CN115936237A - Time series forecasting method, device, computer equipment and storage medium - Google Patents
Time series forecasting method, device, computer equipment and storage medium Download PDFInfo
- Publication number
- CN115936237A CN115936237A CN202211662382.5A CN202211662382A CN115936237A CN 115936237 A CN115936237 A CN 115936237A CN 202211662382 A CN202211662382 A CN 202211662382A CN 115936237 A CN115936237 A CN 115936237A
- Authority
- CN
- China
- Prior art keywords
- sequence
- time series
- unit
- attention
- trend
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000000714 time series forecasting Methods 0.000 title claims description 13
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 91
- 230000001932 seasonal effect Effects 0.000 claims description 38
- 238000004590 computer program Methods 0.000 claims description 12
- 230000006870 function Effects 0.000 claims description 8
- 230000000750 progressive effect Effects 0.000 abstract description 6
- 238000009825 accumulation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000005457 optimization Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012731 temporal analysis Methods 0.000 description 1
- 238000000700 time series analysis Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及数据处理技术领域,具体而言,涉及一种时间序列预测方法、装置、计算机设备及存储介质。The present invention relates to the technical field of data processing, in particular to a time series prediction method, device, computer equipment and storage medium.
背景技术Background technique
时间序列预测已经广泛应用于能源消耗、交通和经济规划、天气和疾病传播预测中。在这些实际工程的应用中,迫切需要将预测时间延长到遥远的未来,这对于长期规划和预警非常有意义。Time series forecasting has been widely used in energy consumption, transportation and economic planning, weather and disease spread forecasting. In these practical engineering applications, it is urgent to extend the prediction time to the distant future, which is very meaningful for long-term planning and early warning.
基于此,现有的时间序列预测方法一般基于历史数据构建预测模型,用于对未来数据进行预测分析。现有的一种长期时间序列预测方法,基于自注意力机制提取历史数据中的关键信息,以对未来数据进行预测,但是自注意力机制存在如下问题:对局部上下文不敏感,且易遇到内存瓶颈,计算效率较低。Based on this, the existing time series forecasting methods generally build forecasting models based on historical data for predictive analysis of future data. An existing long-term time series prediction method extracts key information in historical data based on the self-attention mechanism to predict future data, but the self-attention mechanism has the following problems: it is not sensitive to local context, and it is easy to encounter Memory bottleneck, low computational efficiency.
发明内容Contents of the invention
本发明的目的包括,例如,提供了一种时间序列预测方法、装置、计算机设备及存储介质,能够对长时间序列进行预测。The object of the present invention includes, for example, to provide a time series forecasting method, device, computer equipment and storage medium, capable of forecasting a long time series.
本发明的实施例可以这样实现:Embodiments of the present invention can be realized like this:
第一方面,本发明实施例提供了一种时间序列预测方法,应用于时间序列预测架构,所述时间序列预测架构包括多层编码器和多层解码器,所述编码器包括第一交叉注意力单元,所述解码器包括第二交叉注意力单元和第三交叉注意力单元,所述方法包括:In the first aspect, an embodiment of the present invention provides a time series prediction method, which is applied to a time series prediction architecture, and the time series prediction architecture includes a multi-layer encoder and a multi-layer decoder, and the encoder includes a first cross attention A force unit, the decoder includes a second cross-attention unit and a third cross-attention unit, and the method includes:
获取历史时间序列对应的初始季节部分和初始趋势部分;Obtain the initial seasonal part and initial trend part corresponding to the historical time series;
将所述历史时间序列输入所述编码器,经由所述第一交叉注意力单元得到包含季节信息的编码输出结果;Inputting the historical time series into the encoder, and obtaining an encoded output result containing seasonal information via the first cross-attention unit;
将所述初始季节部分输入所述解码器,经由所述第二交叉注意力单元和所述第三交叉注意力单元得到预测季节部分,并分离出剩余趋势部分;inputting the initial season part into the decoder, obtaining the predicted season part via the second cross-attention unit and the third cross-attention unit, and separating the remaining trend part;
将所述初始趋势部分输入所述解码器,与所述剩余趋势部分进行累加,得到预测趋势部分。The initial trend part is input into the decoder, and accumulated with the remaining trend part to obtain a predicted trend part.
在一实施方式中,所述获取历史时间序列对应的初始趋势部分,包括:In one embodiment, said obtaining the initial trend part corresponding to the historical time series includes:
对所述历史时间序列进行移动平均处理,得到所述历史时间序列对应的历史趋势序列;performing moving average processing on the historical time series to obtain a historical trend sequence corresponding to the historical time series;
获取所述历史趋势序列的后I/2个元素,得到分割趋势序列;Obtain the last I/2 elements of the historical trend sequence to obtain a segmented trend sequence;
获取所述历史趋势序列的各元素的平均值;Obtain the average value of each element of the historical trend sequence;
对所述分割趋势序列填充O个平均值后经过concat函数,得到初始趋势部分;其中,I为历史时间序列的长度,O为待预测时间的长度。After filling O average values for the segmented trend sequence, pass the concat function to obtain the initial trend part; wherein, I is the length of the historical time series, and O is the length of the time to be predicted.
在一实施方式中,所述获取历史时间序列对应的初始季节部分,包括:In one embodiment, said obtaining the initial season part corresponding to the historical time series includes:
将所述历史时间序列减去所述历史趋势序列,得到所述历史时间序列对应的历史季节序列;Subtracting the historical trend sequence from the historical time series to obtain a historical seasonal sequence corresponding to the historical time series;
获取所述历史季节序列的后I/2个元素,得到分割季节序列;Obtain the last I/2 elements of the historical season sequence to obtain the split season sequence;
对所述分割季节序列填充O个零值后经过concat函数,得到初始季节部分。After filling O zero values to the split season sequence, the concat function is used to obtain the initial season part.
在一实施方式中,所述编码器还包括第一序列分解单元、第一前馈单元和第二序列分解单元,所述将所述历史时间序列输入所述编码器,经由所述第一交叉注意力单元得到包含季节信息的编码输出结果,包括:In one embodiment, the encoder further includes a first sequence decomposing unit, a first feedforward unit, and a second sequence decomposing unit, the historical time series is input into the encoder, and through the first crossover The attention unit obtains encoded outputs containing seasonal information, including:
将所述历史时间序列通过第一交叉注意力单元,得到第一注意力序列;passing the historical time series through the first cross-attention unit to obtain the first attention sequence;
将所述第一注意力序列与所述历史时间序列相加后通过第一序列分解单元,得到第一分解结果;Adding the first attention sequence to the historical time series and passing through the first sequence decomposition unit to obtain a first decomposition result;
将所述第一分解结果通过第一前馈单元,得到第一前馈序列;passing the first decomposition result through a first feedforward unit to obtain a first feedforward sequence;
将所述第一前馈序列与所述第一分解结果相加后通过第二序列分解单元,得到所述编码输出结果。The first feed-forward sequence is added to the first decomposition result and passed through a second sequence decomposition unit to obtain the encoding output result.
在一实施方式中,所述解码器还包括第三序列分解单元、第四序列分解单元、第二前馈单元、第五序列分解单元;将所述初始季节部分输入所述解码器,经由所述第二交叉注意力单元和所述第三交叉注意力单元得到预测季节部分,并分离出剩余趋势部分,包括:In one embodiment, the decoder further includes a third sequence decomposing unit, a fourth sequence decomposing unit, a second feedforward unit, and a fifth sequence decomposing unit; the initial season part is input into the decoder, and through the The second intersecting attention unit and the third intersecting attention unit obtain the prediction season part, and separate the remaining trend part, including:
将所述初始季节部分通过所述第二交叉注意力单元,得到第二注意力序列;passing the initial season part through the second cross-attention unit to obtain a second attention sequence;
将所述第二注意力序列和所述历史时间序列相加后通过所述第三序列分解单元,得到第二分解结果和第一剩余部分;After adding the second attention sequence and the historical time series, pass through the third sequence decomposition unit to obtain the second decomposition result and the first remainder;
将所述第二分解结果通过所述第三交叉注意力单元,得到第三注意力序列;passing the second decomposition result through the third cross-attention unit to obtain a third attention sequence;
将所述第三注意力序列和第二分解结果相加后通过所述第四序列分解单元,得到第三分解结果和第二剩余部分;After adding the third attention sequence and the second decomposition result, passing through the fourth sequence decomposition unit to obtain the third decomposition result and the second remainder;
将所述第三分解结果通过所述第二前馈单元,得到第二前馈序列;passing the third decomposition result through the second feedforward unit to obtain a second feedforward sequence;
将所述第二前馈序列与所述第三分解结果相加后通过所述第五序列分解单元,得到所述预测季节部分和第三剩余部分;After adding the second feed-forward sequence and the third decomposition result, passing through the fifth sequence decomposition unit to obtain the predicted season part and the third remaining part;
对所述第一剩余部分和所述第二剩余部分和所述第三剩余部分进行累加,得到所述剩余趋势部分。The first remaining part, the second remaining part and the third remaining part are accumulated to obtain the remaining trend part.
第二方面,本申请实施例提供了一种时间序列分解装置,所述装置包括:In the second aspect, the embodiment of the present application provides a time series decomposition device, the device includes:
分解模块,用于对历史时间序列进行分解,得到所述历史时间序列的季节部分和趋势部分;Decomposition module, for decomposing the historical time series, to obtain the seasonal part and the trend part of the historical time series;
第一填充模块,用于对所述季节部分进行分割填充处理,得到季节项;The first filling module is used to divide and fill the seasonal part to obtain seasonal items;
第二填充模块,用于对所述趋势部分进行分割填充处理,得到趋势项;The second filling module is used to divide and fill the trend part to obtain trend items;
输入模块,用于将所述季节项和所述趋势项输入解码器;an input module for inputting the seasonal item and the trend item into a decoder;
获取模块,用于控制所述解码器通过交叉注意机制从所述季节项中获取季节信息,通过累加方式从所述趋势项中获取趋势信息。An acquisition module, configured to control the decoder to acquire season information from the season item through a cross-attention mechanism, and acquire trend information from the trend item through accumulation.
第三方面,本申请实施例提供了一种电子设备,包括存储器以及处理器,所述存储器用于存储计算机程序,所述计算机程序在所述处理器运行时执行第一方面提供的时间序列分解方法。In a third aspect, an embodiment of the present application provides an electronic device, including a memory and a processor, the memory is used to store a computer program, and the computer program executes the time series decomposition provided in the first aspect when the processor is running method.
第四方面,本申请实施例提供了一种计算机可读存储介质,其存储有计算机程序,所述计算机程序在处理器上运行时执行第一方面提供的时间序列分解方法。In a fourth aspect, an embodiment of the present application provides a computer-readable storage medium, which stores a computer program, and the computer program executes the time series decomposition method provided in the first aspect when running on a processor.
本发明实施例的有益效果包括,例如:采用渐进式分解的方法,对复杂的时间序列提取出预测季节部分和预测趋势部分,并且使用交叉注意力机制,跨阶段使用拆分和合并策略,有效减少信息集成过程中重复的可能性,提高了网络的学习能力。交叉注意力机制还降低了内存流量,减少了时间复杂度。The beneficial effects of the embodiments of the present invention include, for example: using a progressive decomposition method to extract the predicted season part and predicted trend part for complex time series, and use the cross-attention mechanism to use split and merge strategies across stages, effectively It reduces the possibility of repetition in the process of information integration and improves the learning ability of the network. The cross-attention mechanism also reduces memory traffic and reduces time complexity.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the accompanying drawings used in the embodiments will be briefly introduced below. It should be understood that the following drawings only show some embodiments of the present invention, and thus It should be regarded as a limitation on the scope, and those skilled in the art can also obtain other related drawings based on these drawings without creative work.
图1示出了本申请实施例提供的时间序列预测方法的一流程示意图;Fig. 1 shows a schematic flow chart of the time series prediction method provided by the embodiment of the present application;
图2示出了本申请实施例提供的时间序列预测模型的一结构示意图;Fig. 2 shows a schematic structural diagram of the time series prediction model provided by the embodiment of the present application;
图3示出了本申请实施例提供的交叉注意力单元的一结构示意图;FIG. 3 shows a schematic structural diagram of a cross-attention unit provided by an embodiment of the present application;
图4示出了本申请实施例提供的时间序列预测装置的一结构示意图。FIG. 4 shows a schematic structural diagram of a time series prediction device provided by an embodiment of the present application.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. The components of the embodiments of the invention generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations.
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。Accordingly, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the claimed invention, but merely represents selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。It should be noted that like numerals and letters denote similar items in the following figures, therefore, once an item is defined in one figure, it does not require further definition and explanation in subsequent figures.
在本发明的描述中,需要说明的是,若出现术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be noted that if the orientation or positional relationship indicated by the terms "upper", "lower", "inner" and "outer" appear, it is based on the orientation or positional relationship shown in the drawings, or It is the orientation or positional relationship that the invention product is usually placed in use, and it is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation , and therefore cannot be construed as a limitation of the present invention.
此外,若出现术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。In addition, terms such as "first" and "second" are used only for distinguishing descriptions, and should not be understood as indicating or implying relative importance.
需要说明的是,在不冲突的情况下,本发明的实施例中的特征可以相互结合。It should be noted that, in the case of no conflict, the features in the embodiments of the present invention may be combined with each other.
实施例1Example 1
请参考图1,本实施例提供了一种时间序列预测方法。Please refer to FIG. 1 , this embodiment provides a time series forecasting method.
步骤S110,获取历史时间序列对应的初始季节部分和初始趋势部分;Step S110, obtaining the initial seasonal part and initial trend part corresponding to the historical time series;
时间序列分解是时间序列分析的一种方法,思想是将数据分解为不同的因素,以达到解释数据、建立数学模型、数据预测的目的。由于预测问题中未来的不可知性,通常先对历史时间序列进行分解,用分解出的残差序列代替原始序列来做预测,有助于做出更好的预测。可将时间序列分为三个部分:趋势周期部分、季节性部分和包含时间序列中的任何其他内容的剩余部分。Time series decomposition is a method of time series analysis. The idea is to decompose data into different factors to achieve the purpose of explaining data, establishing mathematical models, and predicting data. Due to the unknowability of the future in the forecasting problem, the historical time series is usually decomposed first, and the decomposed residual series is used to replace the original series for forecasting, which helps to make better forecasts. A time series can be divided into three parts: a trend cycle part, a seasonal part, and a remaining part that contains everything else in the time series.
也就是说,通常的时间序列可以表示为三部分的乘积,如公式1:That is, the usual time series can be expressed as a product of three parts, as in Equation 1:
yt=St*Tt*Rt y t =S t *T t *R t
其中yt为原始的时间序列,St表示季节性部分,Tt表示趋势周期部分,Rt表示剩余部分。Among them, y t is the original time series, S t represents the seasonal part, T t represents the trend period part, and R t represents the remaining part.
但是如何对时间序列分解是一个需要解决的问题,基于此,本申请实施例提出了基于交叉注意力机制的深度分解架构,将序列分解作为框架的一个内部单元,嵌入到编码器和解码器中。在预测过程中,模型交替进行预测结果优化和序列分解,即从隐变量中逐步分离趋势项与周期项,实现渐进式分解。However, how to decompose the time series is a problem that needs to be solved. Based on this, the embodiment of this application proposes a deep decomposition architecture based on the cross-attention mechanism, which uses the sequence decomposition as an internal unit of the framework and embeds it in the encoder and decoder. . During the forecasting process, the model alternately performs forecasting result optimization and sequence decomposition, that is, gradually separates trend items and periodic items from hidden variables to achieve progressive decomposition.
序列分解单元(series decomposition block)基于滑动平均思想,平滑周期项、突出趋势项。具体地说,通过调整移动平均线来平滑周期波动,并突出长期趋势。对于长度为L的输入系列X∈RLxd,该过程为公式2:The series decomposition block is based on the idea of moving average, smoothing periodic items and highlighting trend items. Specifically, periodic fluctuations are smoothed out and long-term trends are highlighted by adjusting the moving average. For an input series X∈R Lxd of length L, the process is Equation 2:
Xt=AvgPool(Padding(X))X t =AvgPool(Padding(X))
Xs=X-Xt X s =XX t
上式中,Xt为提取的趋势项部分,是存储着每个滑动窗口的均值,也就是序列的短期波动,Xs是减去短期波动后保留季节性的平滑序列。In the above formula, X t is the extracted trend item, which stores the mean value of each sliding window, that is, the short-term fluctuation of the sequence, and X s is a smooth sequence that retains the seasonality after subtracting the short-term fluctuation.
其中,padding是为了保证序列长度不变,avgpool是移动平均。X为待分解的隐变量,Xt和Xs分别为趋势项和季节项,可以将上述Series Decomp Block记为公式3:Among them, padding is to ensure that the sequence length remains unchanged, and avgpool is a moving average. X is the latent variable to be decomposed, X t and X s are the trend item and the seasonal item respectively, and the above Series Decomp Block can be recorded as formula 3:
Xt,Xs=SeriesDecomp(X)X t ,X s =SeriesDecomp(X)
上文讲述了时间序列分解和序列分解单元工作的基本原理,基于此,本申请实施例提供了一种时间序列的分解方法。The basic principles of time series decomposition and sequence decomposition unit work are described above. Based on this, the embodiment of the present application provides a time series decomposition method.
具体地,在一实施方式中,所述获取历史时间序列对应的初始趋势部分,包括:对所述历史时间序列进行移动平均处理,得到所述历史时间序列对应的历史趋势序列;获取所述历史趋势序列的后I/2个元素,得到分割趋势序列;获取所述历史趋势序列的各元素的平均值;对所述分割趋势序列填充O个平均值后经过concat函数,得到初始趋势部分;其中,I为历史时间序列的长度,O为待预测时间的长度。Specifically, in one embodiment, the acquiring the initial trend part corresponding to the historical time series includes: performing moving average processing on the historical time series to obtain the historical trend series corresponding to the historical time series; acquiring the historical time series The last 1/2 element of the trend sequence obtains the segmented trend sequence; obtains the average value of each element of the historical trend sequence; fills the 0 average values for the segmented trend sequence and obtains the initial trend part through the concat function; wherein , I is the length of the historical time series, O is the length of the time to be predicted.
所述获取历史时间序列对应的初始季节部分,包括:The initial seasonal part corresponding to the acquisition of historical time series includes:
将所述历史时间序列减去所述历史趋势序列,得到所述历史时间序列对应的历史季节序列;获取所述历史季节序列的后I/2个元素,得到分割季节序列;对所述分割季节序列填充O个零值后经过concat函数,得到初始季节部分。Subtract the historical trend sequence from the historical time series to obtain the corresponding historical season sequence of the historical time series; obtain the last 1/2 elements of the historical seasonal sequence to obtain a split seasonal sequence; for the split season After the sequence is filled with O zero values, it passes through the concat function to obtain the initial seasonal part.
首先需要将历史时间序列进行预处理,以得到对编码器和解码器的输入。具体地,需要先对初始的历史时间序列分解得到的历史趋势序列和历史季节序列进行分割,假设初始的历史时间序列的长度为I,那么,只需保留初始时间序列的后半部分,即I/2的长度。First, the historical time series needs to be preprocessed to get the input to the encoder and decoder. Specifically, it is necessary to first split the historical trend series and historical season series obtained by decomposing the initial historical time series. Assuming that the length of the initial historical time series is I, then only the second half of the initial time series, that is, I /2 length.
然后再根据预测目的对分割后的分割趋势序列和分割季节序列进行填充,填充的元素个数是需要预测的未来的长度O。初始季节部分的填充方法可以参见参见公式4:Then, according to the purpose of prediction, the segmented trend sequence and season sequence after segmentation are filled, and the number of filled elements is the future length O that needs to be predicted. The filling method of the initial season part can be referred to in formula 4:
Xdes=Concat(Xens,X0)X des =Concat(X ens ,X 0 )
其中,Xen表示历史时间序列,Xens表示分割季节序列,X0表示填充零的占位符,数量为O个。Xdes就是需要的初始季节部分。Xens和X0经由concat函数连接,得到了初始季节部分。Among them, X en represents the historical time series, X ens represents the split season series, X 0 represents the zero-filled placeholders, and the number is O. X des is all that is needed for the initial season part. X ens and X 0 are concatenated via the concat function to obtain the initial seasonal part.
那么初始趋势部分就可以通过公式5得到:Then the initial trend part can be obtained by formula 5:
Xdet=Concat(Xent,XMean)X det =Concat(X ent ,X Mean )
Xent表示分割趋势序列,Xmean表示Xen的平均值。X ent represents the segmented trend series, and X mean represents the mean value of X en .
步骤S120,将所述历史时间序列输入所述编码器,经由所述第一交叉注意力单元得到包含季节信息的编码输出结果;Step S120, inputting the historical time series into the encoder, and obtaining an encoded output result containing seasonal information via the first cross-attention unit;
具体地,请参见图2,图2示出了本申请实施例提供的时间序列分解模型的一结构示意图。时间序列分解模型包括编码器210和解码器220。N代表编码器的层数,M代表解码器的层数。K、V、Q分别代表key、query、value,是注意力机制的参数。Specifically, please refer to FIG. 2 , which shows a schematic structural diagram of a time series decomposition model provided by an embodiment of the present application. The time series decomposition model includes an
所述编码器210还包括第一序列分解单元、第一前馈单元和第二序列分解单元,所述将所述历史时间序列输入所述编码器210,经由所述第一交叉注意力单元得到包含季节信息的编码输出结果,包括:The
将所述历史时间序列通过第一交叉注意力单元,得到第一注意力序列;将所述第一注意力序列与所述历史时间序列相加后通过第一序列分解单元,得到第一分解结果;将所述第一分解结果通过第一前馈单元,得到第一前馈序列;将所述第一前馈序列与所述第一分解结果相加后通过第二序列分解单元,得到所述编码输出结果。passing the historical time series through the first cross-attention unit to obtain the first attention sequence; adding the first attention sequence to the historical time series and passing through the first sequence decomposition unit to obtain the first decomposition result ; passing the first decomposition result through a first feedforward unit to obtain a first feedforward sequence; adding the first feedforward sequence to the first decomposition result and passing through a second sequence decomposition unit to obtain the Encode the output result.
编码器210的输入是完整的历史时间序列,编码器210的输出是一个包含季节信息的矩阵,并且将作为解码器的第三交叉注意力单元输入的信息来提高解码器预测结果。编码器210的处理公式如公式6:The input of the
此处的CrossAttention代表经过第一交叉注意力单元,“_”是序列分解后消除的趋势部分;表示经过第一交叉注意力单元得到的包含季节信息的分量,Si表示经过前馈单元,最终输出的编码输出结果。CrossAttention here represents the first cross-attention unit, "_" is the trend part eliminated after sequence decomposition; Represents the component containing seasonal information obtained through the first cross-attention unit, and S i represents the final output encoding output after the feedforward unit.
步骤S130,将所述初始季节部分输入所述解码器220,经由所述第二交叉注意力单元和所述第三交叉注意力单元得到预测季节部分,并分离出剩余趋势部分;Step S130, inputting the initial season part into the
请参见图2,所述解码器220还包括第三序列分解单元、第四序列分解单元、第二前馈单元、第五序列分解单元。Referring to FIG. 2 , the
将所述初始季节部分输入所述解码器220,经由所述第二交叉注意力单元和所述第三交叉注意力单元得到预测季节部分,并分离出剩余趋势部分,包括:将所述初始季节部分通过所述第二交叉注意力单元,得到第二注意力序列;将所述第二注意力序列和所述历史时间序列相加后通过所述第三序列分解单元,得到第二分解结果和第一剩余部分;将所述第二分解结果通过所述第三交叉注意力单元,得到第三注意力序列;将所述第三注意力序列和第二分解结果相加后通过所述第四序列分解单元,得到第三分解结果和第二剩余部分;将所述第三分解结果通过所述第二前馈单元,得到第二前馈序列;将所述第二前馈序列与所述第三分解结果相加后通过所述第五序列分解单元,得到所述预测季节部分和第三剩余部分;对所述第一剩余部分和所述第二剩余部分和所述第三剩余部分进行累加,得到所述剩余趋势部分。The initial season part is input into the
解码器220的计算过程是一个从输入信息中分离趋势信息,保留季节信息的过程。请参见虚线框221和虚线框222的结构,虚线框221中包括第二交叉注意力单元、第三序列分解单元、第三交叉注意力单元、第四序列分解单元、第二前馈单元和第五序列分解单元,主要作用是从输入信息中逐步分离趋势信息。The calculation process of the
具体地,将之前得到的初始季节部分输入解码器220,解码器220每层的运算请参见公式7:Specifically, the previously obtained initial season part is input into the
公式7对应解码器的221部分,渐进式地从包含季节信息的初始季节序列和编码输出结果中提取季节信息,进一步地把趋势和季节信息分离开来。其中,Xde代表解码器的输入,表示经过第二交叉注意力单元和第三序列分解单元得到的含季节信息的序列,也就是第二分解结果;表示经过第二交叉注意力单元和第三序列分解单元分离出的趋势信息,也就是第一剩余部分。Equation 7 corresponds to part 221 of the decoder, which progressively extracts seasonal information from the initial seasonal sequence containing seasonal information and the encoded output, further separating trend and seasonal information. Among them, X de represents the input of the decoder, Represents the sequence containing seasonal information obtained through the second cross-attention unit and the third sequence decomposition unit, that is, the second decomposition result; Represents the trend information separated by the second cross-attention unit and the third sequence decomposition unit, that is, the first remaining part.
同理,表示第三分解结果,表示第二剩余部分;表示最终得到的预测季节部分,表示第三剩余部分。会在222进行累加。In the same way, represents the third decomposition result, represents the second remainder; Denotes the resulting predicted seasonal component, Indicates the third remainder. Will be accumulated at 222.
步骤S140,将所述初始趋势部分输入所述解码器,与所述剩余趋势部分进行累加,得到预测趋势部分。Step S140, input the initial trend part into the decoder, and accumulate with the remaining trend part to obtain a predicted trend part.
具体地,虚线框222中包含多个累加单元,用于将分离出的趋势信息和输入解码器220的初始趋势部分进行累加,也就是将初始趋势部分和第一剩余部分、第二剩余部分和第三剩余部分逐步累加,得到最终的预测趋势部分。Specifically, the dotted
最后得到的趋势信息请参见公式8:The resulting trend information can be found in Equation 8:
其中,Pi、Pi+1和Pi+2代表各个剩余部分对应的权重。Wherein, P i , P i+1 and P i+2 represent weights corresponding to each remaining part.
交叉注意机制利用季节信息的周期性质,聚合不同周期中具有相似过程的子序列;对于趋势信息,使用累积的方式,逐步从预测的隐变量中提取出趋势信息,交替进行、相互促进。The cross-attention mechanism uses the periodic nature of seasonal information to aggregate subsequences with similar processes in different cycles; for trend information, it uses an accumulation method to gradually extract trend information from predicted latent variables, alternately, and promote each other.
基于图2所示模型架构,模型可以在预测过程中逐步分解隐变量,并通过交叉注意机制、累积的方式分别得到季节、趋势信息的预测结果,实现分解、预测结果优化的交替进行、相互促进。Based on the model architecture shown in Figure 2, the model can gradually decompose hidden variables during the forecasting process, and obtain the forecast results of season and trend information respectively through the cross-attention mechanism and accumulation method, realizing the alternate and mutual promotion of decomposition and forecast result optimization .
此外,请参见图3,图3示出了本申请实施例提供的交叉注意力单元的一结构示意图,即CrossAttention单元。一个CrossAttention单元将输入分为两部分。第一部分通过层310传播,经过一个1×1卷积层,而第二部分通过层320传播,经过一个自注意=块。最后将两个部分的输出通过concat函数连接在一起,作为整个CrossAttention单元的最终输出。In addition, please refer to FIG. 3 , which shows a schematic structural diagram of a cross-attention unit provided by an embodiment of the present application, that is, a CrossAttention unit. A CrossAttention unit divides the input into two parts. The first part is propagated through
采用CrossAttention单元具有如下优点,例如:Using the CrossAttention unit has the following advantages, for example:
对CrossAttention单元输入RL*d,其中L是输入长度,d是输入维度,通过维度分为两部分。X1在经过一个1×1卷积层后连接到CrossAttention单元的末端,而X2充当自注意块的输入。A和B的输出通过维度连接起来作为整个CrossAttention单元的输出。Input R L*d to the CrossAttention unit, where L is the input length, d is the input dimension, and pass the dimension Divided into two parts. X1 is connected to the end of the CrossAttention unit after going through a 1×1 convolutional layer, while X2 serves as the input of the self-attention block. The outputs of A and B are concatenated by dimensions as the output of the whole CrossAttention unit.
CrossAttention的一个阶段的输出矩阵参见公式9:The output matrix of a stage of CrossAttention is shown in Formula 9:
其中,A(X2h)是第h个自我注意块的缩放点积,Wh是一个dh*dh线性投影矩阵。H是注意力机制中头的数量,dh是每个头部的尺寸,假设每个头部具有相同的尺寸,Wc是一个1*1卷积层的值权重矩阵。where A(X 2h ) is the scaled dot product of the hth self-attention block, and W h is a d h * d h linear projection matrix. H is the number of heads in the attention mechanism, d h is the size of each head, assuming that each head has the same size, W c is a value weight matrix of a 1*1 convolutional layer.
相比self-attention(自注意力)机制,CrossAttention(交叉注意力)可以缓解self-attention机制的内存瓶颈和计算效率问题。CrossAttention还降低了自注意力机制的内存流量和时间复杂度。Compared with the self-attention (self-attention) mechanism, CrossAttention (cross-attention) can alleviate the memory bottleneck and computational efficiency problems of the self-attention mechanism. CrossAttention also reduces the memory traffic and time complexity of the self-attention mechanism.
例如,若给定两个矩阵A∈Ra×b和B∈Rb×c,只考虑乘法的计算,AxB的时间复杂度为axbxc,用T(A×B)=a×b×c表示。设X∈RL×d为由L个标记组成的输入矩阵,自注意块有H个头。排除偏差外,第h个自注意头的输出可以写为公式10:For example, if two matrices A∈R a×b and B∈R b×c are given, and only the calculation of multiplication is considered, the time complexity of AxB is axbxc, expressed by T(A×B)=a×b×c . Let X ∈ R L×d be the input matrix consisting of L tokens, and the self-attention block has H heads. Excluding bias, the output of the hth self-attention head can be written as Equation 10:
Ah(X)=PhXWV,h A h (X) = P h X W V, h
通过公式11计算缩放后的点积Ph:Calculate the scaled dot product Ph by Equation 11:
这样,忽略softmax的计算,单个自注意头的时间复杂度可以写为公式12:In this way, ignoring the calculation of softmax, the time complexity of a single self-attention head can be written as Equation 12:
其中,d代表单个自注意头的尺寸。where d represents the size of a single self-attention head.
而一个典型的自注意块的全时间复杂度为公式13:And the full time complexity of a typical self-attention block is Equation 13:
T(SA(X))=H×T(Ah(X))+Ld2 T(SA(X))=H×T(A h (X))+Ld 2
=4d2L+2HdL2 =4d 2 L+2HdL 2
但是,在计算CrossAttention的时间复杂度时,假设CrossAttention将输入维度分成一半,CrossAttention的第一部分只有一个线性投影层,这意味着第一部分的时间复杂度可以写成公式14:However, when calculating the time complexity of CrossAttention, assuming that CrossAttention divides the input dimension in half, the first part of CrossAttention has only one linear projection layer, which means that the time complexity of the first part can be written as Equation 14:
T(CroA1(X1))=L×(d/2)2 T(CroA 1 (X 1 ))=L×(d/2) 2
第二部分的时间复杂度是由公式15:The time complexity of the second part is given by Equation 15:
T(CroA2(X2))=4L(d/2)2+2L2(d/2)T(CroA 2 (X 2 ))=4L(d/2) 2 +2L 2 (d/2)
=Ld2+HL2d=Ld 2 +HL 2 d
所以CrossAttention的总时间复杂度是公式16:So the total time complexity of CrossAttention is formula 16:
T(CroA(X))=1.25d2L+HdL2 T(CroA(X))=1.25d 2 L+HdL 2
显然,随着L的增长,时间复杂度与L2的系数近似相关。所以当网络向前传播时,CrossAttention的时间复杂度几乎是canonical selfattention(规范自注意机制)的2Hd/Hd=50%。此外,CrossAttention的时间复杂度的L系数是规范自注意力时间复杂度的1.25d2/4d2=31.25%。因此,与规范的自注意机制相比,CrossAttention减少了至少50%的时间复杂度。Obviously, as L grows, the time complexity is approximately related to the coefficient of L2 . So when the network propagates forward, the time complexity of CrossAttention is almost 2Hd/Hd=50% of canonical selfattention (standardized self-attention mechanism). In addition, the L coefficient of the time complexity of CrossAttention is 1.25d 2 /4d 2 =31.25% of the time complexity of canonical self-attention. Therefore, CrossAttention reduces the time complexity by at least 50% compared to the canonical self-attention mechanism.
因此,CrossAttention降低了自注意力机制的内存流量和时间复杂度。Therefore, CrossAttention reduces the memory traffic and time complexity of the self-attention mechanism.
本实施例提供的一种时间序列预测方法,采用渐进式分解的方法,对复杂的时间序列提取出预测季节部分和预测趋势部分,并且使用交叉注意力机制,跨阶段使用拆分和合并策略,有效减少信息集成过程中重复的可能性,提高了网络的学习能力。交叉注意力机制还降低了内存流量,减少了时间复杂度。A time series forecasting method provided in this embodiment uses a progressive decomposition method to extract the predicted season part and forecasted trend part for complex time series, and uses the cross-attention mechanism to use split and merge strategies across stages, It effectively reduces the possibility of repetition in the process of information integration and improves the learning ability of the network. The cross-attention mechanism also reduces memory traffic and reduces time complexity.
实施例2Example 2
本实施例也提供了一种时间序列预测装置,所述装置400包括:This embodiment also provides a time series forecasting device, and the device 400 includes:
获取模块410,用于获取历史时间序列对应的初始季节部分和初始趋势部分;An acquisition module 410, configured to acquire an initial seasonal part and an initial trend part corresponding to a historical time series;
编码模块420,用于将所述历史时间序列输入编码器,经由第一交叉注意力单元得到包含季节信息的编码输出结果;An encoding module 420, configured to input the historical time series into the encoder, and obtain an encoded output result containing seasonal information via the first cross-attention unit;
解码模块430,用于将所述初始季节部分输入解码器,经由第二交叉注意力单元和第三交叉注意力单元得到预测季节部分,并分离出剩余趋势部分;The decoding module 430 is used to input the initial season part into the decoder, obtain the predicted season part through the second cross-attention unit and the third cross-attention unit, and separate the remaining trend part;
累加模块440,用于将所述初始趋势部分输入所述解码器,与所述剩余趋势部分进行累加,得到预测趋势部分。The accumulation module 440 is configured to input the initial trend part into the decoder, and accumulate it with the remaining trend part to obtain a predicted trend part.
本实施例提供的一种时间序列预测装置,采用渐进式分解的方法,对复杂的时间序列提取出预测季节部分和预测趋势部分,并且使用交叉注意力机制,跨阶段使用拆分和合并策略,有效减少信息集成过程中重复的可能性,提高了网络的学习能力。交叉注意力机制还降低了内存流量,减少了时间复杂度。A time series forecasting device provided in this embodiment adopts a progressive decomposition method to extract the predicted season part and predicted trend part from complex time series, and uses the cross-attention mechanism to use split and merge strategies across stages, It effectively reduces the possibility of repetition in the process of information integration and improves the learning ability of the network. The cross-attention mechanism also reduces memory traffic and reduces time complexity.
实施例3Example 3
此外,本公开实施例提供了一种电子设备,包括存储器以及处理器,所述存储器存储有计算机程序,所述计算机程序在所述处理器上运行时执行实施例1所提供的时间序列分解方法。In addition, an embodiment of the present disclosure provides an electronic device, including a memory and a processor, the memory stores a computer program, and the computer program executes the time series decomposition method provided in Embodiment 1 when running on the processor .
本发明实施例提供的电子设备可以实现实施例1所提供的时间序列分解方法,为避免重复,在此不再赘述。The electronic device provided in the embodiment of the present invention can implement the time series decomposition method provided in Embodiment 1, and to avoid repetition, details are not repeated here.
本发明实施例提供的电子设备,采用渐进式分解的方法,对复杂的时间序列提取出预测季节部分和预测趋势部分,并且使用交叉注意力机制,跨阶段使用拆分和合并策略,有效减少信息集成过程中重复的可能性,提高了网络的学习能力。交叉注意力机制还降低了内存流量,减少了时间复杂度。The electronic device provided by the embodiment of the present invention adopts the method of progressive decomposition to extract the predicted season part and predicted trend part from the complex time series, and uses the cross-attention mechanism to use split and merge strategies across stages to effectively reduce information The possibility of repetition during the ensemble improves the learning ability of the network. The cross-attention mechanism also reduces memory traffic and reduces time complexity.
实施例4Example 4
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现实施例1所提供的时间序列分解方法。The present application also provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the time series decomposition method provided in Embodiment 1 is implemented.
在本实施例中,计算机可读存储介质可以为只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。In this embodiment, the computer-readable storage medium may be a read-only memory (Read-Only Memory, ROM for short), a random access memory (Random Access Memory, RAM for short), a magnetic disk or an optical disk, and the like.
本实施例提供的计算机可读存储介质可以实现实施例1所提供的时间序列分解方法,为避免重复,在此不再赘述。The computer-readable storage medium provided in this embodiment can implement the time series decomposition method provided in Embodiment 1, and details are not repeated here to avoid repetition.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者终端中还存在另外的相同要素。It should be noted that, in this document, the term "comprising", "comprising" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or terminal comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or terminal. Without further limitations, an element defined by the phrase "comprising a ..." does not preclude the presence of additional identical elements in the process, method, article or terminal comprising the element.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。Through the description of the above embodiments, those skilled in the art can clearly understand that the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation. Based on such an understanding, the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in various embodiments of the present application.
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。The embodiments of the present application have been described above in conjunction with the accompanying drawings, but the present application is not limited to the above-mentioned specific implementations. The above-mentioned specific implementations are only illustrative and not restrictive. Those of ordinary skill in the art will Under the inspiration of this application, without departing from the purpose of this application and the scope of protection of the claims, many forms can also be made, all of which belong to the protection of this application.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. All should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211662382.5A CN115936237A (en) | 2022-12-23 | 2022-12-23 | Time series forecasting method, device, computer equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211662382.5A CN115936237A (en) | 2022-12-23 | 2022-12-23 | Time series forecasting method, device, computer equipment and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115936237A true CN115936237A (en) | 2023-04-07 |
Family
ID=86648875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211662382.5A Pending CN115936237A (en) | 2022-12-23 | 2022-12-23 | Time series forecasting method, device, computer equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115936237A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116415744A (en) * | 2023-06-12 | 2023-07-11 | 深圳大学 | Power prediction method, device and storage medium based on deep learning |
CN116955932A (en) * | 2023-09-18 | 2023-10-27 | 北京天泽智云科技有限公司 | Time sequence segmentation method and device based on trend |
-
2022
- 2022-12-23 CN CN202211662382.5A patent/CN115936237A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116415744A (en) * | 2023-06-12 | 2023-07-11 | 深圳大学 | Power prediction method, device and storage medium based on deep learning |
CN116415744B (en) * | 2023-06-12 | 2023-09-19 | 深圳大学 | Power prediction method, device and storage medium based on deep learning |
CN116955932A (en) * | 2023-09-18 | 2023-10-27 | 北京天泽智云科技有限公司 | Time sequence segmentation method and device based on trend |
CN116955932B (en) * | 2023-09-18 | 2024-01-12 | 北京天泽智云科技有限公司 | Time sequence segmentation method and device based on trend |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115273464A (en) | Traffic flow prediction method based on improved space-time Transformer | |
CN116895157A (en) | A traffic flow prediction method, system and medium based on trend spatio-temporal graph convolution | |
CN115936237A (en) | Time series forecasting method, device, computer equipment and storage medium | |
US20200311548A1 (en) | Learning compressible features | |
CN117076931A (en) | Time sequence data prediction method and system based on conditional diffusion model | |
CN116151459B (en) | Power grid flood prevention risk probability prediction method and system based on improved Transformer | |
CN116007937B (en) | Intelligent fault diagnosis method and device for transmission parts of mechanical equipment | |
CN110570035A (en) | People Flow Prediction System Simultaneously Modeling Spatiotemporal Dependence and Daily Flow Correlation | |
WO2025060128A1 (en) | Memory enhancement method and apparatus for natural language association features and storage medium | |
CN112990530B (en) | Regional population quantity prediction method, regional population quantity prediction device, electronic equipment and storage medium | |
CN114817773A (en) | Time sequence prediction system and method based on multi-stage decomposition and fusion | |
CN118114821A (en) | A method and system for predicting transportation demand based on multimodal data | |
CN116485084A (en) | A method and system for intelligent decision-making of power material demand based on data space | |
CN116961672A (en) | Lossless data compression method based on transducer encoder | |
CN116596169A (en) | A power system prediction method, device and storage medium | |
CN113643141B (en) | Method, device, equipment and storage medium for generating interpretation conclusion report | |
CN112862209B (en) | A method for predicting industrial equipment monitoring data | |
CN119227899A (en) | Urban electricity consumption prediction method, system, device and storage medium integrating time-frequency characteristics | |
CN117273227A (en) | Monitoring management system and method for furniture assembly production line | |
CN116050579B (en) | Building energy consumption prediction method and system based on deep feature fusion network | |
CN117875520A (en) | Public safety event prediction method and system based on dynamic graph space-time evolution mining | |
CN117272228A (en) | Data fusion method, system, equipment and medium based on heterogeneous graph embedding | |
CN116596145A (en) | A traffic flow spatio-temporal data prediction method, system, equipment and medium | |
CN114189876B (en) | Flow prediction method and device and electronic equipment | |
CN118135297B (en) | An image classification method based on decoder visual Transformer architecture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |