化学活化两种方法。其中物理活化需在高温条件下进行,能耗较高,而化学刻蚀法则对反应温度及氧化剂反应物用量要求苛刻,条件控制不当易对纤维强力造成明显损伤,且两种方法的共同缺点是所获得的孔隙结构多为微/介孔结构,介孔尺寸分布较窄,不利于进行快速的物质传输。模板法是指在成纤聚合物中通过添加可分解型微纳粒子,并配合后道如酸解或高温处理等处理工序获得多孔结构的方法。模板法致孔效果与微纳尺度致孔剂在纤维基体中的分散情况紧密相关,也存在孔眼结构可控性较差,较难实现分级孔隙结构等问题。相分离法则是指在湿法纺丝原液细流在凝固浴中发生溶剂-非溶剂传质固化成形的过程中,通过非溶剂致相分离原理,在纺丝原液细流中形成聚合物富相和聚合物贫相,固化干燥后聚合物富相形成纤维骨架,而聚合物贫相则形成纤维中的孔隙结构,通过改变聚合物固含量、凝固浴中非溶剂的种类,以及溶剂-非溶剂传质速度等因素,可以控制相分离速度,从而起到调控纤维孔隙结构及其尺寸层级分布的效果。因而,该方法的特点是纤维多孔结构是在初生丝固化成形过程中即已形成,制备工艺相对简单易行,成本偏低。理论上,该方法制备的多孔纤维,孔隙结构具有更好的可设计性、可控性也相对更好,但目前使用该方法制得多孔纤维的结构相对单一。通过调控工艺参数,进一步丰富多孔碳纤维的孔隙层次结构,有利于进一步增加多孔碳纤维的比表面积,从而提升多孔碳纤维材料在吸附过滤、保暖隔热以及电化学储能等领域的应用效能。Currently, the more common methods for preparing porous fibers include activation method, template method and phase separation method. The activation method refers to the method of etching the formed carbon fiber material through oxidizing gas or chemical reagents to introduce the pore structure. It specifically includes two methods: physical activation and chemical activation. Among them, physical activation needs to be carried out under high temperature conditions, which consumes high energy, while chemical etching rules have strict requirements on reaction temperature and the amount of oxidant reactants. Improper control of conditions can easily cause significant damage to fiber strength, and the common disadvantages of both methods are The obtained pore structures are mostly micro/mesoporous structures with narrow mesopore size distribution, which is not conducive to rapid material transport. The template method refers to a method of obtaining a porous structure by adding decomposable micro-nano particles to fiber-forming polymers and coordinating subsequent processing steps such as acid hydrolysis or high-temperature treatment. The porogenic effect of the template method is closely related to the dispersion of micro-nano-scale porogens in the fiber matrix. There are also problems such as poor controllability of the pore structure and difficulty in achieving hierarchical pore structures. The phase separation law refers to the process of solvent-non-solvent mass transfer and solidification in the coagulation bath of the thin stream of wet spinning dope. Through the principle of phase separation caused by non-solvent, a polymer-rich phase is formed in the thin stream of spinning dope. and polymer-poor phase. After curing and drying, the polymer-rich phase forms the fiber skeleton, while the polymer-poor phase forms the pore structure in the fiber. By changing the polymer solid content, the type of non-solvent in the coagulation bath, and the solvent-nonsolvent Factors such as mass transfer speed can control the phase separation speed, thereby regulating the fiber pore structure and its size distribution. Therefore, the characteristic of this method is that the fiber porous structure is formed during the solidification and forming process of the virgin silk, and the preparation process is relatively simple and easy to implement, and the cost is relatively low. Theoretically, the pore structure of porous fibers prepared by this method has better designability and controllability. However, the structure of porous fibers currently prepared by this method is relatively simple. By adjusting process parameters, further enriching the pore hierarchical structure of porous carbon fibers will help further increase the specific surface area of porous carbon fibers, thereby improving the application performance of porous carbon fiber materials in adsorption filtration, thermal insulation, electrochemical energy storage and other fields.
发明内容Contents of the invention
针对现有技术存在的上述问题,本发明提供了一种中空、多孔、多层级聚丙烯腈基碳纤维及其制备方法。本发明采用湿法同轴纺丝成型方法,利用非溶剂致相分离原理,制备中空、多孔纤维;同时,利用在皮-芯双侧同时发生相分离固化,实现形成纤维骨架横截面呈现异构多层级的特征。In view of the above problems existing in the prior art, the present invention provides a hollow, porous, multi-layered polyacrylonitrile-based carbon fiber and a preparation method thereof. The present invention adopts a wet coaxial spinning forming method and utilizes the principle of phase separation induced by non-solvent to prepare hollow and porous fibers. At the same time, phase separation and solidification occur simultaneously on both sides of the sheath and core to form a fiber skeleton with a heterogeneous cross-section. Multi-level features.
本发明的技术方案如下:The technical solution of the present invention is as follows:
本发明的第一个目的是提供一种中空、多孔、多层级聚丙烯腈基碳纤维,其制备方法包括如下具体步骤:The first object of the present invention is to provide a hollow, porous, multi-layered polyacrylonitrile-based carbon fiber, and its preparation method includes the following specific steps:
(1)皮层/芯层纺丝液通过同轴/皮芯湿法纺丝形成皮芯结构丝条;(1) The skin/core layer spinning liquid forms a skin-core structure filament through coaxial/skin-core wet spinning;
(2)将步骤(1)制得的皮芯结构丝条置于30~80℃烘箱中干燥处理180~400min,获得多孔同轴初生纤维;(2) Dry the sheath-core structural filament obtained in step (1) in an oven at 30-80°C for 180-400 minutes to obtain porous coaxial primary fibers;
(3)将步骤(2)制得的多孔同轴初生纤维进行预氧化处理,以2℃/min速率升温至200~250℃,保持60~180min;(3) Pre-oxidize the porous coaxial nascent fiber prepared in step (2), raise the temperature to 200-250°C at a rate of 2°C/min, and maintain it for 60-180 minutes;
(4)将步骤(4)预氧化纤维在惰性气体(氮气或者氩气)保护下以4℃/min速率升温至700~900℃,保持60~180min,即得中空、多孔、多层级聚丙烯腈基碳纤维。(4) Heat the pre-oxidized fiber in step (4) to 700-900°C at a rate of 4°C/min under the protection of inert gas (nitrogen or argon), and keep it for 60-180 minutes to obtain hollow, porous, multi-layered polypropylene Nitrile based carbon fiber.
在本发明的一个实施例中,步骤(1)中,所述皮层纺丝液的原料组成包括聚丙烯腈粉末和二甲亚砜;In one embodiment of the present invention, in step (1), the raw material composition of the skin spinning solution includes polyacrylonitrile powder and dimethyl sulfoxide;
优选地,所述皮层纺丝液的原料组成包括功能导电活性材料,所述功能导电活性材料为氧化石墨烯、碳纳米管、Mxene中的一种或多种。Preferably, the raw material composition of the skin spinning solution includes a functional conductive active material, and the functional conductive active material is one or more of graphene oxide, carbon nanotubes, and Mxene.
Mxene是二维片层状纳米过渡金属/氮/碳化物,目前研究和应用比较成熟的是TiC系列的Mxene,选用的400目的Ti3AlC2的MAX相为原料。Mxene is a two-dimensional layered nano-transition metal/nitrogen/carbide. Currently, the most mature research and application is the TiC series of Mxene, which uses the MAX phase of 400 mesh Ti 3 AlC 2 as the raw material.
经过盐酸+氟化锂刻蚀可得到单片层Ti3C2。After hydrochloric acid + lithium fluoride etching, a single layer of Ti 3 C 2 can be obtained.
在本发明的一个实施例中,所述聚丙烯腈粉末的分子量为5000~150000,皮层纺丝液中聚丙烯腈与功能导电活性材料的总固含量为120~180mg/mL;皮层纺丝液中功能导电活性材料为聚丙烯腈质量的0.5~50%。In one embodiment of the invention, the molecular weight of the polyacrylonitrile powder is 5,000 to 150,000, and the total solid content of polyacrylonitrile and functional conductive active materials in the cortex spinning liquid is 120 to 180 mg/mL; the cortex spinning liquid The medium-functional conductive active material is 0.5 to 50% of the mass of polyacrylonitrile.
在本发明的一个实施例中,所述皮层纺丝液的制备方法为:将聚丙烯腈粉末加入二甲亚砜中,在65℃水浴条件下搅拌2~5小时,直至搅拌分散均匀形成均质皮层纺丝液;或者将功能导电活性材料、聚丙烯腈粉末加入二甲亚砜中,在65℃水浴条件下搅拌2~5小时,直至搅拌分散均匀形成均质皮层纺丝液。In one embodiment of the present invention, the preparation method of the cortex spinning liquid is as follows: adding polyacrylonitrile powder to dimethyl sulfoxide, stirring in a water bath at 65°C for 2 to 5 hours, until the mixture is evenly dispersed to form a uniform Cortex spinning liquid; or add functional conductive active materials and polyacrylonitrile powder to dimethyl sulfoxide and stir in a 65°C water bath for 2 to 5 hours until the mixture is evenly dispersed to form a homogeneous cortex spinning liquid.
在本发明的一个实施例中,步骤(1)中,所述芯层纺丝液为50~150mg/mL的聚乙烯醇水溶液。In one embodiment of the present invention, in step (1), the core layer spinning solution is a polyvinyl alcohol aqueous solution of 50 to 150 mg/mL.
在本发明的一个实施例中,所述聚乙烯醇的醇解度为87%~98.8%。In one embodiment of the present invention, the alcoholysis degree of the polyvinyl alcohol is 87% to 98.8%.
在本发明的一个实施例中,步骤(1)中,所述皮层/芯层纺丝液在使用前经过脱泡处理,脱泡方法为:在室温条件下超声处理10~30分钟。In one embodiment of the present invention, in step (1), the skin/core layer spinning liquid undergoes deaeration treatment before use. The deaeration method is: ultrasonic treatment at room temperature for 10 to 30 minutes.
在本发明的一个实施例中,所述超声的功率为80~120W。In one embodiment of the present invention, the power of the ultrasound is 80-120W.
在本发明的一个实施例中,步骤(1)中,同轴/皮芯湿法纺丝过程中,芯层纺丝液推进速度为0.2~0.4ml/min,皮层纺丝液推进速度为0.7~1.2ml/min。In one embodiment of the present invention, in step (1), during the coaxial/skin-core wet spinning process, the propelling speed of the core layer spinning solution is 0.2-0.4ml/min, and the advancing speed of the skin spinning solution is 0.7 ~1.2ml/min.
优选地,同轴喷头内管的内/外径分别为0.19~3mm/0.4~3.2mm;同轴喷头外管的内外径分别为0.6~3.5mm/0.9~3.8mm。Preferably, the inner/outer diameters of the inner tube of the coaxial nozzle are 0.19~3mm/0.4~3.2mm respectively; the inner and outer diameters of the outer tube of the coaxial nozzle are 0.6~3.5mm/0.9~3.8mm respectively.
进一步优选地,同轴喷头内管的内/外径分别为0.41mm/0.72mm;同轴喷头外管的内外径分别为1.01mm/1.49mm。Further preferably, the inner and outer diameters of the inner tube of the coaxial nozzle are 0.41mm/0.72mm respectively; the inner and outer diameters of the outer tube of the coaxial nozzle are 1.01mm/1.49mm respectively.
在本发明的一个实施例中,步骤(1)中,同轴/皮芯湿法纺丝过程中,同轴喷头吐出的溶液细流进入20~70℃的凝固浴中凝固成型,凝固时间为10~40min;In one embodiment of the present invention, in step (1), during the coaxial/sheath-core wet spinning process, the thin stream of solution ejected from the coaxial nozzle enters a coagulation bath of 20 to 70°C and is solidified and formed. The solidification time is 10~40min;
凝固浴为如下中任一种:The coagulation bath is any of the following:
①二甲亚砜体积含量为30~70的二甲亚砜水溶液;① Dimethyl sulfoxide aqueous solution with a volume content of 30 to 70%;
②氯化钙固含量为5~25wt%,乙醇去离子水体积比为1:3~3:1的氯化钙/乙醇/水溶液;② Calcium chloride/ethanol/water solution with a calcium chloride solid content of 5 to 25 wt% and a volume ratio of ethanol to deionized water of 1:3 to 3:1;
③去离子水。③Deionized water.
在本发明的一个实施例中,所述中空、多孔、多层级聚丙烯腈基碳纤维的平均外径为0.2~1.26mm;平均内径即中空部分直径为0.1~0.8mm。In one embodiment of the present invention, the average outer diameter of the hollow, porous, multi-layered polyacrylonitrile-based carbon fiber is 0.2-1.26 mm; the average inner diameter, that is, the diameter of the hollow part, is 0.1-0.8 mm.
本发明有益的技术效果在于:The beneficial technical effects of the present invention are:
本发明采用湿法同轴纺丝成形方法,利用非溶剂致相分离原理,通过设计芯层纺丝液的组分,使构成纤维骨架的PAN聚合物或PAN聚合物/纳米复合材料纺丝原液细流在外表层和内表层双侧,同时引发溶剂-非溶剂传质,伴随纺丝原液中非溶剂的萃取析出和相分离固化过程,纤维骨架中形成丰富孔隙,且呈现为致密皮层与疏松大孔层以及中间致密支持层间隔分布的多层级分布特点。再经后道预氧化以及碳化处理后,芯层物质得以气化析出,聚丙烯纤维骨架碳转化为导电碳骨架,且纤维结构呈现为中空特性。The present invention adopts a wet coaxial spinning forming method, utilizes the principle of non-solvent-induced phase separation, and designs the components of the core layer spinning solution to make the PAN polymer or PAN polymer/nano composite spinning stock solution that constitutes the fiber skeleton. The thin flow simultaneously triggers solvent-non-solvent mass transfer on both sides of the outer and inner surfaces. With the extraction and precipitation of non-solvent in the spinning solution and the phase separation and solidification process, abundant pores are formed in the fiber skeleton, and appear as a dense cortex and loose macroscopic structures. The multi-level distribution characteristics of the pore layer and the dense support layer in the middle are spaced apart. After subsequent pre-oxidation and carbonization treatments, the core layer material is vaporized and precipitated, the carbon of the polypropylene fiber skeleton is converted into a conductive carbon skeleton, and the fiber structure is hollow.
本发明聚丙烯腈基碳纤维在结构上具备中空、多孔、多层特点;在性能上具有比表面积丰富、轻质、导电等优势,便于吸附和涵纳丰富的气态或液态流质,适用于吸附、过滤、隔热保温以及储能电极等领域。The polyacrylonitrile-based carbon fiber of the present invention has the characteristics of hollow, porous and multi-layer structure; in terms of performance, it has the advantages of rich specific surface area, light weight, conductivity, etc., and is convenient for adsorbing and containing abundant gaseous or liquid fluids, and is suitable for adsorption, Filtration, thermal insulation, energy storage electrodes and other fields.
本发明制备方法无需添加致孔剂,也无需繁杂的处理步骤,具有工艺简单易行的优势。此外,根据非溶剂致相分离原理,通过控制聚丙烯腈分子量、纺丝原液固含量、凝固浴以及芯层物PVA水凝胶水分含量、以及凝固条件等因素,可以实现对纤维孔隙结构的调控,具有较好的结构可设计性。The preparation method of the present invention does not require the addition of porogens or complicated processing steps, and has the advantage of simple and easy process. In addition, according to the principle of non-solvent-induced phase separation, the fiber pore structure can be controlled by controlling factors such as the molecular weight of polyacrylonitrile, the solid content of the spinning solution, the moisture content of the coagulation bath and the PVA hydrogel in the core layer, and the coagulation conditions. , with better structural designability.
附图说明Description of the drawings
图1为本发明聚丙烯腈基碳纤维结构的示意图;Figure 1 is a schematic diagram of the polyacrylonitrile-based carbon fiber structure of the present invention;
图2为本发明实施例1所得纤维产品的扫描电镜图;Figure 2 is a scanning electron microscope image of the fiber product obtained in Example 1 of the present invention;
图3为本发明实施例1所得纤维产品的扫描电镜图;Figure 3 is a scanning electron microscope image of the fiber product obtained in Example 1 of the present invention;
图4为本发明实施例6所得纤维产品的扫描电镜图;Figure 4 is a scanning electron microscope image of the fiber product obtained in Example 6 of the present invention;
图5为本发明实施例1-3与实施例6用作纤维电极的电化学性能对比图;Figure 5 is a comparison chart of the electrochemical performance of Examples 1-3 and Example 6 of the present invention used as fiber electrodes;
图6为本发明实施例1-3与实施例6用作纤维电极的导电性能对比图;Figure 6 is a comparison chart of the conductive properties of Examples 1-3 and Example 6 of the present invention used as fiber electrodes;
图7为本发明实施例1-3与实施例6用作纤维电极的力学性能对比图。Figure 7 is a comparison chart of the mechanical properties of Examples 1-3 and Example 6 of the present invention used as fiber electrodes.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明进行具体描述。The present invention will be described in detail below with reference to the drawings and examples.
如图1所示。其中,位于皮层和芯层的外表层和内表层,在固化过程中表层纺丝原液中的溶剂由于优先被凝固浴中的非溶剂萃取出来,优先固化形成内外纤维骨架“皮层”,包含孔眼尺寸细小,结构相对致密,是提供纤维形态结构以及强力的主支撑层;纤维中间部分主要为两层结构相似的多孔支撑层构成,多孔结构呈现为沿纤维径向发射的指状孔道,尺寸相对较大,既有利于减轻纤维的密度,也提供丰富的内部空间,以便吸附贮存大量的气态或液态流质。此外,两多孔层之间还存在一薄层致密的中间支撑层,将径向两层孔道结构隔开,既丰富了纤维的层级结构,也为中心大孔疏松层提供结构强力支撑。As shown in Figure 1. Among them, the outer and inner layers located in the cortex and core layer, during the curing process, the solvent in the surface spinning solution is preferentially extracted by the non-solvent in the coagulation bath, and is cured preferentially to form the inner and outer fiber skeleton "skin", including the hole size. It is small and has a relatively dense structure. It is the main support layer that provides fiber structure and strength. The middle part of the fiber is mainly composed of two porous support layers with similar structures. The porous structure appears as finger-shaped pores emitted along the radial direction of the fiber. The size is relatively small. Large, it not only helps reduce the density of the fiber, but also provides abundant internal space to absorb and store large amounts of gaseous or liquid fluids. In addition, there is a thin dense middle support layer between the two porous layers, which separates the two radial layers of pore structure, which not only enriches the hierarchical structure of the fibers, but also provides strong structural support for the central macroporous loose layer.
实施例1Example 1
一种中空、多孔、多层级聚丙烯腈基碳纤维,以PAN/MXene为皮层,其制备方法包括如下具体步骤:A hollow, porous, multi-layered polyacrylonitrile-based carbon fiber with PAN/MXene as the skin layer, and its preparation method includes the following specific steps:
(1)取0.5g 400目Ti3AlC2粉末加入在10ml盐酸+氟化锂混合溶液(盐酸浓度为9mol/L,LiF:0.8g),在35℃水浴条件下搅拌24h,刻蚀去除铝层,然后通过多次离心洗酸至上清液呈中性,然后取出离心管底部沉淀,均匀分散在去离子水中,通过再次离心后取上清液冷冻干燥,得到干燥的、经刻蚀剥层处理的MXene(单片层或少片层Ti3C2)。(1) Take 0.5g of 400 mesh Ti 3 AlC 2 powder and add it to 10 ml of hydrochloric acid + lithium fluoride mixed solution (hydrochloric acid concentration is 9 mol/L, LiF: 0.8g), stir for 24 hours in a 35°C water bath, and remove aluminum by etching layer, then wash the acid through multiple centrifugations until the supernatant is neutral, then take out the precipitate at the bottom of the centrifuge tube, evenly disperse it in deionized water, centrifuge again and take the supernatant and freeze-dry it to obtain a dry, etched and peeled layer Processed MXene (monolithic or few lamellar Ti 3 C 2 ).
(2)取160mg上述经刻蚀剥层处理的MXene加入4ml二甲亚砜溶液中,冰水浴条件下超声处理30min,形成MXene/DMSO分散液;(2) Add 160 mg of the etched and stripped MXene to 4 ml of dimethyl sulfoxide solution, and conduct ultrasonic treatment for 30 minutes in an ice-water bath to form an MXene/DMSO dispersion;
(3)在MXene/DMSO分散液中加入分子量为85000的聚丙烯腈粉末,控制PAN与Mxene的总固含量为160mg/mL,接着在65℃水浴条件下搅拌3小时,形成PAN/MXene纺丝液;(3) Add polyacrylonitrile powder with a molecular weight of 85,000 to the MXene/DMSO dispersion, control the total solid content of PAN and Mxene to 160 mg/mL, and then stir for 3 hours under 65°C water bath conditions to form PAN/MXene spinning liquid;
(4)将聚乙烯醇母粒(醇解度为88%)加入去离子水中95℃搅拌3小时,配置为100mg/mL的聚乙烯醇水溶液(PVA水溶液);(4) Add polyvinyl alcohol masterbatch (degree of alcoholysis: 88%) into deionized water and stir at 95°C for 3 hours to prepare a 100 mg/mL polyvinyl alcohol aqueous solution (PVA aqueous solution);
(5)将步骤(3)和步骤(4)制备的两种纺丝液分别在室温条件下超声(功率为100W)处理15分钟进行脱泡,脱泡结束后,即得所述多孔纤维纺丝液;(5) Treat the two spinning solutions prepared in step (3) and step (4) with ultrasonic treatment (power: 100W) at room temperature for 15 minutes for defoaming. After the degassing is completed, the porous fiber spinning solution is obtained. silk liquid;
(6)将PVA水溶液作为芯层,PAN/MXene纺丝液作为芯层进行同轴/皮芯湿法纺丝,将纺丝液湿纺进入25℃的凝固浴中凝固成型,凝固时间为30min,形成皮芯结构丝条;(6) Use PVA aqueous solution as the core layer and PAN/MXene spinning solution as the core layer for coaxial/skin-core wet spinning. The spinning solution is wet-spun into a coagulation bath at 25°C for coagulation and shaping. The coagulation time is 30 minutes. , forming a skin-core structure filament;
芯层纺丝液推进速度为0.3ml/min,皮层纺丝液推进速度为0.9ml/min;The core layer spinning solution advancement speed is 0.3ml/min, and the skin layer spinning solution advancement speed is 0.9ml/min;
同轴喷头内管的内/外径分别为0.41mm/0.72mm;同轴喷头外管的内外径分别为1.01mm/1.49mm。The inner/outer diameters of the inner tube of the coaxial nozzle are 0.41mm/0.72mm respectively; the inner and outer diameters of the outer tube of the coaxial nozzle are 1.01mm/1.49mm respectively.
凝固浴为氯化钙固含量为5wt%,乙醇去离子水体积比为1:3的氯化钙/乙醇/水溶液。The coagulation bath is a calcium chloride/ethanol/water solution with a calcium chloride solid content of 5 wt% and an ethanol-deionized water volume ratio of 1:3.
(7)将皮芯结构丝条用去离子水冲洗后置于60℃烘箱中干燥处理300min,获得PAN/MXene多孔同轴初生纤维。(7) Rinse the sheath-core structure filaments with deionized water and dry them in an oven at 60°C for 300 minutes to obtain PAN/MXene porous coaxial primary fibers.
(8)将制得的多孔同轴初生纤维进行预氧化处理,以2℃/min速率升温至250℃,保持120min;(8) Pre-oxidize the prepared porous coaxial nascent fibers, raise the temperature to 250°C at a rate of 2°C/min, and keep it for 120 minutes;
(9)将得到的预氧化纤维在氮气保护下以4℃/min速率升温至800℃,保持120min,即得中空、多孔、多层级聚丙烯腈基碳纤维(PAN/MXene@PVA)。其扫描电镜图片如图2所示。(9) The obtained pre-oxidized fiber was heated to 800°C at a rate of 4°C/min under nitrogen protection and kept for 120 minutes to obtain hollow, porous, multi-layered polyacrylonitrile-based carbon fiber (PAN/MXene@PVA). Its scanning electron microscope picture is shown in Figure 2.
由图2可以看出,芯层PVA被高温碳化去除,仅留下皮层PAN/MXene基碳层。可以观察到中空纤维主体截面上形成的放射状侵蚀性指状孔道,且也呈现明显的层次分界。这种结构由于在湿纺纺丝凝固过程中,凝固浴中的非溶剂(水)以及芯层PVA纺丝液中的水分,从纤维的皮层和芯层两个方向同时进行传质与纺丝细流中的DMSO进行交换,纤维内部大分子均优先向非溶剂(水)渗入较充分的区域聚集,从而使得中空纤维的内外壁表皮孔眼尺寸细密相对致密,而靠近中芯部位孔道相对较大,两向相分离交界处PAN大分子迁移速度最为缓慢,最终凝聚形成相对致密的“中间支持层”,因而使成纤具备中空、多孔、多层级的特点。可能因为Mxene纳米材料的存在,纤维截面孔道尺寸相对均匀,且纤维外表层不在光滑,而是呈现褶皱粗糙形貌,这有利于提供高比表面积,提供更由吸附涵纳能力。As can be seen from Figure 2, the core layer PVA is removed by high-temperature carbonization, leaving only the skin PAN/MXene-based carbon layer. The radial erosive finger-like pores formed on the main cross-section of the hollow fiber can be observed, and there are also obvious layered boundaries. In this structure, during the coagulation process of wet spinning, the non-solvent (water) in the coagulation bath and the moisture in the PVA spinning liquid in the core layer carry out mass transfer and spinning simultaneously from both directions of the fiber's cortex and core layer. The DMSO in the thin stream is exchanged, and the macromolecules inside the fiber preferentially gather in the area where the non-solvent (water) has fully penetrated, so that the hole size of the inner and outer walls of the hollow fiber is fine and relatively dense, while the holes near the core are relatively large. , the migration speed of PAN macromolecules is the slowest at the junction of two-way phase separation, and finally condenses to form a relatively dense "middle support layer", thus making the fiber hollow, porous, and multi-layered. Possibly due to the presence of Mxene nanomaterials, the fiber cross-section channel size is relatively uniform, and the outer layer of the fiber is no longer smooth, but has a wrinkled and rough morphology, which is conducive to providing a high specific surface area and greater adsorption capacity.
实施例2Example 2
一种中空、多孔、多层级聚丙烯腈基碳纤维,以PAN/GO为皮层,其制备方法包括如下具体步骤:A hollow, porous, multi-layered polyacrylonitrile-based carbon fiber with PAN/GO as the skin layer. The preparation method includes the following specific steps:
(1)将192mg GO加入4ml二甲亚砜溶液中,冰水浴条件下超声处理30min,形成GO/DMSO分散液;(1) Add 192 mg GO to 4 ml dimethyl sulfoxide solution, and conduct ultrasonic treatment for 30 minutes in an ice-water bath to form a GO/DMSO dispersion;
(2)在GO/DMSO分散液中加入分子量为85000的聚丙烯腈粉末,控制PAN与GO的总固含量为180mg/mL,接着在65℃水浴条件下搅拌3小时,形成PAN/GO纺丝液;(2) Add polyacrylonitrile powder with a molecular weight of 85,000 to the GO/DMSO dispersion, control the total solid content of PAN and GO to 180 mg/mL, and then stir in a water bath at 65°C for 3 hours to form PAN/GO spinning liquid;
(3)将聚乙烯醇母粒(醇解度为88%)加入去离子水中95℃搅拌3小时,配置为100mg/mL的聚乙烯醇水溶液(PVA水溶液);(3) Add polyvinyl alcohol masterbatch (degree of alcoholysis: 88%) into deionized water and stir at 95°C for 3 hours to prepare a 100 mg/mL polyvinyl alcohol aqueous solution (PVA aqueous solution);
(4)将步骤(2)和步骤(3)制备的两种纺丝液分别在室温条件下超声(功率为100W)处理15分钟进行脱泡,脱泡结束后,即得所述多孔纤维纺丝液;(4) Treat the two spinning liquids prepared in step (2) and step (3) with ultrasonic treatment (power: 100W) at room temperature for 15 minutes for defoaming. After the degassing is completed, the porous fiber spinning solution is obtained. silk liquid;
(5)将PVA水溶液作为芯层,PAN/GO纺丝液作为芯层进行同轴/皮芯湿法纺丝,将纺丝液湿纺进入25℃的凝固浴中凝固成型,凝固时间为30min,形成皮芯结构丝条;(5) Use PVA aqueous solution as the core layer and PAN/GO spinning solution as the core layer for coaxial/skin-core wet spinning. The spinning solution is wet-spun into a coagulation bath at 25°C for coagulation and shaping. The coagulation time is 30 minutes. , forming a skin-core structure filament;
芯层纺丝液推进速度为0.3ml/min,皮层纺丝液推进速度为0.9ml/min;The core layer spinning solution advancement speed is 0.3ml/min, and the skin layer spinning solution advancement speed is 0.9ml/min;
同轴喷头内管的内/外径分别为0.41mm/0.72mm;同轴喷头外管的内外径分别为1.01mm/1.49mm。The inner/outer diameters of the inner tube of the coaxial nozzle are 0.41mm/0.72mm respectively; the inner and outer diameters of the outer tube of the coaxial nozzle are 1.01mm/1.49mm respectively.
凝固浴为氯化钙固含量为5wt%,乙醇去离子水体积比为1:3的氯化钙/乙醇/水溶液。The coagulation bath is a calcium chloride/ethanol/water solution with a calcium chloride solid content of 5 wt% and an ethanol-deionized water volume ratio of 1:3.
(6)将皮芯结构丝条用去离子水冲洗后后置于60℃烘箱中干燥处理300min,获得PAN/GO多孔同轴初生纤维;(6) Rinse the sheath-core structure filaments with deionized water and then dry them in a 60°C oven for 300 minutes to obtain PAN/GO porous coaxial primary fibers;
(7)将制得的多孔同轴初生纤维进行预氧化处理,以2℃/min速率升温至250℃,保持120min;(7) Pre-oxidize the prepared porous coaxial nascent fibers, raise the temperature to 250°C at a rate of 2°C/min, and keep it for 120 minutes;
(8)然后将得到的预氧化纤维在惰性气体保护下以4℃/min速率升温至800℃,保持120min,即得中空、多孔、多层级聚丙烯腈基碳纤维(PAN/GO@PVA)。(8) The obtained pre-oxidized fiber was then heated to 800°C at a rate of 4°C/min under inert gas protection and kept for 120min to obtain hollow, porous, multi-layered polyacrylonitrile-based carbon fiber (PAN/GO@PVA).
实施例3Example 3
一种中空、多孔、多层级聚丙烯腈基碳纤维,以PAN/CNT为皮层,其制备方法包括如下具体步骤:A hollow, porous, multi-layered polyacrylonitrile-based carbon fiber with PAN/CNT as the skin layer, and its preparation method includes the following specific steps:
(1)将192mg CNT加入4ml二甲亚砜溶液中,冰水浴条件下超声处理30min,形成CNT/DMSO分散液;(1) Add 192 mg of CNT to 4 ml of dimethyl sulfoxide solution and conduct ultrasonic treatment for 30 minutes in an ice-water bath to form a CNT/DMSO dispersion;
(2)在CNT/DMSO分散液中加入分子量为85000的聚丙烯腈粉末,控制PAN与CNT的总固含量为180mg/mL,接着在65℃水浴条件下搅拌3小时,形成PAN/CNT纺丝液;(2) Add polyacrylonitrile powder with a molecular weight of 85,000 to the CNT/DMSO dispersion, control the total solid content of PAN and CNT to 180 mg/mL, and then stir for 3 hours under 65°C water bath conditions to form PAN/CNT spinning liquid;
(3)将聚乙烯醇母粒(醇解度为88%)加入去离子水中95℃搅拌3小时,配置为100mg/mL的聚乙烯醇水溶液(PVA水溶液);(3) Add polyvinyl alcohol masterbatch (degree of alcoholysis: 88%) into deionized water and stir at 95°C for 3 hours to prepare a 100 mg/mL polyvinyl alcohol aqueous solution (PVA aqueous solution);
(4)将步骤(2)和步骤(3)制备的两种纺丝液分别在室温条件下超声(功率为100W)处理15分钟进行脱泡,脱泡结束后,即得所述多孔纤维纺丝液;(4) Treat the two spinning liquids prepared in step (2) and step (3) with ultrasonic treatment (power: 100W) at room temperature for 15 minutes for defoaming. After the degassing is completed, the porous fiber spinning solution is obtained. silk liquid;
(5)将PVA水溶液作为芯层,PAN/CNT纺丝液作为芯层进行同轴/皮芯湿法纺丝,将纺丝液湿纺进入25℃的凝固浴中凝固成型,凝固时间为30min,形成皮芯结构丝条;(5) Use PVA aqueous solution as the core layer and PAN/CNT spinning solution as the core layer for coaxial/skin-core wet spinning. The spinning solution is wet-spun into a coagulation bath at 25°C for coagulation and shaping. The coagulation time is 30 minutes. , forming a skin-core structure filament;
芯层纺丝液推进速度为0.3ml/min,皮层纺丝液推进速度为0.9ml/min;The core layer spinning solution advancement speed is 0.3ml/min, and the skin layer spinning solution advancement speed is 0.9ml/min;
同轴喷头内管的内/外径分别为0.41mm/0.72mm;同轴喷头外管的内外径分别为1.01mm/1.49mm。The inner/outer diameters of the inner tube of the coaxial nozzle are 0.41mm/0.72mm respectively; the inner and outer diameters of the outer tube of the coaxial nozzle are 1.01mm/1.49mm respectively.
凝固浴为氯化钙固含量为5wt%,乙醇去离子水体积比为1:3的氯化钙/乙醇/水溶液。The coagulation bath is a calcium chloride/ethanol/water solution with a calcium chloride solid content of 5 wt% and an ethanol-deionized water volume ratio of 1:3.
(6)将皮芯结构丝条用去离子水冲洗后后置于60℃烘箱中干燥处理300min,获得PAN/CNT多孔同轴初生纤维;(6) Rinse the sheath-core structure filaments with deionized water and then dry them in a 60°C oven for 300 minutes to obtain PAN/CNT porous coaxial primary fibers;
(7)将制得的多孔同轴初生纤维进行预氧化处理,以2℃/min速率升温至250℃,保持120min;(7) Pre-oxidize the prepared porous coaxial nascent fibers, raise the temperature to 250°C at a rate of 2°C/min, and keep it for 120 minutes;
(8)将得到的预氧化纤维在惰性气体保护下以4℃/min速率升温至800℃,保持120min,即得中空、多孔、多层级聚丙烯腈基碳纤维(PAN/CNT@PVA)。(8) The obtained pre-oxidized fiber is heated to 800°C at a rate of 4°C/min under the protection of inert gas and kept for 120 minutes to obtain hollow, porous, multi-layered polyacrylonitrile-based carbon fiber (PAN/CNT@PVA).
实施例4Example 4
一种中空、多孔、多层级聚丙烯腈基碳纤维,以PAN/MXene为皮层,其制备方法包括如下具体步骤:A hollow, porous, multi-layered polyacrylonitrile-based carbon fiber with PAN/MXene as the skin layer, and its preparation method includes the following specific steps:
(1)取0.5g 400目Ti3AlC2粉末加入在10ml盐酸+氟化锂混合溶液(盐酸浓度为9mol/L,LiF:0.8g),在35℃水浴条件下搅拌24h,刻蚀去除铝层,然后通过多次离心洗酸至上清液呈中性,然后取出离心管底部沉淀,均匀分散在去离子水中,通过再次离心后取上清液冷冻干燥,得到干燥的、经刻蚀剥层处理的MXene(单片层或少片层Ti3C2)。(1) Take 0.5g of 400 mesh Ti 3 AlC 2 powder and add it to 10 ml of hydrochloric acid + lithium fluoride mixed solution (hydrochloric acid concentration is 9 mol/L, LiF: 0.8g), stir for 24 hours in a 35°C water bath, and remove aluminum by etching layer, then wash the acid through multiple centrifugations until the supernatant is neutral, then take out the precipitate at the bottom of the centrifuge tube, evenly disperse it in deionized water, centrifuge again and take the supernatant and freeze-dry it to obtain a dry, etched and peeled layer Processed MXene (monolithic or few lamellar Ti 3 C 2 ).
(2)将60mg上述经刻蚀剥层处理的MXene加入4ml二甲亚砜溶液中,冰水浴条件下超声处理30min,形成MXene/DMSO分散液;(2) Add 60 mg of the etched and stripped MXene to 4 ml of dimethyl sulfoxide solution, and conduct ultrasonic treatment for 30 minutes in an ice-water bath to form an MXene/DMSO dispersion;
(3)在MXene/DMSO分散液中加入分子量为100000的聚丙烯腈粉末,控制PAN与Mxene的总固含量为140mg/mL,接着在65℃水浴条件下搅拌3小时,形成PAN/MXene纺丝液;(3) Add polyacrylonitrile powder with a molecular weight of 100,000 to the MXene/DMSO dispersion, control the total solid content of PAN and Mxene to 140 mg/mL, and then stir for 3 hours under 65°C water bath conditions to form PAN/MXene spinning liquid;
(4)将聚乙烯醇母粒(醇解度为92%)加入去离子水中95℃搅拌4小时,配置为80mg/mL的聚乙烯醇水溶液(PVA水溶液);(4) Add polyvinyl alcohol masterbatch (degree of alcoholysis: 92%) into deionized water and stir at 95°C for 4 hours to prepare an 80 mg/mL polyvinyl alcohol aqueous solution (PVA aqueous solution);
(5)将步骤(3)和步骤(4)制备的两种纺丝液分别在室温条件下超声(功率为100W)处理20分钟进行脱泡,脱泡结束后,即得所述多孔纤维纺丝液;(5) Treat the two spinning solutions prepared in step (3) and step (4) with ultrasonic treatment (power: 100W) at room temperature for 20 minutes for degassing. After the degassing is completed, the porous fiber spinning solution is obtained. silk liquid;
(6)将PVA水溶液作为芯层,PAN/MXene纺丝液作为芯层进行同轴/皮芯湿法纺丝,将纺丝液湿纺进入25℃的凝固浴中凝固成型,凝固时间为30min,形成皮芯结构丝条;(6) Use PVA aqueous solution as the core layer and PAN/MXene spinning solution as the core layer for coaxial/skin-core wet spinning. The spinning solution is wet-spun into a coagulation bath at 25°C for coagulation and shaping. The coagulation time is 30 minutes. , forming a skin-core structure filament;
芯层纺丝液推进速度为0.2ml/min,皮层纺丝液推进速度为1.2ml/min;The core layer spinning solution advancement speed is 0.2ml/min, and the skin layer spinning solution advancement speed is 1.2ml/min;
同轴喷头内管的内/外径分别为0.21mm/0.41mm;同轴喷头外管的内外径分别为0.63mm/0.92mm。The inner/outer diameters of the inner tube of the coaxial nozzle are 0.21mm/0.41mm respectively; the inner and outer diameters of the outer tube of the coaxial nozzle are 0.63mm/0.92mm respectively.
凝固浴为二甲亚砜体积含量为35%的二甲亚砜水溶液。The coagulation bath is a dimethyl sulfoxide aqueous solution with a dimethyl sulfoxide volume content of 35%.
(7)将皮芯结构丝条用去离子水冲洗后置于60℃烘箱中干燥处理300min,获得PAN/MXene多孔同轴初生纤维。(7) Rinse the sheath-core structure filaments with deionized water and dry them in an oven at 60°C for 300 minutes to obtain PAN/MXene porous coaxial primary fibers.
(8)将制得的多孔同轴初生纤维进行预氧化处理,以2℃/min速率升温至250℃,保持120min;(8) Pre-oxidize the prepared porous coaxial nascent fibers, raise the temperature to 250°C at a rate of 2°C/min, and keep it for 120 minutes;
(9)将得到的预氧化纤维在氮气保护下以4℃/min速率升温至800℃,保持120min,即得中空、多孔、多层级聚丙烯腈基碳纤维。(9) Heat the obtained pre-oxidized fiber to 800°C at a rate of 4°C/min under nitrogen protection and keep it for 120 minutes to obtain hollow, porous, multi-layer polyacrylonitrile-based carbon fiber.
实施例5Example 5
一种中空、多孔、多层级聚丙烯腈基碳纤维,以PAN/MXene为皮层,其制备方法包括如下具体步骤:A hollow, porous, multi-layered polyacrylonitrile-based carbon fiber with PAN/MXene as the skin layer, and its preparation method includes the following specific steps:
(1)取0.5g 400目Ti3AlC2粉末加入在10ml盐酸+氟化锂混合溶液(盐酸浓度为9mol/L,LiF:0.8g),在35℃水浴条件下搅拌24h,刻蚀去除铝层,然后通过多次离心洗酸至上清液呈中性,然后取出离心管底部沉淀,均匀分散在去离子水中,通过再次离心后取上清液冷冻干燥,得到干燥的、经刻蚀剥层处理的MXene(单片层或少片层Ti3C2)。(1) Take 0.5g of 400 mesh Ti 3 AlC 2 powder and add it to 10 ml of hydrochloric acid + lithium fluoride mixed solution (hydrochloric acid concentration is 9 mol/L, LiF: 0.8g), stir for 24 hours in a 35°C water bath, and remove aluminum by etching layer, then wash the acid through multiple centrifugations until the supernatant is neutral, then take out the precipitate at the bottom of the centrifuge tube, evenly disperse it in deionized water, centrifuge again and take the supernatant and freeze-dry it to obtain a dry, etched and peeled layer Processed MXene (monolithic or few lamellar Ti 3 C 2 ).
(2)将120mg上述经刻蚀剥层处理的MXene加入4ml二甲亚砜溶液中,冰水浴条件下超声处理30min,形成MXene/DMSO分散液;(2) Add 120 mg of the etched and stripped MXene to 4 ml of dimethyl sulfoxide solution, and conduct ultrasonic treatment for 30 minutes in an ice-water bath to form an MXene/DMSO dispersion;
(3)在MXene/DMSO分散液中加入分子量为120000的聚丙烯腈粉末,控制PAN与MXene的总固含量为180mg/mL,接着在65℃水浴条件下搅拌3小时,形成PAN/MXene纺丝液;(3) Add polyacrylonitrile powder with a molecular weight of 120,000 to the MXene/DMSO dispersion, control the total solid content of PAN and MXene to 180 mg/mL, and then stir for 3 hours under 65°C water bath conditions to form PAN/MXene spinning liquid;
(4)将聚乙烯醇母粒(醇解度为98%)加入去离子水中95℃搅拌4小时,配置为140mg/mL的聚乙烯醇水溶液(PVA水溶液);(4) Add polyvinyl alcohol masterbatch (degree of alcoholysis: 98%) into deionized water and stir at 95°C for 4 hours to prepare a 140 mg/mL polyvinyl alcohol aqueous solution (PVA aqueous solution);
(5)将步骤(3)和步骤(4)制备的两种纺丝液分别在室温条件下超声(功率为100W)处理20分钟进行脱泡,脱泡结束后,即得所述多孔纤维纺丝液;(5) Treat the two spinning solutions prepared in step (3) and step (4) with ultrasonic treatment (power: 100W) at room temperature for 20 minutes for degassing. After the degassing is completed, the porous fiber spinning solution is obtained. silk liquid;
(6)将PVA水溶液作为芯层,PAN/MXene纺丝液作为芯层进行同轴/皮芯湿法纺丝,将纺丝液湿纺进入25℃的凝固浴中凝固成型,凝固时间为30min,形成皮芯结构丝条;(6) Use PVA aqueous solution as the core layer and PAN/MXene spinning solution as the core layer for coaxial/skin-core wet spinning. The spinning solution is wet-spun into a coagulation bath at 25°C for coagulation and shaping. The coagulation time is 30 minutes. , forming a skin-core structure filament;
芯层纺丝液推进速度为0.2ml/min,皮层纺丝液推进速度为1.1ml/min;The core layer spinning solution advancement speed is 0.2ml/min, and the skin layer spinning solution advancement speed is 1.1ml/min;
同轴喷头内管的内/外径分别为1mm/1.4mm;同轴喷头外管的内外径分别为1.8mm/2.2mm。The inner/outer diameters of the inner tube of the coaxial nozzle are 1mm/1.4mm respectively; the inner and outer diameters of the outer tube of the coaxial nozzle are 1.8mm/2.2mm respectively.
凝固浴为纯去离子水溶液。The coagulation bath is a pure deionized water solution.
(7)将皮芯结构丝条用去离子水冲洗后置于60℃烘箱中干燥处理300min,获得PAN/MXene多孔同轴初生纤维。(7) Rinse the sheath-core structure filaments with deionized water and dry them in an oven at 60°C for 300 minutes to obtain PAN/MXene porous coaxial primary fibers.
(8)将制得的多孔同轴初生纤维进行预氧化处理,以2℃/min速率升温至250℃,保持120min;(8) Pre-oxidize the prepared porous coaxial nascent fibers, raise the temperature to 250°C at a rate of 2°C/min, and keep it for 120 minutes;
(9)将得到的预氧化纤维在氮气保护下以4℃/min速率升温至800℃,保持120min,即得中空、多孔、多层级聚丙烯腈基碳纤维。(9) Heat the obtained pre-oxidized fiber to 800°C at a rate of 4°C/min under nitrogen protection and keep it for 120 minutes to obtain hollow, porous, multi-layer polyacrylonitrile-based carbon fiber.
实施例6Example 6
一种中空、多孔、多层级聚丙烯腈基碳纤维,以PAN为皮层,其制备方法包括如下具体步骤:A hollow, porous, multi-layered polyacrylonitrile-based carbon fiber with PAN as the skin layer, and its preparation method includes the following specific steps:
(1)将分子量为150000的聚丙烯腈粉末加入4ml二甲亚砜溶液中,控制PAN固含量为160mg/ml,接着在65℃水浴条件下搅拌3小时,形成PAN纺丝液;(1) Add polyacrylonitrile powder with a molecular weight of 150,000 to 4 ml of dimethyl sulfoxide solution, control the PAN solid content to 160 mg/ml, and then stir for 3 hours under 65°C water bath conditions to form a PAN spinning liquid;
(2)将聚乙烯醇母粒(醇解度为98%)加入去离子水中95℃搅拌3小时,配置为100mg/ml的聚乙烯醇水溶液(PVA水溶液);(2) Add polyvinyl alcohol masterbatch (degree of alcoholysis: 98%) into deionized water and stir at 95°C for 3 hours to prepare a 100 mg/ml polyvinyl alcohol aqueous solution (PVA aqueous solution);
(3)将步骤(1)和步骤(2)制备的两种纺丝液分别在室温条件下超声(功率为100W)处理15分钟进行脱泡,脱泡结束后,即得所述多孔纤维纺丝液;(3) Treat the two spinning solutions prepared in step (1) and step (2) with ultrasonic treatment (power: 100W) at room temperature for 15 minutes for defoaming. After the degassing is completed, the porous fiber spinning solution is obtained. silk liquid;
(4)将PVA水溶液作为芯层,PAN纺丝液作为芯层进行同轴/皮芯湿法纺丝,将纺丝液湿纺进入25℃的凝固浴中凝固成型,凝固时间为30min,形成皮芯结构丝条;(4) Use PVA aqueous solution as the core layer and PAN spinning solution as the core layer for coaxial/skin-core wet spinning. The spinning solution is wet-spun into a coagulation bath at 25°C for coagulation and shaping. The coagulation time is 30 minutes to form Sheath-core structure filament;
芯层纺丝液推进速度为0.3ml/min,皮层纺丝液推进速度为0.9ml/min;The core layer spinning solution advancement speed is 0.3ml/min, and the skin layer spinning solution advancement speed is 0.9ml/min;
同轴喷头内管的内/外径分别为0.41mm/0.72mm;同轴喷头外管的内外径分别为1.01mm/1.49mm。The inner/outer diameters of the inner tube of the coaxial nozzle are 0.41mm/0.72mm respectively; the inner and outer diameters of the outer tube of the coaxial nozzle are 1.01mm/1.49mm respectively.
凝固浴为氯化钙固含量为5wt%,乙醇去离子水体积比为1:3的氯化钙/乙醇/水溶液。The coagulation bath is a calcium chloride/ethanol/water solution with a calcium chloride solid content of 5 wt% and an ethanol-deionized water volume ratio of 1:3.
(5)将皮芯结构丝条用去离子水冲洗后后置于60℃烘箱中干燥处理300min,获得PAN多孔同轴初生纤维;(5) Rinse the sheath-core structure filaments with deionized water and then dry them in a 60°C oven for 300 minutes to obtain PAN porous coaxial primary fibers;
(6)将制得的多孔同轴初生纤维进行预氧化处理,以2℃/min速率升温至250℃,保持120min;(6) Pre-oxidize the prepared porous coaxial primary fibers, raise the temperature to 250°C at a rate of 2°C/min, and keep it for 120 minutes;
(7)将得到的预氧化纤维在惰性气体保护下以4℃/min速率升温至800℃,保持120min,即得中空、多孔、多层级聚丙烯腈基碳纤维(PAN@PVA)。其扫描电镜图如图3、图4所示。(7) The obtained pre-oxidized fiber is heated to 800°C at a rate of 4°C/min under inert gas protection and kept for 120 minutes to obtain hollow, porous, multi-layered polyacrylonitrile-based carbon fiber (PAN@PVA). The scanning electron microscope images are shown in Figures 3 and 4.
由图3可以看出,PVA经高温处理后被碳化去除,仅留下壳层PAN基碳层,可以观察到中空纤维主体截面上形成的放射状侵蚀性指状孔道,且呈现明显的层次分界。从图4高倍放大图片中,可以明显看到“中间支持层”的存在。这种结构由于在湿纺纺丝凝固过程中,凝固浴中的非溶剂(水)以及芯层PVA纺丝液中的水分,从纤维的皮层和芯层两个方向同时进行传质与纺丝细流中的DMSO进行交换,纤维内部大分子均优先向非溶剂(水)渗入较充分的区域聚集,从而使得中空纤维的内外壁表皮孔眼尺寸细密相对致密,而靠近中芯部位孔道相对较大,两向相分离交界处PAN大分子迁移速度最为缓慢,最终凝聚形成相对致密的“中间支持层”,因而使成纤具备中空、多孔、多层级的特点。可以观察到该PAN基中空碳纤维的外表皮非常光滑致密。As can be seen from Figure 3, PVA is carbonized and removed after high-temperature treatment, leaving only the shell PAN-based carbon layer. The radial erosive finger-shaped pores formed on the main section of the hollow fiber can be observed, and there are obvious layer boundaries. From the high-magnification picture in Figure 4, the existence of the "middle support layer" can be clearly seen. In this structure, during the coagulation process of wet spinning, the non-solvent (water) in the coagulation bath and the moisture in the PVA spinning liquid in the core layer carry out mass transfer and spinning simultaneously from both directions of the fiber's cortex and core layer. The DMSO in the thin stream is exchanged, and the macromolecules inside the fiber preferentially gather in the area where the non-solvent (water) has fully penetrated, so that the hole size of the inner and outer walls of the hollow fiber is fine and relatively dense, while the holes near the core are relatively large. , the migration speed of PAN macromolecules is the slowest at the junction of two-way phase separation, and finally condenses to form a relatively dense "middle support layer", thus making the fiber hollow, porous, and multi-layered. It can be observed that the outer skin of the PAN-based hollow carbon fiber is very smooth and dense.
测试例test case
(1)纤维电极电化学性能测试(1) Fiber electrode electrochemical performance test
采用了上海辰华CHI660型电化学工作站对实施例1-3和实施例6所得碳纤维进行测试。通过三电极体系表征纤维性能,工作电压为-0.2-0.6V。测试内容包循环伏安曲线,恒电流充放电曲线,电化学阻抗谱。如图5a所示,PAN/MXene@PVA中空、多孔、多层级碳纤维的CV曲线环绕面积最大,表明其储能效果最佳;由恒电流充放电曲线(图5b)可知,其比电容可达到113.18F/g(0.5A/g),这可能是因为其孔道结构分布更合理,MXene的引入一方面进一步提高材料的比表面积,同时MXene片层也具有较好的导电和储能效果。Shanghai Chenhua CHI660 electrochemical workstation was used to test the carbon fibers obtained in Examples 1-3 and 6. The fiber properties were characterized through a three-electrode system with an operating voltage of -0.2-0.6V. Test content includes cyclic voltammetry curves, galvanostatic charge and discharge curves, and electrochemical impedance spectroscopy. As shown in Figure 5a, the CV curve of PAN/MXene@PVA hollow, porous, multi-layered carbon fiber has the largest surrounding area, indicating that it has the best energy storage effect; from the galvanostatic charge and discharge curve (Figure 5b), it can be seen that its specific capacitance can reach 113.18F/g (0.5A/g), which may be due to its more reasonable distribution of pore structure. The introduction of MXene on the one hand further increases the specific surface area of the material, and the MXene sheet also has better conductivity and energy storage effects.
(2)纤维电极导电性能测试(2) Fiber electrode conductive performance test
采用TP-304数显式万用表测试实施例1-3和实施例6所得碳纤维单位长度内的电阻,并采用光学显微镜测量纤维直径,再根据公式(2),计算出纤维的电导率:Use a TP-304 digital multimeter to test the resistance within the unit length of the carbon fibers obtained in Examples 1-3 and 6, and use an optical microscope to measure the fiber diameter, and then calculate the conductivity of the fiber according to formula (2):
其中,δ表示电导率,单位为西门子每米(S/m),L表示纤维长度,单位为米(m),S表示纤维截面积,单位为平方米(m2),R表示纤维测试长度内的电阻值,单位为欧姆(Ω)。Among them, δ represents the electrical conductivity in Siemens per meter (S/m), L represents the fiber length in meters (m), S represents the fiber cross-sectional area in square meters (m 2 ), and R represents the fiber test length. The resistance value within is in ohms (Ω).
由图6可知,PAN/MXene@PVA中空、多孔、多层级碳纤维显示出更高的电导率,约为546S/m。As can be seen from Figure 6, PAN/MXene@PVA hollow, porous, and multi-layered carbon fibers show higher electrical conductivity, approximately 546 S/m.
(3)纤维电极力学性能测试(3) Mechanical properties test of fiber electrodes
采用XQ-2单丝强力测试仪对实施例1-3和实施例6的所得碳纤维进行拉伸强力测试,夹持长度为1mm,拉伸速度为1mm/min,通过多次多组取样,计算出纤维的强力及伸长率。由图7可知,PAN@PVA中空、多孔、多层级同轴纤维碳化后强度为15.23MPa,显示出更高的强度。The tensile strength test of the carbon fibers obtained in Examples 1-3 and 6 was carried out using the The strength and elongation of the fiber are revealed. As can be seen from Figure 7, the strength of PAN@PVA hollow, porous, multi-layered coaxial fibers after carbonization is 15.23MPa, showing higher strength.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310153632.0A CN115948821B (en) | 2023-02-21 | 2023-02-21 | A hollow, porous, multi-layered polyacrylonitrile-based carbon fiber and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310153632.0A CN115948821B (en) | 2023-02-21 | 2023-02-21 | A hollow, porous, multi-layered polyacrylonitrile-based carbon fiber and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115948821A CN115948821A (en) | 2023-04-11 |
CN115948821B true CN115948821B (en) | 2023-09-22 |
Family
ID=87289499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310153632.0A Active CN115948821B (en) | 2023-02-21 | 2023-02-21 | A hollow, porous, multi-layered polyacrylonitrile-based carbon fiber and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115948821B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02264018A (en) * | 1988-12-02 | 1990-10-26 | Petoka:Kk | Activated carbon fiber and its production |
US5089135A (en) * | 1988-01-20 | 1992-02-18 | Mitsubishi Rayon Co., Ltd. | Carbon based porous hollow fiber membrane and method for producing same |
JP2005113361A (en) * | 2003-08-26 | 2005-04-28 | Nikon Corp | Fluorinated amorphous nano carbon fiber and process for producing the same, hydrogen storing material comprising fluorinated amorphous nano carbon fiber, and hydrogen storing apparatus and fuel cell system |
JP2009185425A (en) * | 2008-02-08 | 2009-08-20 | Shinshu Univ | Hollow carbon fiber |
JP2010229577A (en) * | 2009-03-26 | 2010-10-14 | Toray Ind Inc | Method for producing carbon fiber precursor fiber and method for producing carbon fiber |
CN102085457A (en) * | 2009-12-07 | 2011-06-08 | 广州美能材料科技有限公司 | Method and device for preparing composite multilayer porous hollow fibrous membrane and product |
CN102691136A (en) * | 2012-05-29 | 2012-09-26 | 中科院广州化学有限公司 | Method for preparing polyacrylonitrile-based porous hollow carbon fibers by coaxial electrospinning |
CN106435841A (en) * | 2016-09-21 | 2017-02-22 | 天津工业大学 | Polyacrylonitrile porous carbon fiber preparation method |
CN108385209A (en) * | 2018-03-02 | 2018-08-10 | 河南工程学院 | The preparation method of porous filamentous nanocarbon |
CN112853522A (en) * | 2021-01-07 | 2021-05-28 | 华中科技大学 | Wet spinning radiation refrigeration fiber, preparation method and application thereof |
CN113619232A (en) * | 2021-08-19 | 2021-11-09 | 江南大学 | A kind of structure-function integrated superelectric composite material and preparation method thereof |
CN115434040A (en) * | 2021-11-18 | 2022-12-06 | 武汉纺织大学 | Preparation method of hollow carbon fiber |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150136691A1 (en) * | 2011-12-13 | 2015-05-21 | MEMSTAR (Guangzhou) Co. Ltd | Method for preparing double layered porous hollow membrane and device and product thereof |
CN108383101B (en) * | 2018-05-18 | 2019-12-10 | 山东大学 | A kind of preparation method of polyacrylonitrile-based three-dimensional macroporous carbon block |
-
2023
- 2023-02-21 CN CN202310153632.0A patent/CN115948821B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5089135A (en) * | 1988-01-20 | 1992-02-18 | Mitsubishi Rayon Co., Ltd. | Carbon based porous hollow fiber membrane and method for producing same |
JPH02264018A (en) * | 1988-12-02 | 1990-10-26 | Petoka:Kk | Activated carbon fiber and its production |
JP2005113361A (en) * | 2003-08-26 | 2005-04-28 | Nikon Corp | Fluorinated amorphous nano carbon fiber and process for producing the same, hydrogen storing material comprising fluorinated amorphous nano carbon fiber, and hydrogen storing apparatus and fuel cell system |
JP2009185425A (en) * | 2008-02-08 | 2009-08-20 | Shinshu Univ | Hollow carbon fiber |
JP2010229577A (en) * | 2009-03-26 | 2010-10-14 | Toray Ind Inc | Method for producing carbon fiber precursor fiber and method for producing carbon fiber |
CN102085457A (en) * | 2009-12-07 | 2011-06-08 | 广州美能材料科技有限公司 | Method and device for preparing composite multilayer porous hollow fibrous membrane and product |
CN102691136A (en) * | 2012-05-29 | 2012-09-26 | 中科院广州化学有限公司 | Method for preparing polyacrylonitrile-based porous hollow carbon fibers by coaxial electrospinning |
CN106435841A (en) * | 2016-09-21 | 2017-02-22 | 天津工业大学 | Polyacrylonitrile porous carbon fiber preparation method |
CN108385209A (en) * | 2018-03-02 | 2018-08-10 | 河南工程学院 | The preparation method of porous filamentous nanocarbon |
CN112853522A (en) * | 2021-01-07 | 2021-05-28 | 华中科技大学 | Wet spinning radiation refrigeration fiber, preparation method and application thereof |
CN113619232A (en) * | 2021-08-19 | 2021-11-09 | 江南大学 | A kind of structure-function integrated superelectric composite material and preparation method thereof |
CN115434040A (en) * | 2021-11-18 | 2022-12-06 | 武汉纺织大学 | Preparation method of hollow carbon fiber |
Non-Patent Citations (4)
Title |
---|
MXene修饰碳纤维电极的制备及其超级电容器性能研究;成丽媛;功能材料;第53卷(第5期);05039-05065 * |
Preparation and characterization of triangular hollow porous polyacrylonitrile fiber made by coaxial wet spinning;Huiyun Wang等;Applied Polymer;1-10 * |
湿法纺聚丙烯腈纤维的截面形貌与皮芯结构的研究;葛曷一;王成国;陈娟;刘建军;;材料导报(第03期);第150-152页 * |
网状和皮芯结构对生产高性能碳纤维组织演变的影响;王延相,王成国,朱波,季保华,何东新,王强;材料科学与工程学报(第03期);第325-330页 * |
Also Published As
Publication number | Publication date |
---|---|
CN115948821A (en) | 2023-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Carbon-based fibers for advanced electrochemical energy storage devices | |
Hwang et al. | High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors | |
Kim et al. | N-doped hierarchical porous hollow carbon nanofibers based on PAN/PVP@ SAN structure for high performance supercapacitor | |
He et al. | Porous carbon nanofiber mats from electrospun polyacrylonitrile/polymethylmethacrylate composite nanofibers for supercapacitor electrode materials | |
US10450674B2 (en) | Process for preparing a silicon-carbon nanocomposite nanofiber | |
Chhetri et al. | A review on nanofiber reinforced aerogels for energy storage and conversion applications | |
Inagaki et al. | Carbon nanofibers prepared via electrospinning | |
Xu et al. | Eco-friendly and thermally stable cellulose film prepared by phase inversion as supercapacitor separator | |
CN106984194B (en) | Super-hydrophobic modified nanofiber membrane and preparation method and application thereof | |
CN113233466B (en) | 3D super-elastic electrospun carbon nanofiber/MXene composite aerogel and synergistic assembly preparation method thereof | |
CN104766943B (en) | A kind of preparation method and application of the lithium sulphur battery electrode of high-energy-density | |
Liu et al. | Structural design and mechanism analysis of hierarchical porous carbon fibers for advanced energy and environmental applications | |
CN103305965A (en) | Silicon-carbon composite material with nano micropores and preparation method as well as application thereof | |
CN105098160A (en) | Hollow porous graphene-doped carbon/silicon nanofiber lithium battery anode material and preparation method thereof | |
KR101274662B1 (en) | Preparation method of multilayered carbon nano-fiber using electrospinning and multilayered carbon nano-fiber formed therefrom | |
CN106115690B (en) | A kind of preparation method of continuous hollow charcoal ball | |
CN106098413A (en) | A kind of preparation method of flexible super capacitor electrode material | |
CN113718371A (en) | MXene aerogel fiber, preparation method and application thereof | |
CN113564752A (en) | Hollow porous carbon nanofibers with tin oxide supported on inner tube wall and preparation method and application thereof | |
CN110517900A (en) | Preparation method of nitrogen-doped low-temperature carbon nanofiber electrode material for supercapacitor | |
Szilágyi et al. | Performance and potential of porous carbons derived of electrospun metal–organic frameworks for supercapacitor applications | |
Wang et al. | Rational design of one-dimensional skin-core multilayer structure for electrospun carbon nanofibers with bicontinuous electron/ion transport toward high-performance supercapacitors | |
Yang et al. | Hierarchical heterostructures of MXene and mesoporous hollow carbon sphere for improved ion accessibility and rate performance | |
CN115948821B (en) | A hollow, porous, multi-layered polyacrylonitrile-based carbon fiber and its preparation method | |
CN105321728A (en) | Carbon nanotube composite material, preparation method thereof, electrode and super capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |