CN115936227A - Machine learning-based ion permeation power generation prediction system and method - Google Patents
Machine learning-based ion permeation power generation prediction system and method Download PDFInfo
- Publication number
- CN115936227A CN115936227A CN202211618751.0A CN202211618751A CN115936227A CN 115936227 A CN115936227 A CN 115936227A CN 202211618751 A CN202211618751 A CN 202211618751A CN 115936227 A CN115936227 A CN 115936227A
- Authority
- CN
- China
- Prior art keywords
- dimensionless
- power generation
- neural network
- ion
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 96
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000010801 machine learning Methods 0.000 title claims abstract description 26
- 238000013528 artificial neural network Methods 0.000 claims abstract description 69
- 238000012360 testing method Methods 0.000 claims abstract description 35
- 238000012549 training Methods 0.000 claims abstract description 34
- 210000002569 neuron Anatomy 0.000 claims abstract description 22
- 150000002500 ions Chemical class 0.000 claims description 120
- 238000006243 chemical reaction Methods 0.000 claims description 26
- 239000002090 nanochannel Substances 0.000 claims description 24
- 230000006870 function Effects 0.000 claims description 23
- 238000009792 diffusion process Methods 0.000 claims description 20
- 238000005457 optimization Methods 0.000 claims description 20
- 230000001133 acceleration Effects 0.000 claims description 12
- 230000004913 activation Effects 0.000 claims description 9
- 238000004422 calculation algorithm Methods 0.000 claims description 9
- 238000010606 normalization Methods 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 5
- 150000001450 anions Chemical class 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 4
- 150000001768 cations Chemical class 0.000 claims description 4
- 238000003491 array Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 230000003044 adaptive effect Effects 0.000 claims description 2
- 230000003204 osmotic effect Effects 0.000 claims 3
- 239000000203 mixture Substances 0.000 claims 1
- 239000002994 raw material Substances 0.000 claims 1
- 230000009466 transformation Effects 0.000 claims 1
- 230000008569 process Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
公开了一种基于机器学习的离子渗透发电的预测系统及方法,预测系统中,数据获取模块配置成获取离子渗透发电的样本数据,神经网络模块基于人工神经网络配置成构建离子渗透发电的预测神经网络及神经网络训练,连接所述数据获取模块的神经网络模块包括多层网络层数,其子结构包括一个输入层,一个输出层以及四个全连接层,输入层神经元接收训练数据,隐含层和输出层的每一个神经元与之相邻层的所有神经元进行全连接,基于所述样本数据进行神经网络训练以构成离子渗透发电的预测神经网络;模型测试模块配置调整离子渗透发电的预测神经网络中的超参数以得到离子渗透发电预测模型。预测模型的准确率达到97.6%。
Disclosed is a prediction system and method for ion permeation power generation based on machine learning. In the prediction system, the data acquisition module is configured to obtain sample data for ion permeation power generation, and the neural network module is configured to construct a prediction neural network for ion permeation power generation based on artificial neural networks. Network and neural network training, the neural network module connected to the data acquisition module includes multi-layer network layers, its substructure includes an input layer, an output layer and four fully connected layers, the input layer neurons receive training data, hidden Each neuron in the containing layer and the output layer is fully connected with all neurons in the adjacent layer, and the neural network training is performed based on the sample data to form a predictive neural network for ion osmosis power generation; the model test module configuration adjusts ion osmosis power generation The hyperparameters in the prediction neural network to obtain the ion permeation power generation prediction model. The accuracy of the predictive model reached 97.6%.
Description
技术领域Technical Field
本发明涉及离子渗透发电领域,特别是一种基于机器学习的离子渗透发电的预测系统及方法。The present invention relates to the field of ion permeation power generation, and in particular to a prediction system and method for ion permeation power generation based on machine learning.
背景技术Background Art
离子渗透发电是以浓度梯度驱动离子载能子迁移并选择性定向通过多孔纳米膜形成离子电流,将盐差能直接转换成电能的能量转换方式。离子定向迁移过程能量转换效率高(理论效率可达50%),可为低品位能源(盐差能、太阳能等)的利用提供新的途径。离子渗透发电的物理本质是以电解液离子和纳米多孔介质分别作为载能子和热质传输载体的耦合离子迁移、热量传递和能量转换过程。Ion permeation power generation is an energy conversion method that uses concentration gradient to drive the migration of ion carriers and selectively direct them through porous nano-membranes to form ion currents, directly converting salt difference energy into electrical energy. The energy conversion efficiency of the directional ion migration process is high (theoretical efficiency can reach 50%), which can provide a new way to utilize low-grade energy (salinity difference energy, solar energy, etc.). The physical essence of ion permeation power generation is the coupled ion migration, heat transfer and energy conversion process with electrolyte ions and nanoporous media as energy carriers and heat and mass transfer carriers respectively.
目前离子渗透发电相关研究主要集中在新型纳米通道材料方面,着眼研究盐度差下的多孔纳米离子选择膜材料性能,通过改变浓度比,改变通道几何形状,以获得更好的发电能力方面。然而,目前仍缺乏一个统一的温度相关性能理论,也没有一个综合的经验公式将这些因素与转换效能联系起来。亟需探究离子渗透能量转换机制,阐明内部热质输运及能量转换过程的物理本质,最终形成离子渗透能量预测体系,对离子渗透发电效能进行准确地评估。At present, the research on ion permeation power generation is mainly focused on new nanochannel materials, focusing on the performance of porous nano-ion selective membrane materials under salinity differences, and changing the concentration ratio and channel geometry to obtain better power generation capabilities. However, there is still a lack of a unified temperature-related performance theory, nor a comprehensive empirical formula to link these factors to conversion efficiency. It is urgent to explore the ion permeation energy conversion mechanism, clarify the physical nature of internal heat and mass transport and energy conversion processes, and ultimately form an ion permeation energy prediction system to accurately evaluate the ion permeation power generation efficiency.
在背景技术部分中公开的所述信息仅仅用于增强对本发明背景的理解,因此可能包含不构成在本领域普通技术人员公知的现有技术的信息。The information disclosed in this Background section is only for enhancement of understanding of the background of the invention and therefore it may contain information that does not form the prior art that is already known to a person of ordinary skill in the art.
发明内容Summary of the invention
针对所述现有技术存在的不足或缺陷,提供了一种基于机器学习的离子渗透发电的预测系统,通过相似原理获得简化的离子渗透发电的无量纲控制参数组,并进行样本扩充,得到大量的实验样本作为机器学习的数据集,利用机器学习人工神经网络以归一化预处理的主导因素物理参数的维度变量为输入,输出功率和能量转换效率的效能为输出参数,建立纳米通道几何结构、浓度差、离子物性和能量转换性能之间的预测模型。对模型参数训练完成后,最终获得具有高精度,高加速比的基于机器学习的离子渗透发电预测模型,可指导渗透发电系统主导参数的判断和效能的预估。In view of the shortcomings or defects of the prior art, a prediction system for ion permeation power generation based on machine learning is provided. A simplified dimensionless control parameter group for ion permeation power generation is obtained through similarity principle, and sample expansion is performed to obtain a large number of experimental samples as a data set for machine learning. The machine learning artificial neural network is used to take the dimensional variables of the dominant factor physical parameters of the normalized preprocessing as input, and the output power and energy conversion efficiency as output parameters to establish a prediction model between the nanochannel geometry, concentration difference, ion properties and energy conversion performance. After the model parameters are trained, a high-precision, high-acceleration machine learning-based ion permeation power generation prediction model is finally obtained, which can guide the judgment of the dominant parameters of the permeation power generation system and the estimation of the efficiency.
本发明的目的是通过以下技术方案予以实现。The purpose of the present invention is achieved through the following technical solutions.
一种基于机器学习的离子渗透发电的预测系统包括;A prediction system for ion permeation power generation based on machine learning includes:
数据获取模块,其配置成获取离子渗透发电的样本数据,数据获取模块包括;A data acquisition module, configured to acquire sample data of ion permeation power generation, the data acquisition module comprising:
测量单元,其测量离子渗透发电的多个物理参数;a measuring unit that measures a plurality of physical parameters of ion-permeation power generation;
无量纲转换单元,其连接所述测量单元且基于所述多个物理参数生成多个无量纲参数以及基于所述无量纲参数形成无量纲数组;A dimensionless conversion unit connected to the measuring unit and generating a plurality of dimensionless parameters based on the plurality of physical parameters and forming a dimensionless array based on the dimensionless parameters;
样本扩充单元,其连接所述无量纲转换单元且基于所述无量纲数组采用相似原理扩充得到扩充样本,所述扩充样本和所述无量纲数组构成样本数据,所述样本数据按预定比例分成训练数据和测试数据;A sample expansion unit connected to the dimensionless conversion unit and expanding the dimensionless array using a similar principle to obtain an expanded sample, wherein the expanded sample and the dimensionless array constitute sample data, and the sample data is divided into training data and test data according to a predetermined ratio;
归一化处理单元,其连接所述样本扩充单元且归一化所述样本数据;a normalization processing unit connected to the sample expansion unit and normalizing the sample data;
神经网络模块,其基于人工神经网络ANN配置成构建离子渗透发电的预测神经网络及神经网络训练,连接所述数据获取模块的神经网络模块包括多层网络层数,其子结构包括一个输入层,一个输出层以及四个全连接层,输入层神经元接收训练数据,隐含层和输出层的每一个神经元与之相邻层的所有神经元进行全连接,基于所述样本数据进行神经网络训练以构成离子渗透发电的预测神经网络;A neural network module, which is configured to construct a prediction neural network and neural network training for ion permeation power generation based on an artificial neural network ANN, the neural network module connected to the data acquisition module includes multiple network layers, and its substructure includes an input layer, an output layer and four fully connected layers, the input layer neurons receive training data, each neuron in the hidden layer and the output layer is fully connected to all neurons in the adjacent layers, and the neural network training is performed based on the sample data to form a prediction neural network for ion permeation power generation;
模型测试模块,其配置成调整离子渗透发电的预测神经网络中的超参数以得到离子渗透发电预测模型,模型测试模块包括;A model testing module, configured to adjust hyperparameters in a prediction neural network of ion permeation power generation to obtain an ion permeation power generation prediction model, the model testing module comprising:
超参数优化单元,其连接所述神经网络模块,超参数优化单元采用图形处理器GPU并行加速,激活函数非线性化以及反向传播算法的组合优化,更新权重w与偏置b以优化离子渗透发电的预测神经网络;A hyperparameter optimization unit connected to the neural network module, the hyperparameter optimization unit adopts a combination of GPU parallel acceleration, activation function nonlinearization and back propagation algorithm optimization to update the weight w and bias b to optimize the prediction neural network of ion permeation power generation;
测试单元,其连接所述数据获取模块和神经网络模块以基于所述测试数据测试所述离子渗透发电的预测神经网络,直到误差达到预期,保存模型作为离子渗透发电预测模型。A testing unit is connected to the data acquisition module and the neural network module to test the prediction neural network of the ion permeation power generation based on the test data until the error reaches the expectation, and the model is saved as the ion permeation power generation prediction model.
所述的基于机器学习的离子渗透发电的预测系统中,所述测量单元包括获得介电常数、浓度、离子扩散系数、纳米通道长度、半径和表面电荷密度的第一测量部、测量温度数据的温度传感器、测量输出功率P的功率级和测量能量转换效率η的第二测量部。In the prediction system of ion permeation power generation based on machine learning, the measurement unit includes a first measurement part for obtaining dielectric constant, concentration, ion diffusion coefficient, nanochannel length, radius and surface charge density, a temperature sensor for measuring temperature data, a power level for measuring output power P and a second measurement part for measuring energy conversion efficiency η.
一种利用所述的基于机器学习的离子渗透发电的预测系统的预测方法包括,A prediction method using the ion permeation power generation prediction system based on machine learning includes:
S100:测量单元测量离子渗透发电的多个物理参数,基于物理参数构建离子渗透发电有量纲方程,无量纲转换单元基于所述离子渗透发电有量纲方程生成离子渗透发电无量纲方程及其对应的无量纲数组;S100: a measuring unit measures a plurality of physical parameters of ion permeation power generation, constructs a dimensioned equation for ion permeation power generation based on the physical parameters, and a dimensionless conversion unit generates a dimensionless equation for ion permeation power generation and its corresponding dimensionless array based on the dimensioned equation for ion permeation power generation;
S200:样本扩充单元基于所述无量纲数组采用相似原理扩充得到扩充样本,所述扩充样本和所述无量纲数组构成样本数据,归一化处理单元归一化所述样本数据;S200: The sample expansion unit expands the dimensionless array by adopting a similarity principle to obtain an expanded sample, wherein the expanded sample and the dimensionless array constitute sample data, and the normalization processing unit normalizes the sample data;
S300:所述样本数据按预定比例分成训练数据和测试数据,神经网络模块基于人工神经网络配置成构建离子渗透发电的预测神经网络,基于所述样本数据进行神经网络训练以构成离子渗透发电的预测神经网络,其中,输出功率P和能量转换效率η为输出参数,而浓度C,高温端温度Th,低温端温度Tl,离子扩散系数D,介电常数ε,纳米通道长度L,纳米通道半径R和表面电荷密度σ的维度变量作为输入;S300: the sample data is divided into training data and test data according to a predetermined ratio, the neural network module is configured to construct a prediction neural network for ion permeation power generation based on an artificial neural network, and a neural network training is performed based on the sample data to construct a prediction neural network for ion permeation power generation, wherein the output power P and the energy conversion efficiency η are output parameters, and the concentration C, the high temperature end temperature Th , the low temperature end temperature Tl , the ion diffusion coefficient D, the dielectric constant ε, the nanochannel length L, the nanochannel radius R and the surface charge density σ are dimensional variables as inputs;
S400:超参数优化单元采用图形处理器GPU加速,激活函数非线性化以及反向传播算法的组合优化,更新权重w与偏置b以优化离子渗透发电的预测神经网络;S400: The hyperparameter optimization unit uses GPU acceleration, activation function nonlinearization, and a combination of back-propagation algorithms to update weights w and bias b to optimize the prediction neural network for ion permeation power generation.
S500:测试单元基于所述测试数据测试优化的离子渗透发电的预测神经网络,根据训练结果调整网络中的超参数,重复迭代直到误差达到预期,保存模型作为离子渗透发电预测模型。S500: The testing unit tests the optimized ion permeation power generation prediction neural network based on the test data, adjusts the hyperparameters in the network according to the training results, repeats the iteration until the error reaches the expected level, and saves the model as the ion permeation power generation prediction model.
所述的预测方法中,无量纲控制方程及其对应的无量纲数组为:In the prediction method, the dimensionless control equation and its corresponding dimensionless array are:
无量纲泊松方程: Dimensionless Poisson's equation:
无量纲能斯特-普朗克方程:The dimensionless Nernst–Planck equation:
无量纲连续性方程: Dimensionless continuity equation:
无量纲纳维-斯托克斯方程方程:The dimensionless Navier-Stokes equations:
无量纲能量方程: Dimensionless energy equation:
无量纲数组:Dimensionless array:
其中,为偏微分算子,ε为介电常数,φ为电势,F为法拉第常数,ci为第i种离子的离子浓度,zi为第i种离子的价电荷数,Di为第i种离子扩散系数,αi为第i种离子的简化Soret系数(其中i=1表示阳离子,i=2表示阴离子),σ为纳米通道表面电荷密度,L和R分别表示纳米通道长度和半径,u为速度,Rg为通用气体常数,T为温度,p为压力,μ为动力粘度,ρ为密度,Cp为比热,kf和ks分别为流体和固体导热系数,σf为电导率,ΔT为温度差,Ch为高浓度侧浓度,Cl为低浓度侧浓度。带*上标的参数为无量纲参数,ε*,φ*,ci *,u*,Di *,p*,μ*,σf *,Θ分别为无量纲介电常数、无量纲偏微分算子、无量纲电势、无量纲浓度、无量纲速度、无量纲扩散系数、无量纲压力、无量纲粘度、无量纲电导率、无量纲过余温度,带m下标的参数为特征参数,Di,m为特征扩散系数(其中i=1表示阳离子,i=2表示阴离子),Cm,μm,εm,Tm,σf,m分别为特征浓度、特征粘度、特征介电常数、特征温度、特征电导率。特别地,特征浓度Cm取为低浓度值,特征温度Tm取为平均温度,特征扩散系数Di,m、特征粘度μm、特征介电常数εm、特征电导率σf,m取为特征温度下的物性值。in, is the partial differential operator, ε is the dielectric constant, φ is the electric potential, F is the Faraday constant, ci is the ion concentration of the i-th ion, zi is the valence charge number of the i-th ion, Di is the diffusion coefficient of the i-th ion, αi is the simplified Soret coefficient of the i-th ion (where i = 1 represents a cation and i = 2 represents an anion), σ is the surface charge density of the nanochannel, L and R represent the length and radius of the nanochannel, u is the velocity, Rg is the universal gas constant, T is the temperature, p is the pressure, μ is the dynamic viscosity, ρ is the density, Cp is the specific heat, kf and ks are the thermal conductivity of the fluid and solid, σf is the electrical conductivity, ΔT is the temperature difference, Ch is the concentration on the high concentration side, and Cl is the concentration on the low concentration side. Parameters with superscript * are dimensionless parameters, ε * , φ * , c i * , u * , D i * , p * , μ * , σ f * , Θ are dimensionless dielectric constant, dimensionless partial differential operator, dimensionless potential, dimensionless concentration, dimensionless velocity, dimensionless diffusion coefficient, dimensionless pressure, dimensionless viscosity, dimensionless conductivity, dimensionless excess temperature, respectively. Parameters with subscript m are characteristic parameters. D i,m is characteristic diffusion coefficient (where i=1 represents cation, i=2 represents anion), C m , μ m , ε m , T m , σ f,m are characteristic concentration, characteristic viscosity, characteristic dielectric constant, characteristic temperature, characteristic conductivity, respectively. In particular, the characteristic concentration C m is taken as the low concentration value, the characteristic temperature T m is taken as the average temperature, the characteristic diffusion coefficient D i,m , the characteristic viscosity μ m , the characteristic dielectric constant ε m , and the characteristic conductivity σ f,m are taken as the physical property values at the characteristic temperature.
所述的预测方法中,无量纲数组简化为:其中,P为功率,η为效率,P*为无量纲功率。In the prediction method described, the dimensionless array is simplified to: Where P is power, η is efficiency, and P * is dimensionless power.
所述的预测方法中,利用相似原理,保证无量纲数组不变,改变其中的参数数值,得到对应的不同工况下的输出性能,通过有限数量的实验样本,实现对样本的扩充,满足了机器学习对原始数据集样本数的大量需求,具体如下式:In the prediction method, the similarity principle is used to ensure that the dimensionless array remains unchanged, and the parameter values therein are changed to obtain the corresponding output performance under different working conditions. Through a limited number of experimental samples, the sample expansion is achieved, which meets the large number of sample numbers of the original data set required by machine learning, as shown in the following formula:
ηj=η0 η j =η 0
其中,下标j表示待扩充样本,下标0表示已知样本,已知样本的输入输出参数均已知,扩充样本的输入参数如扩散系数Dj,浓度Cj,表面电荷密度σj,纳米通道半径Rj,介电常数εj是已知的,根据上式得到待扩充样本的功率和效率,实现样本扩充。Among them, subscript j represents the sample to be expanded, subscript 0 represents the known sample, the input and output parameters of the known sample are known, and the input parameters of the expanded sample such as diffusion coefficient D j , concentration C j , surface charge density σ j , nanochannel radius R j , and dielectric constant ε j are known. According to the above formula, the power and efficiency of the sample to be expanded are obtained to achieve sample expansion.
所述的预测方法中,对输入参数的维度变量进行归一化处理,归一为(0,1)区间,公式为:In the prediction method, the dimensional variables of the input parameters are normalized to the interval (0, 1), and the formula is:
其中,x表示样本数据原始值,xmin表示样本数据的最小值,xmax表示样本数据的最大值。Among them, x represents the original value of the sample data, x min represents the minimum value of the sample data, and x max represents the maximum value of the sample data.
所述的预测方法中,通过采用图形处理器并行加速,激活函数采用ReLU函数以实现非线性化,通过自适应矩估计和反向传播算法实现权重w和偏置b的更新,实现结构参数优化,损失函数采用均方差MSE,误差函数采用平均相对误差MRE,其中,ReLU,MSE,MRE的计算公式分别表示为:In the prediction method, the parallel acceleration of the graphics processor is adopted, the activation function adopts the ReLU function to realize nonlinearity, the weight w and the bias b are updated by the adaptive moment estimation and the back propagation algorithm, the structural parameter optimization is realized, the loss function adopts the mean square error MSE, and the error function adopts the mean relative error MRE, wherein the calculation formulas of ReLU, MSE, and MRE are respectively expressed as:
其中,x为输入变量值,n为每个批次的样本数,ytarget为样本标签值,youtput为网络模型预测值。Among them, x is the input variable value, n is the number of samples in each batch, y target is the sample label value, and y output is the predicted value of the network model.
所述的预测方法中,超参数优化包括对网络层数、各层神经元数目、优化器学习率以及mini-batch的大小优化。In the prediction method, hyperparameter optimization includes optimizing the number of network layers, the number of neurons in each layer, the optimizer learning rate, and the size of the mini-batch.
有益效果:Beneficial effects:
本发明通过对离子渗透发电控制方程的无量纲化,提出离子渗透发电物理过程的无量纲数组,同时忽略次要问题,减少了控制方程中的物理参数,获得简化的无量纲数组。简化的无量纲数组还考虑了温度对离子渗透发电的影响。利用相似原理,在无量纲控制参数不变的情况下,通过乘以相应的因子,将一个物理情况扩展到其他不同的情况,将一组无量纲样本转化为大量多组的实验样本,从而实现物理信息数据库的扩充,解决神经网络训练对数据集的样本要求。通过ANN将主导因素物理参数的维度变量作为输入,输出功率和能量转换效率为输出参数,建立了纳米通道几何结构、浓度差、离子物性和能量转换性能之间的非线性关系,最终获得具有高精度,高加速比的基于机器学习的离子渗透发电预测模型。The present invention proposes a dimensionless array of the physical process of ion permeation power generation by dimensionlessly transforming the control equation of ion permeation power generation, while ignoring minor issues, reducing the physical parameters in the control equation, and obtaining a simplified dimensionless array. The simplified dimensionless array also takes into account the influence of temperature on ion permeation power generation. By using the similarity principle, under the condition that the dimensionless control parameters remain unchanged, a physical situation is extended to other different situations by multiplying the corresponding factors, and a set of dimensionless samples is converted into a large number of experimental samples, thereby expanding the physical information database and solving the sample requirements of the data set for neural network training. Through ANN, the dimensional variables of the dominant factor physical parameters are used as input, and the output power and energy conversion efficiency are used as output parameters. The nonlinear relationship between the nanochannel geometry, concentration difference, ion properties and energy conversion performance is established, and finally a machine learning-based ion permeation power generation prediction model with high precision and high acceleration ratio is obtained.
所述说明仅是本发明技术方案的概述,为了能够使得本发明的技术手段更加清楚明白,达到本领域技术人员可依照说明书的内容予以实施的程度,并且为了能够让本发明的所述和其它目的、特征和优点能够更明显易懂,下面以本发明的具体实施方式进行举例说明。The above description is only an overview of the technical solution of the present invention. In order to make the technical means of the present invention clearer and to achieve the extent that those skilled in the art can implement it according to the contents of the specification, and in order to make the above and other purposes, features and advantages of the present invention more obvious and easy to understand, the specific implementation methods of the present invention are exemplified below.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
通过阅读下文优选的具体实施方式中的详细描述,本发明各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。说明书附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。显而易见地,下面描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。而且在整个附图中,用相同的附图标记表示相同的部件。By reading the detailed description of the preferred specific embodiments below, various other advantages and benefits of the present invention will become clear to those of ordinary skill in the art. The drawings in the specification are only for the purpose of illustrating the preferred embodiments and are not considered to be limitations of the present invention. Obviously, the drawings described below are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without creative work. Moreover, the same reference numerals are used to represent the same components throughout the drawings.
在附图中:In the attached picture:
图1为本公开一个实施例提供的一种基于机器学习的离子渗透发电预测系统的连接示意图;FIG1 is a connection diagram of an ion permeation power generation prediction system based on machine learning provided by one embodiment of the present disclosure;
图2为本公开另一个实施例提供的一种基于机器学习的离子渗透发电预测系统的预测方法的流程示意图;FIG2 is a flow chart of a prediction method of an ion permeation power generation prediction system based on machine learning provided by another embodiment of the present disclosure;
图3为本公开另一个实施例提供的ANN模型结构示意图;FIG3 is a schematic diagram of the structure of an ANN model provided by another embodiment of the present disclosure;
图4为本公开另一个实施例提供的一种基于机器学习的离子渗透发电预测系统的模型测试模块预测与仿真结果的性能比较图。FIG4 is a performance comparison diagram of predictions and simulation results of a model test module of an ion permeation power generation prediction system based on machine learning provided by another embodiment of the present disclosure.
以下结合附图和实施例对本发明作进一步的解释。The present invention is further explained below in conjunction with the accompanying drawings and embodiments.
具体实施方式DETAILED DESCRIPTION
下面将参照附图1至图4更详细地描述本发明的具体实施例。虽然附图中显示了本发明的具体实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。The specific embodiments of the present invention will be described in more detail below with reference to Figures 1 to 4. Although the specific embodiments of the present invention are shown in the drawings, it should be understood that the present invention can be implemented in various forms and should not be limited by the embodiments described herein. On the contrary, these embodiments are provided to enable a more thorough understanding of the present invention and to fully convey the scope of the present invention to those skilled in the art.
需要说明的是,在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可以理解,技术人员可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名词的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”或“包括”为一开放式用语,故应解释成“包含但不限定于”。说明书后续描述为实施本发明的较佳实施方式,然所述描述乃以说明书的一般原则为目的,并非用以限定本发明的范围。本发明的保护范围当视所附权利要求所界定者为准。It should be noted that certain words are used in the specification and claims to refer to specific components. Those skilled in the art should understand that technicians may use different nouns to refer to the same component. This specification and claims do not use the difference in nouns as a way to distinguish components, but use the difference in the functions of the components as the criterion for distinction. As mentioned throughout the specification and claims, "including" or "comprising" is an open term, so it should be interpreted as "including but not limited to". The subsequent description of the specification is a preferred embodiment of the present invention, but the description is based on the general principles of the specification and is not intended to limit the scope of the present invention. The scope of protection of the present invention shall be determined by the attached claims.
为便于对本发明实施例的理解,下而将结合附图以几个具体实施例为例做进一步的解释说明,且各个附图并不构成对本发明实施例的限定。To facilitate understanding of the embodiments of the present invention, several specific embodiments will be further explained below with reference to the accompanying drawings, and each of the accompanying drawings does not constitute a limitation on the embodiments of the present invention.
一个实施例中,如图1至图3所示,公开一个实施例提供的一种基于机器学习的离子渗透发电预测系统,包括数据获取模块,神经网络模块和模型测试模块;In one embodiment, as shown in FIG. 1 to FIG. 3 , an ion permeation power generation prediction system based on machine learning is disclosed, including a data acquisition module, a neural network module and a model testing module;
其中,所述数据获取模块用于建立离子渗透发电的输入输出数据库,并进行一定的预处理,以供神经网络模块使用。The data acquisition module is used to establish an input and output database of ion permeation power generation and perform certain preprocessing for use by the neural network module.
所述神经网络模块用于构建离子渗透发电的预测神经网络,并利用数据获取模块中的数据库进行神经网络训练。The neural network module is used to construct a prediction neural network for ion permeation power generation, and to train the neural network using the database in the data acquisition module.
所述模型测试模块用于调整神经网络预测模型中的超参数,并得到高精度、高加速比的离子渗透发电预测模型。The model testing module is used to adjust the hyperparameters in the neural network prediction model and obtain a high-precision, high-speed-up ratio ion permeation power generation prediction model.
所述的预测系统,其中,所述数据获取模块包括离子渗透发电有量纲方程、无量纲方程、无量纲数组、简化无量纲数组、样本扩充数据库、归一化预处理。The prediction system, wherein the data acquisition module includes ion permeation power generation dimensioned equations, dimensionless equations, dimensionless arrays, simplified dimensionless arrays, sample expansion database, and normalization preprocessing.
进一步地,根据所述的预测系统,所述有量纲控制方程。Further, according to the prediction system, the dimensionally controlled equation.
泊松方程: Poisson's equation:
能斯特-普朗克方程: Nernst-Planck equation:
连续性方程: Continuity equation:
纳维-斯托克斯方程方程: Navier-Stokes equations:
能量方程: Energy equation:
其中,为偏微分算子,ε为介电常数,φ为电势,F为法拉第常数,ci为第i种离子的离子浓度,zi为第i种离子的价电荷数,Di为第i种离子扩散系数,αi为第i种离子的简化Soret系数(其中i=1表示阳离子,i=2表示阴离子)。u为速度,Rg为通用气体常数,T为温度,p为压力,μ为动力粘度,ρ为密度,cp为比热,kf为流体导热系数,σf为流体的电导率,E为电场强度。in, is the partial differential operator, ε is the dielectric constant, φ is the electric potential, F is the Faraday constant, ci is the ion concentration of the i-th ion, zi is the valence charge number of the i-th ion, Di is the i-th ion diffusion coefficient, αi is the simplified Soret coefficient of the i-th ion (where i = 1 represents a cation and i = 2 represents an anion). u is the velocity, Rg is the universal gas constant, T is the temperature, p is the pressure, μ is the dynamic viscosity, ρ is the density, cp is the specific heat, kf is the thermal conductivity of the fluid, σf is the electrical conductivity of the fluid, and E is the electric field strength.
进一步地,根据所述的预测系统,对离子渗透能量转换进行无量纲分析,以统一其多物理参数。通过引入无量纲变量,得到无量纲控制方程及其对应的无量纲数组:Furthermore, according to the prediction system, a dimensionless analysis is performed on ion permeation energy conversion to unify its multi-physical parameters. By introducing dimensionless variables, the dimensionless control equation and its corresponding dimensionless array are obtained:
无量纲泊松方程: Dimensionless Poisson's equation:
无量纲能斯特-普朗克方程:The dimensionless Nernst–Planck equation:
无量纲连续性方程: Dimensionless continuity equation:
无量纲纳维-斯托克斯方程方程:The dimensionless Navier-Stokes equations:
无量纲能量方程: Dimensionless energy equation:
其中,σ为纳米通道表面电荷密度,ΔT为温度差。L和R分别表示纳米通道长度和半径。kf和ks分别为流体和固体导热系数。带*上标的参数为无量纲参数。ε*,φ*,ci *,u*,Di *,p*,μ*,σf *分别为无量纲介电常数、无量纲偏微分算子、无量纲电势、第i种离子的无量纲浓度、无量纲速度、无量纲扩散系数、无量纲压力、无量纲粘度、流体的无量纲电导率。无量纲参数均定义为有量纲参数和特征参数的比。Θ为无量纲过余温度,定义为(T-Tm)/ΔT。带m下标的参数为特征参数。Cm,Di,m,μm,εm,Tm,σfm分别为特征浓度、第i种离子的特征扩散系数、特征粘度、特征介电常数、特征温度、流体的特征电导率。特征浓度Cm可以取为低浓度值,特征温度Tm可以取平均温度。特征扩散系数Di,m、特征粘度μm、特征介电常数εm、特征电导率σf,m为在特征温度下的物性值。Where σ is the surface charge density of the nanochannel, and ΔT is the temperature difference. L and R represent the length and radius of the nanochannel, respectively. kf and ks are the thermal conductivity of the fluid and solid, respectively. Parameters with superscript * are dimensionless parameters. ε * , φ * , c i * , u * , D i * , p * , μ * , σ f * are the dimensionless dielectric constant, dimensionless partial differential operator, dimensionless potential, dimensionless concentration of the i-th ion, dimensionless velocity, dimensionless diffusion coefficient, dimensionless pressure, dimensionless viscosity, and dimensionless conductivity of the fluid, respectively. The dimensionless parameters are defined as the ratio of the dimensional parameter to the characteristic parameter. Θ is the dimensionless excess temperature, defined as (TT m )/ΔT. Parameters with the subscript m are characteristic parameters. C m , D i, m , μ m , ε m , T m , σ fm are the characteristic concentration, characteristic diffusion coefficient of the i-th ion, characteristic viscosity, characteristic dielectric constant, characteristic temperature, and characteristic conductivity of the fluid, respectively. The characteristic concentration C m can be taken as a low concentration value, and the characteristic temperature T m can be taken as the average temperature. The characteristic diffusion coefficient D i,m , the characteristic viscosity μ m , the characteristic dielectric constant ε m , and the characteristic conductivity σ f,m are physical property values at the characteristic temperature.
根据相似原理,提出离子渗透发电物理过程的无量纲数,获得由12个无量纲参数组成的初始无量纲数组:Based on the similarity principle, the dimensionless number of the ion permeation power generation physical process is proposed, and the initial dimensionless array consisting of 12 dimensionless parameters is obtained:
其中,Ch和Cl分别代表高离子浓度和低离子浓度。Here, Ch and Cl represent high ion concentration and low ion concentration, respectively.
进一步地,基于物理问题的基本假设,有:Furthermore, based on the basic assumptions of the physical problem, we have:
从而可以忽略对流以及焦耳热的影响,减少控制方程中的无量纲物理参数同时以单价的电解质溶液为参照,获得简化后的无量纲数组,从而实现离子渗透发电过程中物理参数的统一,可用于指导建模实验。简化后获得由6个无量纲参数组成的无量纲数组:Thus, the influence of convection and Joule heat can be ignored, the dimensionless physical parameters in the control equation can be reduced, and the simplified dimensionless array can be obtained by taking the monovalent electrolyte solution as a reference, thereby achieving the unification of physical parameters in the ion permeation power generation process, which can be used to guide modeling experiments. After simplification, a dimensionless array consisting of 6 dimensionless parameters is obtained:
具体实施例中,根据相似原理有,当具有相同的无量纲数组时,保证其不变,在不同物理工况下,可以通过下式反向推导得到有量纲的输出功率P和效率η:In a specific embodiment, according to the similarity principle, when the same dimensionless array is used, it is ensured to be unchanged. Under different physical conditions, the dimensional output power P and efficiency η can be obtained by reverse deduction through the following formula:
ηj=η0 η j =η 0
其中,下标j表示待扩充样本,下标0表示已知样本,已知样本的输入输出参数均已知。扩充样本的输入参数如扩散系数Dj,浓度Cj,表面电荷密度σj,纳米通道半径Rj,介电常数εj是已知的。在无量纲数不变的前提下,根据上式即可得到待扩充样本的功率和效率,实现样本扩充以满足机器学习对原始数据集样本数的大量需求。Among them, subscript j represents the sample to be expanded, subscript 0 represents the known sample, and the input and output parameters of the known sample are all known. The input parameters of the expanded sample, such as diffusion coefficient D j , concentration C j , surface charge density σ j , nanochannel radius R j , and dielectric constant ε j, are known. Under the premise that the dimensionless number remains unchanged, the power and efficiency of the sample to be expanded can be obtained according to the above formula, and sample expansion can be achieved to meet the large demand for the number of samples in the original data set for machine learning.
本实施例中,根据所述的预测系统,其中,对输入参数的维度变量进行归一化处理,归一为(0,1)区间,从而消除奇异样本数据导致的不良影响,具体公式为:In this embodiment, according to the prediction system, the dimensional variables of the input parameters are normalized to the interval (0, 1), thereby eliminating the adverse effects caused by singular sample data. The specific formula is:
其中,x表示样本数据原始值,xmin表示样本数据的最小值,xmax表示样本数据的最大值。Among them, x represents the original value of the sample data, x min represents the minimum value of the sample data, and x max represents the maximum value of the sample data.
经过归一化处理后,可以加快梯度下降最优求解的速度,也改善了训练网络的收敛性。After normalization, the speed of gradient descent optimal solution can be accelerated and the convergence of the training network can be improved.
根据所述的预测系统,其中,所述神经网络模块包括训练集输入、全连接层(隐藏层)、结构参数优化。According to the prediction system, the neural network module includes a training set input, a fully connected layer (hidden layer), and structural parameter optimization.
进一步地,根据所述的预测系统,采用人工神经网络ANN模型构建训练模型,由输入层,输出层和隐藏层组成,其中,输出功率P和能量转换效率η为输出参数,其余的物理参数,如浓度C,高温端温度Th,低温端温度T1,离子扩散系数D,介电常数ε,纳米通道长度L,纳米通道半径R,表面电荷密度σ的维度变量作为输入,以实现由输入到输出的非线性回归。Further, according to the prediction system, an artificial neural network ANN model is used to construct a training model, which consists of an input layer, an output layer and a hidden layer, wherein the output power P and the energy conversion efficiency η are output parameters, and the remaining physical parameters, such as concentration C, high temperature end temperature Th , low temperature end temperature T1 , ion diffusion coefficient D, dielectric constant ε, nanochannel length L, nanochannel radius R, and surface charge density σ are dimensional variables as input to achieve nonlinear regression from input to output.
进一步地,根据所述的预测系统,其中,通过采用GPU并行加速,激活函数选用ReLU以实现非线性化,同时避免梯度消失等现象。通过Adam优化器和反向传播BP算法实现权重w和偏置b的更新,实现结构参数优化。损失函数采用均方差MSE,误差函数采用平均相对误差MRE。其中MSE,MRE的计算公式分别表示为:Further, according to the prediction system, by adopting GPU parallel acceleration, the activation function uses ReLU to achieve nonlinearity and avoid gradient disappearance. The weight w and bias b are updated by Adam optimizer and back propagation BP algorithm to achieve structural parameter optimization. The loss function uses mean square error MSE, and the error function uses mean relative error MRE. The calculation formulas of MSE and MRE are respectively expressed as:
其中,x为输入变量值,n为每个批次的样本数,ytarget为样本标签值,youtput为网络模型预测值。误差通过反向传播,逐步迭代更新各层的参数权值,最终得到最小的Loss,训练直至收敛,表示模型初训练完毕。Among them, x is the input variable value, n is the number of samples in each batch, y target is the sample label value, and y output is the predicted value of the network model. The error is back-propagated, and the parameter weights of each layer are gradually updated iteratively to finally obtain the minimum Loss. The training is completed until convergence, indicating that the initial training of the model is completed.
进一步地,根据所述的预测系统,其中,所述模型测试模块包括超参数优化和离子渗透发电预测模型。Further, according to the prediction system, the model testing module includes hyperparameter optimization and ion permeation power generation prediction models.
进一步地,根据所述的预测系统,其中,所述超参数优化主要包括对网络层数、各层神经元数目、优化器学习率以及mini-batch的大小优化。Furthermore, according to the prediction system, the hyperparameter optimization mainly includes optimization of the number of network layers, the number of neurons in each layer, the optimizer learning rate and the size of mini-batch.
使用测试集对训练好的网络进行测试,根据测试结果修改模型。如果出现过拟合现象,便调整网络结构参数和模型超参数直至精度符合要求。若测试效果良好,则保存神经网络参数数据及其输出结果。Use the test set to test the trained network and modify the model according to the test results. If overfitting occurs, adjust the network structure parameters and model hyperparameters until the accuracy meets the requirements. If the test results are good, save the neural network parameter data and its output results.
进一步地,根据所述的预测系统,其中,所述离子渗透发电预测模型,可以实现高精度、高加速比的结果,指导离子渗透发电的实际过程。Furthermore, according to the prediction system, the ion permeation power generation prediction model can achieve high-precision and high-speed-up ratio results to guide the actual process of ion permeation power generation.
另一个实例中,如图2所示,本公开提供一种基于机器学习的离子渗透发电预测系统及构建方法,包括如下步骤:In another example, as shown in FIG2 , the present disclosure provides an ion permeation power generation prediction system and construction method based on machine learning, comprising the following steps:
S100:所述测量单元测量离子渗透发电的多个物理参数,基于物理参数构建离子渗透发电有量纲方程,无量纲转换单元基于所述离子渗透发电有量纲方程生成离子渗透发电无量纲方程及其对应的无量纲数组;S100: the measuring unit measures a plurality of physical parameters of ion permeation power generation, constructs a dimensioned equation for ion permeation power generation based on the physical parameters, and the dimensionless conversion unit generates a dimensionless equation for ion permeation power generation and its corresponding dimensionless array based on the dimensioned equation for ion permeation power generation;
S200:样本扩充单元基于所述无量纲数组采用相似原理扩充得到扩充样本,所述扩充样本和所述无量纲数组构成样本数据,归一化处理单元归一化所述样本数据;S200: The sample expansion unit expands the dimensionless array by adopting a similarity principle to obtain an expanded sample, wherein the expanded sample and the dimensionless array constitute sample data, and the normalization processing unit normalizes the sample data;
S300:所述样本数据按预定比例分成训练数据和测试数据,神经网络模块基于人工神经网络配置成构建离子渗透发电的预测神经网络,基于所述样本数据进行神经网络训练以构成离子渗透发电的预测神经网络,其中,输出功率P和能量转换效率η为输出参数,其余的物理参数,如浓度C,高温端温度Th,低温端温度T1,离子扩散系数D,介电常数ε,纳米通道长度L,纳米通道半径R,表面电荷密度σ的维度变量作为输入;S300: the sample data is divided into training data and test data according to a predetermined ratio, the neural network module is configured to construct a prediction neural network for ion permeation power generation based on an artificial neural network, and a neural network training is performed based on the sample data to construct a prediction neural network for ion permeation power generation, wherein the output power P and the energy conversion efficiency η are output parameters, and the remaining physical parameters, such as concentration C, high temperature end temperature Th , low temperature end temperature T1 , ion diffusion coefficient D, dielectric constant ε, nanochannel length L, nanochannel radius R, and dimensional variables of surface charge density σ are used as inputs;
S400:超参数优化单元采用GPU加速,激活函数非线性化以及反向传播算法的组合优化,更新权重w与偏置b以优化离子渗透发电的预测神经网络,数据处理结果通过损失函数MSE进行评估;S400: The hyperparameter optimization unit uses GPU acceleration, activation function nonlinearization, and a combination of back-propagation algorithms to update weights w and bias b to optimize the prediction neural network for ion permeation power generation. The data processing results are evaluated using the loss function MSE.
S500:测试单元基于所述测试数据测试优化的离子渗透发电的预测神经网络,根据训练结果调整网络中的超参数,重复迭代直到误差达到预期,保存模型作为离子渗透发电预测模型。S500: The testing unit tests the optimized ion permeation power generation prediction neural network based on the test data, adjusts the hyperparameters in the network according to the training results, repeats the iteration until the error reaches the expected level, and saves the model as the ion permeation power generation prediction model.
另一个实例中,如图3所示,本公开一个实施例提供的ANN模型结构示意图。In another example, as shown in FIG3 , a schematic diagram of the ANN model structure provided by an embodiment of the present disclosure is shown.
本发明的算例可直接读取浓度C,高温端温度Th,低温端温度Tl,离子扩散系数D,介电常数ε,纳米通道长度L,纳米通道半径R,表面电荷密度σ八个占主导因素的特征参数作为输入,同时将其对应的输出功率P和能量转换效率η两个输出参数作为训练样本的标签值。The calculation example of the present invention can directly read eight dominant characteristic parameters, namely, concentration C, high temperature end temperature Th , low temperature end temperature Tl , ion diffusion coefficient D, dielectric constant ε, nanochannel length L, nanochannel radius R, and surface charge density σ, as inputs, and simultaneously use the corresponding output power P and energy conversion efficiency η as label values of training samples.
在模型训练前,对数据集的输入输出参数进行归一化处理,归一为(0,1)区间,可以避免数值问题,使得网络快速收敛。Before model training, the input and output parameters of the data set are normalized to the interval (0, 1) to avoid numerical problems and enable the network to converge quickly.
网络成功读取数据集后,在ANN深度学习框架下训练神经网络,以实现非线性回归任务。该网络层数为6层,其子结构包括一个输入层,一个输出层以及四个隐含层。输入参数的维度为8,输出参数的维度为2,中间层参数分别为1000,500,200,20。输入层神经元接收输入信号,隐含层和输出层的每一个神经元与之相邻层的所有神经元进行全连接。After the network successfully reads the data set, the neural network is trained under the ANN deep learning framework to achieve nonlinear regression tasks. The network has 6 layers, and its substructure includes an input layer, an output layer, and four hidden layers. The dimension of the input parameter is 8, the dimension of the output parameter is 2, and the parameters of the intermediate layer are 1000, 500, 200, and 20 respectively. The input layer neurons receive input signals, and each neuron in the hidden layer and the output layer is fully connected to all neurons in the adjacent layers.
隐含层和输出层中每一个神经元的输入为前一层所有神经元输出值的加权和。假设xm n是神经网络中第n层的第m个神经元的输入值,ym n和bm n分别为该神经元的输出值和偏置,wim n-1为该神经元与第n-1层的第i个神经元的连接权重,则有如下公式:The input of each neuron in the hidden layer and the output layer is the weighted sum of the output values of all neurons in the previous layer. Assuming x m n is the input value of the mth neuron in the nth layer of the neural network, y m n and b m n are the output value and bias of the neuron respectively, and w im n-1 is the connection weight between the neuron and the i-th neuron in the n-1th layer, the following formula is obtained:
其中,σ()表示激活函数。Among them, σ() represents the activation function.
激活函数采用ReLU,以避免梯度消失,实现非线性化网络,ReLU的公式表示为:The activation function uses ReLU to avoid gradient disappearance and realize nonlinear network. The formula of ReLU is expressed as:
其中,x表示输入变量值。ReLU会使一部分神经元的输出为0,使得网络具有稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。经过逐层的特征提取后,最后输出为2个参数,即为神经网络的回归结果。Where x represents the input variable value. ReLU will make the output of some neurons 0, making the network sparse and reducing the interdependence of parameters, alleviating the occurrence of overfitting problems. After layer-by-layer feature extraction, the final output is 2 parameters, which is the regression result of the neural network.
损失函数采用均方差MSE,误差函数采用平均相对误差MRE,分别计算样本在训练数据集和测试数据集上的收敛误差。通过Adam优化器训练网络,学习率设定为0.001/(1+epoch×β),其中epoch为训练次数,β=0.001。误差反向传播,逐步迭代更新各层的参数权值,最终得到最小的损失,训练直至收敛,表示模型初训练完毕。The loss function uses the mean square error (MSE), and the error function uses the mean relative error (MRE). The convergence error of the sample on the training data set and the test data set is calculated respectively. The network is trained by the Adam optimizer, and the learning rate is set to 0.001/(1+epoch×β), where epoch is the number of training times and β=0.001. The error is back-propagated, and the parameter weights of each layer are updated step by step. Finally, the minimum loss is obtained. The training is completed until convergence, indicating that the initial training of the model is completed.
另一个实施例中,如图4所示,本公开一个实施例提供的一种基于机器学习的离子渗透发电预测系统的模型测试模块预测与仿真结果的性能比较图。为定量衡量所述离子渗透发电预测模型的预测效果,从而可以实现高精度、高加速比,有效指导离子渗透发电的实际过程,以输出功率P为例,从数据集中随机选取五个实验样本(Case 1-5)进行基于机器学习的离子渗透发电预测系统的预测结果与实验仿真结果的性能比较,其结果如图4和表1所示:In another embodiment, as shown in FIG4 , a performance comparison diagram of the model test module prediction and simulation results of an ion permeation power generation prediction system based on machine learning provided by an embodiment of the present disclosure is provided. In order to quantitatively measure the prediction effect of the ion permeation power generation prediction model, so as to achieve high precision and high acceleration ratio and effectively guide the actual process of ion permeation power generation, five experimental samples (Case 1-5) are randomly selected from the data set to compare the prediction results of the ion permeation power generation prediction system based on machine learning with the performance of the experimental simulation results, and the results are shown in FIG4 and Table 1:
表1模型预测结果与实验仿真结果的性能比较Table 1 Performance comparison between model prediction results and experimental simulation results
从图4和表1可以看出,对于随机选取的五个实验样本,对于输出功率结果,预测模型的总耗时远小于实验模拟的总耗时,节省了2047秒,加速比高达683,且预测模型的最大误差仅为2.39%。结果充分证明了,该预测模型具有较好的预测效果,具有一定的实用性,有效指导离子渗透发电的实际过程。As can be seen from Figure 4 and Table 1, for the five randomly selected experimental samples, for the output power results, the total time consumption of the prediction model is much less than the total time consumption of the experimental simulation, saving 2047 seconds, the speedup ratio is as high as 683, and the maximum error of the prediction model is only 2.39%. The results fully prove that the prediction model has a good prediction effect, has certain practicality, and effectively guides the actual process of ion permeation power generation.
预测方法对离子渗透发电能量转换的物理数学特性进行描述,通过对控制方程的无量纲化,提出简化的离子渗透发电物理过程的无量纲数组。在无量纲数的指导下下,将一组无量纲样本扩展为大量多组的样本,从而实现物理信息数据库的扩充,解决神经网络训练对数据集的样本要求。在此基础上,基于机器学习以经过归一化预处理的主导因素物理参数的维度变量为输入,输出功率和能量转换效率的效能为输出参数,构建ANN预测模型,通过采用GPU加速,激活函数、优化器以及反向传播算法的组合优化,预测模型的准确率达到97.6%,根据训练结果调整网络中的超参数,最终获得具有高精度,高加速比的基于机器学习的离子渗透发电预测模型,可指导渗透发电系统主导参数的判断和效能的预估。The prediction method describes the physical and mathematical characteristics of ion permeation power generation energy conversion. By non-dimensionalizing the control equation, a simplified dimensionless array of the physical process of ion permeation power generation is proposed. Under the guidance of dimensionless numbers, a set of dimensionless samples is expanded into a large number of groups of samples, thereby expanding the physical information database and solving the sample requirements of the neural network training data set. On this basis, based on machine learning, the dimensional variables of the dominant factor physical parameters that have been normalized and pre-processed are used as input, and the output power and energy conversion efficiency are used as output parameters to construct an ANN prediction model. By using GPU acceleration, activation function, optimizer and back-propagation algorithm combined optimization, the accuracy of the prediction model reaches 97.6%. The hyperparameters in the network are adjusted according to the training results, and finally a machine learning-based ion permeation power generation prediction model with high precision and high acceleration ratio is obtained, which can guide the judgment of the dominant parameters of the permeation power generation system and the estimation of efficiency.
尽管以上结合附图对本发明的实施方案进行了描述,但本发明并不局限于所述的具体实施方案和应用领域,所述的具体实施方案仅仅是示意性的、指导性的,而不是限制性的。本领域的普通技术人员在本说明书的启示下和在不脱离本发明权利要求所保护的范围的情况下,还可以做出很多种的形式,这些均属于本发明保护之列。Although the embodiments of the present invention are described above in conjunction with the accompanying drawings, the present invention is not limited to the specific embodiments and application fields described, and the specific embodiments described are only illustrative and instructive, rather than restrictive. A person skilled in the art can make many forms under the guidance of this specification and without departing from the scope of protection of the claims of the present invention, all of which belong to the protection of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211618751.0A CN115936227A (en) | 2022-12-15 | 2022-12-15 | Machine learning-based ion permeation power generation prediction system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211618751.0A CN115936227A (en) | 2022-12-15 | 2022-12-15 | Machine learning-based ion permeation power generation prediction system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115936227A true CN115936227A (en) | 2023-04-07 |
Family
ID=86655624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211618751.0A Pending CN115936227A (en) | 2022-12-15 | 2022-12-15 | Machine learning-based ion permeation power generation prediction system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115936227A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117393069A (en) * | 2023-11-06 | 2024-01-12 | 上海赫耳墨锶科技有限公司 | Method for determining electrolysis control data of target metal based on neural network |
CN117476125A (en) * | 2023-12-27 | 2024-01-30 | 豆黄金食品有限公司 | Dried beancurd stick raffinate recovery data processing system based on data analysis |
CN118280497A (en) * | 2024-06-03 | 2024-07-02 | 绵阳新启科技有限公司 | Software control system and method for resin new material production and treatment |
-
2022
- 2022-12-15 CN CN202211618751.0A patent/CN115936227A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117393069A (en) * | 2023-11-06 | 2024-01-12 | 上海赫耳墨锶科技有限公司 | Method for determining electrolysis control data of target metal based on neural network |
CN117476125A (en) * | 2023-12-27 | 2024-01-30 | 豆黄金食品有限公司 | Dried beancurd stick raffinate recovery data processing system based on data analysis |
CN117476125B (en) * | 2023-12-27 | 2024-04-05 | 豆黄金食品有限公司 | Dried beancurd stick raffinate recovery data processing system based on data analysis |
CN118280497A (en) * | 2024-06-03 | 2024-07-02 | 绵阳新启科技有限公司 | Software control system and method for resin new material production and treatment |
CN118280497B (en) * | 2024-06-03 | 2025-02-07 | 绵阳新启科技有限公司 | A software control system and method for resin material production and processing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115936227A (en) | Machine learning-based ion permeation power generation prediction system and method | |
CN109685252B (en) | Building energy consumption prediction method based on cyclic neural network and multi-task learning model | |
CN113051831B (en) | Modeling method of machine tool thermal error self-learning prediction model and thermal error control method | |
CN111260030B (en) | A-TCN-based power load prediction method and device, computer equipment and storage medium | |
CN110222828B (en) | An Unsteady Flow Field Prediction Method Based on Hybrid Deep Neural Network | |
Zhang et al. | Wind farm wake modeling based on deep convolutional conditional generative adversarial network | |
CN106022954B (en) | Multiple BP neural network load prediction method based on grey correlation degree | |
Reddy et al. | Estimation of MHD boundary layer slip flow over a permeable stretching cylinder in the presence of chemical reaction through numerical and artificial neural network modeling | |
CN108280552A (en) | Methods of electric load forecasting and system, storage medium based on deep learning | |
CN107292051A (en) | A kind of carbide chip chemically-mechanicapolish polishes the Forecasting Methodology of surface roughness | |
Heng et al. | Multiaxial fatigue life prediction for various metallic materials based on the hybrid CNN‐LSTM neural network | |
Chen et al. | A compressed lattice Boltzmann method based on ConvLSTM and ResNet | |
CN114137829B (en) | Proton exchange membrane fuel cell subspace identification method based on ALMBO optimization algorithm | |
CN115906399A (en) | An improved prediction method for product key process quality under small sample data | |
CN115031794B (en) | Novel gas-solid two-phase flow measuring method based on multi-feature graph convolution | |
Wang et al. | Adaptive knowledge distillation based lightweight intelligent fault diagnosis framework in IoT edge computing | |
Shahzad et al. | Scientific computing of radiative heat transfer with thermal slip effects near stagnation point by artificial neural network | |
Gu et al. | Modeling of pressure drop in reverse osmosis feed channels using multilayer artificial neural networks | |
CN114254416A (en) | Soil stress-strain relation determination method based on long-term and short-term memory deep learning | |
CN113203953A (en) | Lithium battery residual service life prediction method based on improved extreme learning machine | |
Petrova et al. | Neural network modelling of fermentation processes. Microorganisms cultivation model | |
Glaws et al. | Regularizing invertible neural networks for airfoil design through dimension reduction | |
Huang et al. | Tomographic reconstruction for 3D flame imaging using convolutional neural networks | |
CN117455536A (en) | Short-term coal price prediction method and system based on error compensation | |
CN112884739B (en) | A rapid detection method of rockfill filling density based on deep learning network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |