CN115945078B - Preparation method of hollow fiber polyamide membrane - Google Patents
Preparation method of hollow fiber polyamide membrane Download PDFInfo
- Publication number
- CN115945078B CN115945078B CN202310148355.4A CN202310148355A CN115945078B CN 115945078 B CN115945078 B CN 115945078B CN 202310148355 A CN202310148355 A CN 202310148355A CN 115945078 B CN115945078 B CN 115945078B
- Authority
- CN
- China
- Prior art keywords
- hollow fiber
- membrane
- polyacrylonitrile
- polyamide
- polyamine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 88
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 62
- 239000004952 Polyamide Substances 0.000 title claims abstract description 53
- 229920002647 polyamide Polymers 0.000 title claims abstract description 53
- 238000002360 preparation method Methods 0.000 title claims description 10
- 229920002239 polyacrylonitrile Polymers 0.000 claims abstract description 38
- 238000012695 Interfacial polymerization Methods 0.000 claims abstract description 6
- 239000003513 alkali Substances 0.000 claims abstract description 4
- 229920000768 polyamine Polymers 0.000 claims description 22
- 239000000243 solution Substances 0.000 claims description 20
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 13
- 125000003118 aryl group Chemical group 0.000 claims description 12
- 239000010410 layer Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 239000012074 organic phase Substances 0.000 claims description 9
- 238000005373 pervaporation Methods 0.000 claims description 9
- 239000008346 aqueous phase Substances 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 7
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 6
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 claims description 6
- 230000018044 dehydration Effects 0.000 claims description 6
- 238000006297 dehydration reaction Methods 0.000 claims description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 6
- 238000007654 immersion Methods 0.000 claims description 4
- 239000005416 organic matter Substances 0.000 claims description 4
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 claims description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 3
- 125000003368 amide group Chemical group 0.000 claims description 3
- FYXKZNLBZKRYSS-UHFFFAOYSA-N benzene-1,2-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC=C1C(Cl)=O FYXKZNLBZKRYSS-UHFFFAOYSA-N 0.000 claims description 3
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 229940018564 m-phenylenediamine Drugs 0.000 claims description 3
- 125000002560 nitrile group Chemical group 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 claims description 2
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 claims description 2
- 239000011230 binding agent Substances 0.000 claims description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 2
- 239000004094 surface-active agent Substances 0.000 claims description 2
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 13
- 239000000178 monomer Substances 0.000 abstract description 6
- 238000000354 decomposition reaction Methods 0.000 abstract description 2
- 230000035699 permeability Effects 0.000 abstract 1
- 230000004907 flux Effects 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 239000012466 permeate Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009292 forward osmosis Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
相对于现有技术,本发明首先制备具有大孔的聚酰胺层,并利用碱分解提高亲水性的聚丙烯腈支撑膜再次吸附更多水相单体,并控制流速使得水相单体仅被支撑膜吸附,从而使得第二次界面聚合可以在聚酰胺大孔内发生,从而提高聚酰胺层的致密性且几乎不提高膜厚度,并结合中空纤维膜自身的优势,从而显著提高膜通量。
Compared with the existing technology, the present invention first prepares a polyamide layer with macropores, uses alkali decomposition to improve the hydrophilicity of the polyacrylonitrile support membrane to adsorb more water phase monomers again, and controls the flow rate so that the water phase monomers only It is adsorbed by the support membrane, so that the second interfacial polymerization can occur within the macropores of the polyamide, thus improving the density of the polyamide layer without increasing the membrane thickness. Combined with the advantages of the hollow fiber membrane itself, the membrane permeability can be significantly improved. quantity.
Description
技术领域Technical field
本发明涉及一种膜材料制备方法,具体涉及一种中空纤维聚酰胺膜的制备方法。The invention relates to a method for preparing a membrane material, and in particular to a method for preparing a hollow fiber polyamide membrane.
背景技术Background technique
聚酰胺(PA)是一种常见的分离膜材料,其一般用于纳滤、反渗透、正渗透等分离工序中。近期,由于其出色的物化性能,不少研究者尝试将其应用于渗透汽化中用于有机物和水的分离中,取得了不错的研究成果,但是上述研究一般见于期刊论文中,因为其需要采用特殊的单体或者复杂的改性的操作,并不适用于工业生产中。公开号为CN1951549A的专利申请公开了一种多聚聚酰胺复合膜,其在聚酰胺RO膜上继续负载3-4层聚酰胺层从而制备出多次聚酰胺渗透汽化膜,但是这种方法由于堆叠了多层聚酰胺层,从而导致了很高的传质阻力,渗透通量较低,同样不满足工业需求。Polyamide (PA) is a common separation membrane material, which is generally used in separation processes such as nanofiltration, reverse osmosis, and forward osmosis. Recently, due to its excellent physical and chemical properties, many researchers have tried to apply it in pervaporation for the separation of organic matter and water, and have achieved good research results. However, the above-mentioned research is generally seen in journal papers because it requires the use of Special monomers or complex modification operations are not suitable for industrial production. The patent application with publication number CN1951549A discloses a multi-polyamide composite membrane, which continues to load 3-4 polyamide layers on the polyamide RO membrane to prepare multiple polyamide pervaporation membranes. However, this method is due to Multiple polyamide layers are stacked, resulting in high mass transfer resistance and low permeation flux, which also does not meet industrial needs.
现有的聚酰胺膜一般为支撑膜,且常为平板膜,当应用于渗透汽化时,平板膜带来了通量较低、装填密度低的缺陷,而中空纤维膜因其特殊的形式可以提高膜的装填密度和传质通量的优势,但是目前尚未有中空纤维式的聚酰胺膜应用于有机物脱水。Existing polyamide membranes are generally support membranes and often flat membranes. When used in pervaporation, flat membranes bring the disadvantages of low flux and low packing density. Hollow fiber membranes can It has the advantages of improving the membrane packing density and mass transfer flux, but currently there is no hollow fiber polyamide membrane used for organic matter dehydration.
发明内容Contents of the invention
为此,本申请提出了一种应用于渗透汽化脱水的聚酰胺膜的制备方法,不需要特殊的单体和复杂的后改性操作,且大大提高了渗透汽化的通量,具有较高的应用潜力。To this end, this application proposes a method for preparing a polyamide membrane used in pervaporation dehydration, which does not require special monomers and complex post-modification operations, greatly improves the flux of pervaporation, and has a high application potential.
本发明目的之一是提供一种中空纤维聚酰胺膜的制备方法,其工艺步骤包括:One of the objects of the present invention is to provide a method for preparing a hollow fiber polyamide membrane, the process steps of which include:
1)将聚丙烯腈中空纤维膜两端封口后依次浸渍多元胺I水相溶液和芳香多元酰氯I有机相溶液I以在聚丙烯腈中空纤维膜表面界面聚合反应生成聚酰胺大孔,接触时间依次为5-20s和2-10s;1) Seal both ends of the polyacrylonitrile hollow fiber membrane and then immerse it in the aqueous solution of polyamine I and the organic phase solution I of aromatic polyacid chloride I in order to generate polyamide macropores through the interfacial polymerization reaction on the surface of the polyacrylonitrile hollow fiber membrane. Contact time The order is 5-20s and 2-10s;
2)打开聚丙烯腈中空纤维膜两端封口,将0.1-1mol/L的碱溶液连续的通过聚丙烯腈中空纤维膜两端以将聚丙烯腈支撑膜腈基转化为羧基和酰胺基,;2) Open the seals at both ends of the polyacrylonitrile hollow fiber membrane, and continuously pass 0.1-1mol/L alkali solution through both ends of the polyacrylonitrile hollow fiber membrane to convert the nitrile groups of the polyacrylonitrile support membrane into carboxyl groups and amide groups;
3)聚丙烯腈中空纤维膜烘干后,继续将多元胺II水相溶液连续的通过聚丙烯腈中空纤维膜两端以使聚丙烯腈中空纤维膜吸附多元胺II水相溶液;3) After the polyacrylonitrile hollow fiber membrane is dried, continue to continuously pass the polyamine II aqueous phase solution through both ends of the polyacrylonitrile hollow fiber membrane so that the polyacrylonitrile hollow fiber membrane absorbs the polyamine II aqueous phase solution;
4)再次将聚丙烯腈中空纤维膜两端封口后浸渍于芳香多元酰氯II有机相溶液中以使多元胺II和多元酰氯II在聚酰胺大孔处继续界面聚合形成致密孔,浸渍时间为20-100s;4) Seal both ends of the polyacrylonitrile hollow fiber membrane again and immerse it in the aromatic polyacid chloride II organic phase solution so that the polyamine II and the polyacid chloride II continue to interfacially polymerize at the macropores of the polyamide to form dense pores. The immersion time is 20 -100s;
5)将聚丙烯腈中空纤维膜进行热处理从而获得中空纤维聚酰胺膜。5) Heat-treat polyacrylonitrile hollow fiber membranes to obtain hollow fiber polyamide membranes.
优选的,所述聚丙烯腈中空纤维膜重均分子量为50000-500000,平均孔径为0.03-0.5μm,内径为2-4mm。Preferably, the polyacrylonitrile hollow fiber membrane has a weight average molecular weight of 50,000-500,000, an average pore diameter of 0.03-0.5 μm, and an inner diameter of 2-4 mm.
优选的,步骤2)中控制流通时间为10-50秒,控制流速20-80mL/min。Preferably, in step 2), the flow time is controlled to 10-50 seconds, and the flow rate is controlled to 20-80 mL/min.
优选的,步骤3)中控制流通时间为10-100s,控制流速为5-50mL/min。Preferably, in step 3), the flow time is controlled to 10-100s and the flow rate is controlled to 5-50mL/min.
优选的,多元胺I为哌嗪或脂肪胺,浓度为0.5-2wt%;芳香多元酰氯I为间苯二甲酰氯、对苯二甲酰氯或邻苯二甲酰氯,浓度为0.1-1wt%,有机相为环己烷、正己烷、正庚烷、辛烷中的一种。Preferably, the polyamine I is piperazine or aliphatic amine, with a concentration of 0.5-2wt%; the aromatic polyacid chloride I is isophthaloyl chloride, terephthaloyl chloride or phthaloyl chloride, with a concentration of 0.1-1wt%. The organic phase is one of cyclohexane, n-hexane, n-heptane and octane.
优选的,多元胺II为间苯二胺、对苯二胺或邻苯二胺,浓度为3-5wt%,多元胺II水相溶液还包括0.2-0.5wt%的缚酸剂和0.1-1wt%的表面活性剂;芳香多元酰氯II为均苯三甲酰氯,浓度为2-5wt%。Preferably, the polyamine II is m-phenylenediamine, p-phenylenediamine or o-phenylenediamine, with a concentration of 3-5wt%. The aqueous solution of the polyamine II also includes 0.2-0.5wt% acid binding agent and 0.1-1wt % surfactant; aromatic polyacid chloride II is trimesoyl chloride, with a concentration of 2-5wt%.
优选的,步骤5)之前重复步骤3)和4)1-2次。Preferably, steps 3) and 4) are repeated 1-2 times before step 5).
优选的,步骤5)的热处理温度为50-80℃下烘干5-24h。Preferably, the heat treatment temperature in step 5) is drying at 50-80°C for 5-24 hours.
本发明的目的之二在于提供了一种中空纤维聚酰胺膜,所述中空纤维聚酰胺膜包括改性的聚丙烯腈支撑膜和单层聚酰胺膜层。The second object of the present invention is to provide a hollow fiber polyamide membrane, which includes a modified polyacrylonitrile support membrane and a single-layer polyamide membrane layer.
本发明的目的之三在于提供一种上述中空纤维聚酰胺膜在渗透汽化有机物脱水方面的应用。The third object of the present invention is to provide an application of the above-mentioned hollow fiber polyamide membrane in pervaporation organic matter dehydration.
相对于现有采用多层聚酰胺膜层提高膜致密度,本发明首先制备具有大孔的聚酰胺层,并利用碱分解提高亲水性的聚丙烯腈支撑膜再次吸附更多水相单体,并控制流速使得水相单体仅被支撑膜吸附,从而使得第二次界面聚合可以在聚酰胺大孔内发生,从而提高聚酰胺层的致密性且几乎不提高膜厚度,并结合中空纤维膜自身的优势,从而显著提高膜通量。Compared with the existing multi-layer polyamide film layer to improve the film density, the present invention first prepares a polyamide layer with macropores, and uses alkali decomposition to improve the hydrophilicity of the polyacrylonitrile support film to adsorb more water phase monomers again , and control the flow rate so that the aqueous phase monomer is only adsorbed by the support membrane, so that the second interfacial polymerization can occur within the polyamide macropores, thereby improving the density of the polyamide layer and barely increasing the membrane thickness, and combining the hollow fibers The advantages of the membrane itself can significantly improve the membrane flux.
附图说明Description of drawings
图1是实施例1的聚酰胺膜SEM表征图(左-断面,右-表面)。Figure 1 is an SEM characterization picture of the polyamide film of Example 1 (left - cross section, right - surface).
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例和比较例,对本发明的高强度高通量中空纤维膜及其制备方法进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the purpose, technical solutions and advantages of the present invention more clear, the high-strength and high-flux hollow fiber membrane of the present invention and its preparation method will be further described in detail below in conjunction with examples and comparative examples. It should be understood that the specific embodiments described here are only used to explain the present invention and are not intended to limit the present invention.
实施例1Example 1
1)取聚丙烯腈中空纤维膜,重均分子量为800000,平均孔径为0.2μm,内径为3.3mm,取哌嗪和水溶于水作为浓度为0.5wt%的多元胺I水相溶液,取间苯二甲酰氯和环己烷混合作为浓度为0.8wt%的芳香多元酰氯I溶液;将聚丙烯腈中空纤维膜两端用聚四氟乙烯胶带封口,1) Take a polyacrylonitrile hollow fiber membrane with a weight average molecular weight of 800000, an average pore diameter of 0.2 μm, and an inner diameter of 3.3 mm. Take piperazine and water dissolved in water as a polyamine I aqueous solution with a concentration of 0.5wt%. Take the Phthaloyl chloride and cyclohexane were mixed to form an aromatic polyacid chloride I solution with a concentration of 0.8wt%; both ends of the polyacrylonitrile hollow fiber membrane were sealed with polytetrafluoroethylene tape.
先浸渍多元胺I水相溶液10s,然后浸渍于芳香多元酰氯I有机相溶I5s以在聚丙烯腈中空纤维膜表面界面聚合反应生成聚酰胺大孔;First, immerse in the aqueous solution of polyamine I for 10 s, and then immerse in the organic phase solution of aromatic polyamine I for 15 s to generate polyamide macropores through the interfacial polymerization reaction on the surface of the polyacrylonitrile hollow fiber membrane;
2)打开聚丙烯腈中空纤维膜两端封口,将0.5mol/L的氢氧化钠溶液通过隔膜泵连续的通过聚丙烯腈中空纤维膜两端以将聚丙烯腈支撑膜腈基转化为羧基和酰胺基,控制流通时间为20秒,控制流速50mL/min;2) Open the seals at both ends of the polyacrylonitrile hollow fiber membrane, and continuously pass 0.5 mol/L sodium hydroxide solution through the diaphragm pump through both ends of the polyacrylonitrile hollow fiber membrane to convert the nitrile groups of the polyacrylonitrile support membrane into carboxyl groups and For amide group, control the flow time to 20 seconds and the flow rate to 50mL/min;
3)聚丙烯腈中空纤维膜烘干;取间苯二胺5wt%、碳酸钠0.2wt%和N-甲基吡咯烷酮0.5wt%溶于水形成多元胺II水相溶液,将多元胺II水相溶液利用隔膜泵提供动力连续的通过聚丙烯腈中空纤维膜两端以使聚丙烯腈中空纤维膜吸附多元胺II水相溶液;3) Dry the polyacrylonitrile hollow fiber membrane; dissolve 5wt% of m-phenylenediamine, 0.2wt% of sodium carbonate and 0.5wt% of N-methylpyrrolidone in water to form a polyamine II aqueous phase solution, add the polyamine II aqueous phase The solution uses a diaphragm pump to provide power and continuously passes through both ends of the polyacrylonitrile hollow fiber membrane so that the polyacrylonitrile hollow fiber membrane absorbs the polyamine II aqueous phase solution;
4)取均苯三甲酰氯溶于正己烷形成浓度为3.5wt%的芳香多元酰氯II有机相溶液,再次将聚丙烯腈中空纤维膜两端封口后浸渍于芳香多元酰氯II有机相溶液中以使多元胺II和多元酰氯II在聚酰胺大孔处继续界面聚合形成致密孔,浸渍时间为50s;4) Dissolve trimesoyl chloride in n-hexane to form an aromatic polyacid chloride II organic phase solution with a concentration of 3.5wt%. Seal both ends of the polyacrylonitrile hollow fiber membrane again and then immerse it in the aromatic polyacid chloride II organic phase solution. Polyamine II and polycarboxylic acid chloride II continue interfacial polymerization at the macropores of the polyamide to form dense pores, and the immersion time is 50 seconds;
5)将聚丙烯腈中空纤维膜在60℃下烘干12h获得中空纤维聚酰胺膜。5) Dry the polyacrylonitrile hollow fiber membrane at 60°C for 12 hours to obtain a hollow fiber polyamide membrane.
将实施例1膜进行SEM表征,结果显示聚酰胺层为单层结构,具有致密的孔。将上述中空纤维聚酰胺膜用于渗透汽化异丙醇(IPA)脱水表征,料液包括90wt%异丙醇和10wt%水,温度为80℃,操作温度为室温,真空度为400Pa,进料侧压力为0.1MPa。经表征,上述中空纤维聚酰胺膜通量为226g/m2·h,渗透物中水含量81.25wt%。The membrane of Example 1 was characterized by SEM, and the results showed that the polyamide layer had a single-layer structure with dense pores. The above-mentioned hollow fiber polyamide membrane is used for pervaporation isopropyl alcohol (IPA) dehydration characterization. The feed liquid includes 90wt% isopropyl alcohol and 10wt% water. The temperature is 80°C, the operating temperature is room temperature, and the vacuum degree is 400Pa. The feed side The pressure is 0.1MPa. After characterization, the flux of the above-mentioned hollow fiber polyamide membrane is 226g/m 2 ·h, and the water content in the permeate is 81.25wt%.
实施例2Example 2
其余条件与同实施例1,仅在步骤5)前重复步骤3)和4)两次,所得中空纤维聚酰胺膜通量为97.3g/m2·h,渗透物中水含量96.56wt%。The remaining conditions are the same as those in Example 1, except that steps 3) and 4) are repeated twice before step 5). The flux of the obtained hollow fiber polyamide membrane is 97.3g/m 2 ·h, and the water content in the permeate is 96.56wt%.
对比例1Comparative example 1
其余条件与同实施例1,仅省略步骤(2),所得中空纤维聚酰胺膜通量为120.3g/m2·h,渗透物中水含量80.23wt%。The remaining conditions are the same as those in Example 1, except that step (2) is omitted. The flux of the obtained hollow fiber polyamide membrane is 120.3g/m 2 ·h, and the water content in the permeate is 80.23wt%.
对比例2Comparative example 2
其余条件与同实施例1,仅将步骤1)和2)互换顺序,所得中空纤维聚酰胺膜通量为130.8g/m2·h,渗透物中水含量51.35wt%。The remaining conditions are the same as those in Example 1, except that the order of steps 1) and 2) is interchanged. The flux of the obtained hollow fiber polyamide membrane is 130.8g/m 2 ·h, and the water content in the permeate is 51.35wt%.
对比例3Comparative example 3
其余条件与同实施例1,仅步骤3)中将聚丙烯腈中空纤维膜浸渍于多元胺II水相溶液,浸渍时间为20s,所得中空纤维聚酰胺膜通量为137.3g/m2·h,渗透物中水含量37.33wt%。The remaining conditions are the same as those in Example 1, except that in step 3), the polyacrylonitrile hollow fiber membrane is immersed in the aqueous solution of polyamine II, the immersion time is 20 s, and the flux of the obtained hollow fiber polyamide membrane is 137.3g/m 2 ·h , the water content in the permeate is 37.33wt%.
本发明不局限于上述最佳实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是具有与本申请相同或相近似的技术方案,均落在本发明的保护范围之内。The present invention is not limited to the above-mentioned best embodiment. Anyone can produce various other forms of products under the inspiration of the present invention. However, regardless of any changes in its shape or structure, any product with the same or similar properties as the present invention can be made. Similar technical solutions all fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310148355.4A CN115945078B (en) | 2023-02-22 | 2023-02-22 | Preparation method of hollow fiber polyamide membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310148355.4A CN115945078B (en) | 2023-02-22 | 2023-02-22 | Preparation method of hollow fiber polyamide membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115945078A CN115945078A (en) | 2023-04-11 |
CN115945078B true CN115945078B (en) | 2023-09-12 |
Family
ID=87286242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310148355.4A Active CN115945078B (en) | 2023-02-22 | 2023-02-22 | Preparation method of hollow fiber polyamide membrane |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115945078B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07284639A (en) * | 1994-04-20 | 1995-10-31 | Toyobo Co Ltd | Production of composite hollow membrane |
CN106268371A (en) * | 2016-08-08 | 2017-01-04 | 贵阳时代沃顿科技有限公司 | A kind of polyacrylonitrile hollow fiber ultrafilter membrane and preparation method thereof |
CN106621855A (en) * | 2017-01-18 | 2017-05-10 | 南京湶膜科技有限公司 | Preparation method of reverse osmosis composite membrane and reverse osmosis composite membrane |
CN111229050A (en) * | 2020-01-21 | 2020-06-05 | 吕剑阳 | Preparation method of composite membrane |
CN111359455A (en) * | 2020-02-27 | 2020-07-03 | 华中科技大学 | A cyclodextrin-modified polyamide thin film composite membrane, its preparation and application |
CN114471181A (en) * | 2021-12-29 | 2022-05-13 | 北京工业大学 | A kind of preparation method of high permeability zwitterionic hollow fiber nanofiltration membrane |
CN115105965A (en) * | 2021-03-17 | 2022-09-27 | 中国科学院过程工程研究所 | A kind of hollow fiber gas separation membrane module defect elimination method |
CN115193269A (en) * | 2021-04-14 | 2022-10-18 | 西陇科学股份有限公司 | Preparation method of high-flux fine hollow fiber nanofiltration membrane for purifying drinking water |
CN115518525A (en) * | 2022-10-13 | 2022-12-27 | 常州大学 | Preparation method and application of a kind of in-situ secondary interfacial polymerization hydrophilic modified ultra-thin composite membrane |
-
2023
- 2023-02-22 CN CN202310148355.4A patent/CN115945078B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07284639A (en) * | 1994-04-20 | 1995-10-31 | Toyobo Co Ltd | Production of composite hollow membrane |
CN106268371A (en) * | 2016-08-08 | 2017-01-04 | 贵阳时代沃顿科技有限公司 | A kind of polyacrylonitrile hollow fiber ultrafilter membrane and preparation method thereof |
CN106621855A (en) * | 2017-01-18 | 2017-05-10 | 南京湶膜科技有限公司 | Preparation method of reverse osmosis composite membrane and reverse osmosis composite membrane |
CN111229050A (en) * | 2020-01-21 | 2020-06-05 | 吕剑阳 | Preparation method of composite membrane |
CN111359455A (en) * | 2020-02-27 | 2020-07-03 | 华中科技大学 | A cyclodextrin-modified polyamide thin film composite membrane, its preparation and application |
CN115105965A (en) * | 2021-03-17 | 2022-09-27 | 中国科学院过程工程研究所 | A kind of hollow fiber gas separation membrane module defect elimination method |
CN115193269A (en) * | 2021-04-14 | 2022-10-18 | 西陇科学股份有限公司 | Preparation method of high-flux fine hollow fiber nanofiltration membrane for purifying drinking water |
CN114471181A (en) * | 2021-12-29 | 2022-05-13 | 北京工业大学 | A kind of preparation method of high permeability zwitterionic hollow fiber nanofiltration membrane |
CN115518525A (en) * | 2022-10-13 | 2022-12-27 | 常州大学 | Preparation method and application of a kind of in-situ secondary interfacial polymerization hydrophilic modified ultra-thin composite membrane |
Non-Patent Citations (1)
Title |
---|
The Preparation of Polyamide/Polyacrylonitrile Composite Hollow Fiber Membranes for Pervaporation;Hui-An Tsai et.al;Applied Mechanics and Materials;第377卷;246-249 * |
Also Published As
Publication number | Publication date |
---|---|
CN115945078A (en) | 2023-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Recent developments in reverse osmosis desalination membranes | |
CN107158980A (en) | Utilized thin film composite membranes reacted based on air liquid interface and its preparation method and application | |
CN112426894B (en) | Preparation method of polyamide composite reverse osmosis membrane and obtained reverse osmosis membrane | |
CN110038438B (en) | Preparation method of organic-inorganic composite ceramic nanofiltration membrane | |
CN104209021A (en) | Preparation method of aromatic polyamide film modified by ZIF-8 type metal-organic framework material | |
CN103212309B (en) | Preparation method of supportless forward osmosis membrane | |
CN107081077A (en) | A kind of Positively charged composite nanofiltration membrane and preparation method thereof | |
CN107469637A (en) | A kind of preparation method of high flux solvent-resistant polyimide hybrid composite membrane | |
CN110449041A (en) | Modified polypiperazine-amide nanofiltration membrane of a kind of carboxyl-functional single-walled carbon nanotube and preparation method thereof | |
CN114345140A (en) | A kind of preparation method of high-performance composite nanofiltration membrane with intermediate layer structure | |
CN112657348A (en) | Composite membrane containing COFs intermediate layer, preparation method and application thereof | |
CN103157388A (en) | Hydrophilic reverse osmosis composite membrane and preparation method thereof | |
CN112210081B (en) | Sulfonated graphene oxide supported metal organic framework modified forward osmosis nanocomposite membrane and preparation method thereof | |
KR101972172B1 (en) | Polyamide composite membrane having high quality and manufacturing method thereof | |
Yang et al. | Protein‐Based Separation Membranes: State of the Art and Future Trends | |
JP5961643B2 (en) | Composite separation membrane and separation membrane element using the same | |
CN115945078B (en) | Preparation method of hollow fiber polyamide membrane | |
CN111871233B (en) | Polyamide composite membrane with alumina hollow fiber as supporting layer | |
CN115475538A (en) | A hollow fiber composite nanofiltration membrane based on COFs intermediate layer and its preparation method | |
CN111871231B (en) | Polyamide composite membrane modified by interfacial polymerization | |
CN115105975B (en) | Polyelectrolyte sandwich magnetic response type poly piperazine amide composite nanofiltration membrane and preparation method thereof | |
CN116159436B (en) | Nano composite reverse osmosis membrane containing ultrathin hydrophilic covalent organic framework nano material intermediate layer | |
CN106076129B (en) | A kind of preparation method of polyamide nanofiltration membrane | |
CN112957929B (en) | Modified graphene oxide membrane based on anion and cation regulation and control, preparation method and application | |
CN115501763A (en) | Preparation and application method of high-permeability and selectivity ion separation membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20230411 Assignee: Taizhou Alston Biotechnology Co.,Ltd. Assignor: Taizhou Nanxiao New Material Technology Co.,Ltd. Contract record no.: X2024980041639 Denomination of invention: Preparation method of hollow fiber polyamide membrane Granted publication date: 20230912 License type: Common License Record date: 20241225 |