CN115933597A - Parameter setting method, system and computer equipment of control system - Google Patents
Parameter setting method, system and computer equipment of control system Download PDFInfo
- Publication number
- CN115933597A CN115933597A CN202211562589.5A CN202211562589A CN115933597A CN 115933597 A CN115933597 A CN 115933597A CN 202211562589 A CN202211562589 A CN 202211562589A CN 115933597 A CN115933597 A CN 115933597A
- Authority
- CN
- China
- Prior art keywords
- current
- control
- parameter combination
- control parameter
- performance evaluation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 121
- 238000011156 evaluation Methods 0.000 claims abstract description 223
- 230000004044 response Effects 0.000 claims abstract description 82
- 238000005259 measurement Methods 0.000 claims abstract description 76
- 238000005457 optimization Methods 0.000 claims description 134
- 238000004422 calculation algorithm Methods 0.000 claims description 47
- 238000004590 computer program Methods 0.000 claims description 41
- 239000002131 composite material Substances 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 23
- KZVPFSJPLBOVLO-UHFFFAOYSA-N trimethyl(2-methylprop-1-enoxy)silane Chemical compound CC(C)=CO[Si](C)(C)C KZVPFSJPLBOVLO-UHFFFAOYSA-N 0.000 claims 3
- 238000012937 correction Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000012423 maintenance Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 108010074864 Factor XI Proteins 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Feedback Control In General (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及核电厂控制系统技术领域,特别是涉及一种控制系统的参数整定方法、系统及计算机设备。The present application relates to the technical field of nuclear power plant control systems, and in particular to a control system parameter setting method, system and computer equipment.
背景技术Background Art
核电厂控制系统是核电厂安全、稳定、经济运行的基础,而核电厂控制系统的控制性能优化是通过控制参数的整定优化实现的,例如比例-微分-积分控制器(PID)参数整定优化,可以提高核电机组瞬态响应能力,从而提高核电厂运行的稳定性、安全性和经济性。同时,这也是核电厂控制系统设计、调试及运维的重要工作。The control system of a nuclear power plant is the basis for the safe, stable and economical operation of the nuclear power plant. The control performance optimization of the nuclear power plant control system is achieved through the tuning optimization of control parameters. For example, the tuning optimization of proportional-differential-integral controller (PID) parameters can improve the transient response capability of nuclear power units, thereby improving the stability, safety and economy of nuclear power plant operation. At the same time, this is also an important task in the design, commissioning and operation and maintenance of nuclear power plant control systems.
传统技术中,运维人员通常是基于自身经验,根据控制参数与控制性能的关系模型设计控制参数,并通过多次试验完成控制参数的优化。In traditional technology, operation and maintenance personnel usually design control parameters based on their own experience and the relationship model between control parameters and control performance, and optimize the control parameters through multiple experiments.
然而,上述方法中的控制参数的优化调整存在过度依赖专家经验,导致最终确定的控制参数的整定值难以保证核电厂控制系统的性能。However, the optimization adjustment of the control parameters in the above method is overly dependent on expert experience, resulting in the final setting value of the control parameter being difficult to guarantee the performance of the nuclear power plant control system.
发明内容Summary of the invention
基于此,有必要针对上述技术问题,提供一种能够避免过度依赖专家经验,提高最终确定的控制参数的准确性,从而能够保证核电厂控制系统的性能的控制系统的参数整定方法、系统及计算机设备。Based on this, it is necessary to provide a control system parameter setting method, system and computer equipment that can avoid over-reliance on expert experience and improve the accuracy of the final control parameters, thereby ensuring the performance of the nuclear power plant control system in response to the above technical problems.
第一方面,本申请提供了一种控制系统的参数整定方法。该方法包括:In a first aspect, the present application provides a method for parameter setting of a control system. The method comprises:
获取控制系统的当前次的实际可行控制参数组合,并向该控制系统发送该实际可行控制参数组合,以由该控制系统根据该实际可行控制参数组合运行以得到该控制系统的响应测量值;Acquire the current practical feasible control parameter combination of the control system, and send the practical feasible control parameter combination to the control system, so that the control system operates according to the practical feasible control parameter combination to obtain a response measurement value of the control system;
接收该控制系统发送的当前次的该响应测量值;Receiving the current response measurement value sent by the control system;
根据当前次的复合式控制性能指标对该当前次的响应测量值进行评估,得到当前次的控制性能评估结果;Evaluate the current response measurement value according to the current composite control performance index to obtain the current control performance evaluation result;
若该当前次的控制性能评估结果满足预设条件,则根据该当前次的实际可行控制参数组合,确定目标控制参数组合。If the current control performance evaluation result meets the preset conditions, the target control parameter combination is determined according to the current actual feasible control parameter combination.
在其中一个实施例中,该方法还包括:In one embodiment, the method further comprises:
确定该当前次的响应测量值与该控制系统的设定值之间的第一差值;Determining a first difference between the current response measurement and a set point of the control system;
根据该第一差值和该控制系统的运行时间确定当前次的时间乘绝对误差积分指标ITAE和时间乘平方误差积分指标ITSE;Determine the current time multiplied absolute error integral index ITAE and the current time multiplied square error integral index ITSE according to the first difference and the running time of the control system;
根据该当前次的ITAE、该ITAE对应的权重系数、该ITSE和该ITSE对应的权重系数,确定该当前次的复合式控制性能指标。The current composite control performance index is determined according to the current ITAE, the weight coefficient corresponding to the ITAE, the ITSE and the weight coefficient corresponding to the ITSE.
在其中一个实施例中,该获取控制系统的当前次的实际可行控制参数组合,包括:In one embodiment, the step of obtaining the current practical feasible control parameter combination of the control system includes:
获取优化系统的当前次的初始控制参数组合和优化算法参数;Obtain the current initial control parameter combination and optimization algorithm parameters of the optimization system;
对该当前次的初始控制参数组合进行归一化处理,得到第一控制参数组合;Normalizing the current initial control parameter combination to obtain a first control parameter combination;
根据该当前次的优化算法参数和该第一控制参数组合,通过优化算法对该第一控制参数组合进行优化,得到当前次的第二控制参数组合;According to the current optimization algorithm parameters and the first control parameter combination, the first control parameter combination is optimized by an optimization algorithm to obtain a current second control parameter combination;
对该第二控制参数组合进行还原处理得到该当前次的实际可行控制参数组合。The second control parameter combination is restored to obtain the current actual feasible control parameter combination.
在其中一个实施例中,该根据该当前次的优化算法参数和该第一控制参数组合,通过优化算法对该第一控制参数组合进行优化,得到当前次的第二控制参数组合,包括:In one embodiment, the first control parameter combination is optimized by an optimization algorithm according to the current optimization algorithm parameter and the first control parameter combination to obtain the current second control parameter combination, including:
确定该当前次的摄动步长与蒙特卡洛摄动向量的乘积结果;该当前次的摄动步长根据该当前次的优化算法参数确定;Determine the product result of the current perturbation step length and the Monte Carlo perturbation vector; the current perturbation step length is determined according to the current optimization algorithm parameters;
确定该第一控制参数组合与该当前次的乘积结果的求和结果,并将该求和结果作为该当前次的正摄动点;Determine a sum of the first control parameter combination and the current multiplication result, and use the sum as the current positive perturbation point;
若该当前次的正摄动点所对应的控制性能评估结果满足该预设条件,则将该当前次的正摄动点作为该当前次的第二控制参数组合。If the control performance evaluation result corresponding to the current positive perturbation point meets the preset condition, the current positive perturbation point is used as the current second control parameter combination.
在其中一个实施例中,该方法还包括:In one embodiment, the method further comprises:
若该当前次的正摄动点所对应的控制性能评估结果不满足该预设条件,则确定该第一控制参数组合与该当前次的乘积结果的第二差值,并将该第二差值作为该当前次的负摄动点;If the control performance evaluation result corresponding to the current positive perturbation point does not meet the preset condition, then determine the second difference between the first control parameter combination and the current multiplication result, and use the second difference as the current negative perturbation point;
若该当前次的负摄动点所对应的控制性能评估结果满足该预设条件,则将该负摄动点作为该当前次的第二控制参数组合。If the control performance evaluation result corresponding to the current negative perturbation point meets the preset condition, the negative perturbation point is used as the second control parameter combination for the current time.
在其中一个实施例中,该方法还包括:In one embodiment, the method further comprises:
若该当前次的负摄动点所对应的控制性能评估结果不满足该预设条件,则基于第一历史控制性能评估结果、第二历史控制性能评估结果、该当前次的正摄动点、该当前次的负摄动点以及该第一控制参数组合,得到该当前次的优化估计点;该第一历史控制性能评估结果为该当前次的正摄动点所对应的控制性能评估结果,该第二历史控制性能评估结果为该当前次的负摄动点所对应的控制性能评估结果;If the control performance evaluation result corresponding to the current negative perturbation point does not meet the preset condition, then based on the first historical control performance evaluation result, the second historical control performance evaluation result, the current positive perturbation point, the current negative perturbation point and the first control parameter combination, the current optimized estimation point is obtained; the first historical control performance evaluation result is the control performance evaluation result corresponding to the current positive perturbation point, and the second historical control performance evaluation result is the control performance evaluation result corresponding to the current negative perturbation point;
若该优化估计点所对应的控制性能评估结果满足该预设条件,则将该优化估计点作为该当前次的第二控制参数组合。If the control performance evaluation result corresponding to the optimized estimation point meets the preset condition, the optimized estimation point is used as the second control parameter combination for the current time.
在其中一个实施例中,该基于第一历史控制性能评估结果、第二历史控制性能评估结果、该当前次的正摄动点、该当前次的负摄动点以及该第一控制参数组合,得到该当前次的优化估计点,包括:In one embodiment, the current optimization estimation point is obtained based on the first historical control performance evaluation result, the second historical control performance evaluation result, the current positive perturbation point, the current negative perturbation point and the first control parameter combination, including:
确定该第一历史控制性能评估结果与该第二历史控制性能评估结果之间的第三差值;Determining a third difference between the first historical control performance evaluation result and the second historical control performance evaluation result;
确定该当前次的正摄动点与该当前次的负摄动点之间的第四差值;Determine a fourth difference between the current positive perturbation point and the current negative perturbation point;
确定该第三差值与该第四差值之间的比值;determining a ratio between the third difference and the fourth difference;
基于该比值和该当前次的第一控制参数组合,得到该当前次的优化估计点。Based on the ratio and the current first control parameter combination, the current optimization estimation point is obtained.
在其中一个实施例中,该方法还包括:In one embodiment, the method further comprises:
若该优化估计点所对应的控制性能评估结果不满足该预设条件,则获取该控制系统的下一次的实际可行控制参数组合,并向该控制系统发送该下一次的实际可行控制参数组合,以得到该下一次的实际可行控制参数组合所对应的响应测量值,并根据该下一次所对应的响应测量值确定该目标控制参数组合。If the control performance evaluation result corresponding to the optimization estimation point does not meet the preset condition, the next actual feasible control parameter combination of the control system is obtained, and the next actual feasible control parameter combination is sent to the control system to obtain the response measurement value corresponding to the next actual feasible control parameter combination, and the target control parameter combination is determined according to the next corresponding response measurement value.
在其中一个实施例中,该方法还包括:In one embodiment, the method further comprises:
获取该当前次之前的历史控制性能评估结果和预设的优化进程评估参数;Obtaining historical control performance evaluation results and preset optimization process evaluation parameters before the current time;
对该历史控制性能评估结果进行排序,得到迭代点性能序列排列结果;The historical control performance evaluation results are sorted to obtain the performance sequence arrangement results of the iteration points;
根据该预设的优化进程评估参数和该迭代点性能序列排列结果,对该迭代点性能序列排列结果进行平滑处理,得到平滑终止序列;According to the preset optimization process evaluation parameter and the performance sequence arrangement result of the iteration point, the performance sequence arrangement result of the iteration point is smoothed to obtain a smooth termination sequence;
根据该平滑终止序列,确定终止因子,并对该终止因子进行归一化处理,得到归一化后的终止因子;According to the smooth termination sequence, a termination factor is determined, and the termination factor is normalized to obtain a normalized termination factor;
根据该归一化后的终止因子和该预设的优化进程评估参数,得到该预设条件。The preset condition is obtained according to the normalized termination factor and the preset optimization process evaluation parameter.
在其中一个实施例中,该预设的优化进程评估参数包括终止因子下限阈值和终止状态系数下限阈值,该根据该归一化后的终止因子和该预设的优化进程评估参数,得到该预设条件,包括:In one embodiment, the preset optimization process evaluation parameters include a termination factor lower limit threshold and a termination state coefficient lower limit threshold, and the preset conditions are obtained according to the normalized termination factor and the preset optimization process evaluation parameters, including:
确定该归一化后的终止因子小于该终止因子下限阈值的第一次数;Determine the first number of times that the normalized termination factor is less than a lower threshold of the termination factor;
将该第一次数与该终止状态系数下限阈值相等,且该归一化后的终止因子小于该终止因子下限阈值时的条件确定为预设条件。The condition that the first number is equal to the lower limit threshold of the termination state coefficient and the normalized termination factor is less than the lower limit threshold of the termination factor is determined as the preset condition.
第二方面,本申请还提供了一种控制系统的参数整定系统。该参数整体系统包括:In a second aspect, the present application also provides a parameter setting system for a control system. The overall parameter setting system includes:
获取模块,用于获取控制系统的当前次的实际可行控制参数组合,并向该控制系统发送该实际可行控制参数组合,以由该控制系统根据该实际可行控制参数组合运行以得到该控制系统的响应测量值;An acquisition module, used for acquiring a current practical feasible control parameter combination of the control system, and sending the practical feasible control parameter combination to the control system, so that the control system operates according to the practical feasible control parameter combination to obtain a response measurement value of the control system;
接收模块,用于接收该控制系统发送的当前次的该响应测量值;A receiving module, used for receiving the current response measurement value sent by the control system;
评估模块,用于根据当前次的复合式控制性能指标对该当前次的响应测量值进行评估,得到当前次的控制性能评估结果;An evaluation module, used to evaluate the current response measurement value according to the current composite control performance index to obtain the current control performance evaluation result;
第一确定模块,用于若该当前次的控制性能评估结果满足预设条件,则根据该当前次的实际可行控制参数组合,确定目标控制参数组合。The first determination module is used to determine a target control parameter combination according to the current actual feasible control parameter combination if the current control performance evaluation result meets a preset condition.
第三方面,本申请还提供了一种计算机设备。该计算机设备包括存储器和处理器,该存储器存储有计算机程序,该处理器执行该计算机程序时实现上述第一方面中任一方法的步骤。In a third aspect, the present application further provides a computer device, which includes a memory and a processor, wherein the memory stores a computer program, and the processor implements the steps of any method in the first aspect when executing the computer program.
第四方面,本申请还提供了一种计算机可读存储介质。该计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述第一方面中任一方法的步骤。In a fourth aspect, the present application further provides a computer-readable storage medium having a computer program stored thereon, which implements the steps of any method in the first aspect when executed by a processor.
第五方面,本申请还提供了一种计算机程序产品。该计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述第一方面中任一方法的步骤。In a fifth aspect, the present application further provides a computer program product, which includes a computer program, and when the computer program is executed by a processor, the steps of any method in the first aspect are implemented.
上述控制系统的参数整定方法、系统及计算机设备,通过获取控制系统的当前次的实际可行控制参数组合,并向控制系统发送实际可行控制参数组合,以由控制系统根据实际可行控制参数组合运行以得到控制系统的响应测量值,进而接收控制系统发送的当前次的响应测量值,从而根据当前次的复合式控制性能指标对当前次的响应测量值进行评估,得到当前次的控制性能评估结果,若当前次的控制性能评估结果满足预设条件,则根据当前次的实际可行控制参数组合,确定目标控制参数组合。由于控制系统根据当前次的实际可行控制参数组合运行以得到控制系统的响应测量值,进而根据当前次的复合式控制性能指标对当前次的响应测量值进行评估,得到当前次的控制性能评估结果,从而判断当前次的控制性能评估结果是否满足预设条件,若当前次的控制性能评估结果满足预设条件,则根据当前次的实际可行控制参数组合,确定目标控制参数组合,由于本实施例无需依赖运维人员的自身经验,并且最终确定的目标控制参数组合是根据满足预设条件的控制性能评估结果所对应的实际可行控制参数确定的参数组合,从而能够提高最终确定的控制参数的准确性,保证核电厂控制系统的性能。The parameter setting method, system and computer equipment of the above-mentioned control system obtain the current actual feasible control parameter combination of the control system and send the actual feasible control parameter combination to the control system, so that the control system operates according to the actual feasible control parameter combination to obtain the response measurement value of the control system, and then receives the current response measurement value sent by the control system, thereby evaluating the current response measurement value according to the current composite control performance index to obtain the current control performance evaluation result. If the current control performance evaluation result meets the preset conditions, the target control parameter combination is determined according to the current actual feasible control parameter combination. Since the control system operates according to the current actual feasible control parameter combination to obtain the response measurement value of the control system, and then evaluates the current response measurement value according to the current composite control performance index to obtain the current control performance evaluation result, it is judged whether the current control performance evaluation result meets the preset conditions. If the current control performance evaluation result meets the preset conditions, the target control parameter combination is determined according to the current actual feasible control parameter combination. Since this embodiment does not need to rely on the experience of the operation and maintenance personnel themselves, and the target control parameter combination finally determined is the parameter combination determined according to the actual feasible control parameters corresponding to the control performance evaluation result that meets the preset conditions, it is possible to improve the accuracy of the control parameters finally determined and ensure the performance of the nuclear power plant control system.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本申请实施例提供的一种控制系统的参数整定方法的应用环境图;FIG1 is an application environment diagram of a control system parameter setting method provided by an embodiment of the present application;
图2为本申请实施例提供的一种控制系统的参数整定方法的流程示意图;FIG2 is a flow chart of a method for parameter setting of a control system provided in an embodiment of the present application;
图3为本申请实施例提供的一种预设条件得到的方法流程示意图;FIG3 is a schematic diagram of a method flow chart of obtaining a preset condition provided in an embodiment of the present application;
图4为本申请实施例提供的一种当前次的复合式控制性能指标的确定方法的流程示意图;FIG4 is a flow chart of a method for determining a current composite control performance index provided in an embodiment of the present application;
图5为本申请实施例提供的一种实际可行控制参数组合的获取方法的流程示意图;FIG5 is a flow chart of a method for obtaining a practical and feasible control parameter combination provided in an embodiment of the present application;
图6为本申请实施例提供的一种当前次的第二控制参数组合的确定方法的流程示意图;FIG6 is a schematic flow chart of a method for determining a current second control parameter combination provided by an embodiment of the present application;
图7为本申请提供的一种当前次的负摄动点的确定方法的流程示意图;FIG7 is a schematic diagram of a flow chart of a method for determining a current negative perturbation point provided by the present application;
图8为本申请实施例提供的一种当前次的优化估计点的获取方法的流程示意图;FIG8 is a schematic diagram of a flow chart of a method for obtaining a current optimization estimation point provided by an embodiment of the present application;
图9为本申请实施例提供的另一种控制系统的参数整定方法的流程示意图;FIG9 is a flow chart of another control system parameter setting method provided in an embodiment of the present application;
图10为本申请实施例提供的一种控制系统的参数整定系统的结构框图;FIG10 is a structural block diagram of a parameter setting system of a control system provided in an embodiment of the present application;
图11为本申请实施例提供的一种计算机设备的内部结构图。FIG. 11 is an internal structure diagram of a computer device provided in an embodiment of the present application.
具体实施方式DETAILED DESCRIPTION
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solution and advantages of the present application more clearly understood, the present application is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application and are not used to limit the present application.
随着数字化核电厂的广泛投用,利用电厂数据实现核电厂控制系统性能优化,可保障核电站安全运行,使核电站的经济效益和社会效益显著。目前国内外对核电厂控制系统的控制性能优化方法通常有:With the widespread use of digital nuclear power plants, the use of power plant data to optimize the performance of nuclear power plant control systems can ensure the safe operation of nuclear power plants and make the economic and social benefits of nuclear power plants significant. At present, the control performance optimization methods for nuclear power plant control systems at home and abroad are usually:
一是试凑法,通常是工程师根据操作经验不断调整控制参数的整定值并进行试验,直至找到一组最优的控制参数组合。但此方法过度依赖于工程师的经验,同时控制参数的整定过程耗时费力且整定值的最优性不能得到保证。The first is the trial and error method, which usually involves engineers constantly adjusting the setting values of control parameters based on their operating experience and conducting experiments until an optimal combination of control parameters is found. However, this method is overly dependent on the experience of engineers, and the control parameter setting process is time-consuming and laborious, and the optimality of the setting value cannot be guaranteed.
二是经验公式法,例如Ziegler-Nichols整定方法和继电反馈方法,且该方法主要用于PID参数整定。通常需要工程师先通过暂态响应试验、控制参数估计或频率响应试验获得模型,然后再根据经验整定公式给出参数整定值。虽然该方法实施简单,但由于过度依赖于模型,且模型的精确度难以或不可能获得,并经验公式的选取需要依赖于工程师经验以及对过程特性的了解程度。因此,确定的控制参数整定值并非是最优值。The second is the empirical formula method, such as the Ziegler-Nichols setting method and Relay feedback method, and this method is mainly used for PID parameter tuning. Usually engineers need to obtain the model through transient response test, control parameter estimation or frequency response test, and then give the parameter setting value according to the empirical tuning formula. Although this method is simple to implement, it is overly dependent on the model, and the accuracy of the model is difficult or impossible to obtain, and the selection of the empirical formula depends on the engineer's experience and understanding of the process characteristics. Therefore, the determined control parameter setting value is not the optimal value.
三是建立在控制性能模型已知情况下的优化方法。假定控制性能与控制参数间的模型已知,通过模型的优化来实现控制参数的最优化。但由于控制性能与控制参数间的相关关系非常复杂,通常是难以获得精确的模型。The third is the optimization method based on the known control performance model. Assuming that the model between control performance and control parameters is known, the control parameters are optimized by optimizing the model. However, since the correlation between control performance and control parameters is very complex, it is usually difficult to obtain an accurate model.
四是以粒子群优化算法(PSO)为典型的智能优化方法,虽然该优化方法不依赖于控制性能模型,但是需要进行大量试验来完成控制参数的整定,寻优成本极高,并不适合于在工程设计、调试、运维过程中投用。Fourth, the particle swarm optimization algorithm (PSO) is a typical intelligent optimization method. Although this optimization method does not rely on the control performance model, it requires a large number of experiments to complete the adjustment of control parameters. The optimization cost is extremely high and it is not suitable for use in engineering design, debugging, and operation and maintenance.
然而上述优化方法中均存在对模型准确性要求高、寻优成本高且过度依赖设计、调试、运维人员、工程师等专家经验、导致最终确定的控制参数整定值难以保证核电厂控制系统的性能,若人为设定不当,导致电厂非计划停机、停堆等人因失效高风险活动的意外工况。However, the above optimization methods all have high requirements for model accuracy, high optimization costs, and excessive reliance on the experience of experts such as designers, commissioning, operation and maintenance personnel, and engineers. As a result, the final control parameter setting values are difficult to guarantee the performance of the nuclear power plant control system. If they are improperly set manually, they may lead to unexpected operating conditions such as unplanned shutdowns and reactor shutdowns of power plants and other high-risk activities due to human failures.
为了解决上述技术问题,本申请实施例提供了一种控制系统的参数整定方法,可以应用于如图1所示的应用环境中。其中,控制系统102通过网络与优化系统104进行通信。其中,控制系统102部署于各种个人计算机、笔记本电脑、智能手机和平板电脑上。优化系统104部署于计算机设备上。In order to solve the above technical problems, the embodiment of the present application provides a parameter setting method of a control system, which can be applied in the application environment shown in FIG1. The
在一个实施例中,如图2所示,图2是本申请实施例提供的一种控制系统的参数整定方法的流程示意图,该方法可以应用于上述的优化系统,该优化系统部署于计算机设备上。该方法包括以下步骤:In one embodiment, as shown in FIG2 , FIG2 is a flow chart of a control system parameter setting method provided by an embodiment of the present application, and the method can be applied to the above-mentioned optimization system, which is deployed on a computer device. The method includes the following steps:
S201、获取控制系统的当前次的实际可行控制参数组合,并向控制系统发送实际可行控制参数组合,以由控制系统根据实际可行控制参数组合运行以得到控制系统的响应测量值。S201. Acquire the current practical feasible control parameter combination of the control system, and send the practical feasible control parameter combination to the control system, so that the control system operates according to the practical feasible control parameter combination to obtain a response measurement value of the control system.
本实施例中,将当前次的实际可行控制参数组合通过数据通讯接口发送给控制系统,控制系统根据当前次的实际可行控制参数组合修改控制系统的运行控制参数,并运行控制试验以得到控制系统的响应测量值。例如,控制系统为核电厂控制系统,则核电厂控制系统依据实际可行迭代控制参数组合修改核电厂控制系统的运行控制参数,测定标称瞬态工况下核电厂控制系统的响应,以得到核电厂控制系统的响应测量值。In this embodiment, the current practical feasible control parameter combination is sent to the control system through the data communication interface, and the control system modifies the operation control parameters of the control system according to the current practical feasible control parameter combination, and runs the control test to obtain the response measurement value of the control system. For example, if the control system is a nuclear power plant control system, the nuclear power plant control system modifies the operation control parameters of the nuclear power plant control system according to the practical feasible iterative control parameter combination, and measures the response of the nuclear power plant control system under the nominal transient condition to obtain the response measurement value of the nuclear power plant control system.
S202、接收控制系统发送的当前次的响应测量值。S202: Receive the current response measurement value sent by the control system.
结合上述举例进行说明,通过接收核电厂控制系统的检测传感单元发送的核电厂控制系统的响应测量值。The above example is used to illustrate the response measurement value of the nuclear power plant control system sent by the detection sensor unit of the nuclear power plant control system.
S203、根据当前次的复合式控制性能指标对当前次的响应测量值进行评估,得到当前次的控制性能评估结果。S203. Evaluate the current response measurement value according to the current composite control performance index to obtain the current control performance evaluation result.
本实施例中,复合式控制性能指标是通过当前次的时间乘绝对误差积分指标(Integral Time Absolute Error,ITAE)、ITAE对应的权重系数λ2、时间乘平方误差积分指标(Integral of Timed Square Error,ITSE)和ITSE对应的权重系数1-λ2确定的。In this embodiment, the composite control performance index is determined by the current time absolute error integral index (ITAE), the weight coefficient λ 2 corresponding to ITAE, the time square error integral index (ITSE) and the weight coefficient 1-λ 2 corresponding to ITSE.
S204、若当前次的控制性能评估结果满足预设条件,则根据当前次的实际可行控制参数组合,确定目标控制参数组合。S204: If the current control performance evaluation result meets the preset conditions, determine the target control parameter combination according to the current actual feasible control parameter combination.
本实施例中的预设条件是根据所有实际可行控制参数组合对应的控制性能评估结果和优化进程评估参数确定。The preset conditions in this embodiment are determined based on the control performance evaluation results and optimization process evaluation parameters corresponding to all practical feasible control parameter combinations.
本实施例提供的方法,通过获取控制系统的当前次的实际可行控制参数组合,并向控制系统发送实际可行控制参数组合,以由控制系统根据实际可行控制参数组合运行以得到控制系统的响应测量值,进而接收控制系统发送的当前次的响应测量值,从而根据当前次的复合式控制性能指标对当前次的响应测量值进行评估,得到当前次的控制性能评估结果,若当前次的控制性能评估结果满足预设条件,则根据当前次的实际可行控制参数组合,确定目标控制参数组合。由于控制系统根据当前次的实际可行控制参数组合运行以得到控制系统的响应测量值,进而根据当前次的复合式控制性能指标对当前次的响应测量值进行评估,得到当前次的控制性能评估结果,从而判断当前次的控制性能评估结果是否满足预设条件,若当前次的控制性能评估结果满足预设条件,则根据当前次的实际可行控制参数组合,确定目标控制参数组合,由于本实施例无需依赖运维人员的自身经验,并且最终确定的目标控制参数组合按照此方法直至得到是根据满足预设条件的控制性能评估结果所对应的实际可行控制参数确定的参数组合,从而能够提高最终确定的控制参数的准确性,保证核电厂控制系统的性能。The method provided in this embodiment obtains the actual feasible control parameter combination of the control system at the current time, and sends the actual feasible control parameter combination to the control system, so that the control system operates according to the actual feasible control parameter combination to obtain the response measurement value of the control system, and then receives the current response measurement value sent by the control system, thereby evaluating the current response measurement value according to the current composite control performance index to obtain the current control performance evaluation result. If the current control performance evaluation result meets the preset conditions, the target control parameter combination is determined according to the current actual feasible control parameter combination. Since the control system operates according to the current actual feasible control parameter combination to obtain the response measurement value of the control system, and then evaluates the current response measurement value according to the current composite control performance index to obtain the current control performance evaluation result, it is judged whether the current control performance evaluation result meets the preset conditions. If the current control performance evaluation result meets the preset conditions, the target control parameter combination is determined according to the current actual feasible control parameter combination. Since this embodiment does not need to rely on the experience of the operation and maintenance personnel themselves, and the target control parameter combination finally determined is obtained according to this method until a parameter combination determined according to the actual feasible control parameters corresponding to the control performance evaluation result that meets the preset conditions is obtained, the accuracy of the finally determined control parameters can be improved to ensure the performance of the nuclear power plant control system.
参照图3,图3为本申请实施例提供的一种预设条件得到的方法流程示意图。本实施例涉及的是如何得到预设条件的一种可能的实现方式。在上述实施例的基础上,具体包括如下步骤:Referring to FIG. 3 , FIG. 3 is a flow chart of a method for obtaining a preset condition provided in an embodiment of the present application. This embodiment relates to a possible implementation method of how to obtain the preset condition. Based on the above embodiment, it specifically includes the following steps:
S301、获取当前次之前的历史控制性能评估结果和预设的优化进程评估参数。S301, obtaining historical control performance evaluation results before the current time and preset optimization process evaluation parameters.
其中,获取当前次之前的所有实际可行控制参数组合对应的历史控制性能评估结果,并存储到序列中,得到历史迭代点性能序列SH。并将当前次的控制性能评估结果存储到历史迭代点性能序列SH中,更新历史迭代点性能序列SH。其中,优化进程评估参数包括:终止状态系数初值κ,终止状态系数下限阈值κF,终止因子下限阈值ζT,平滑系数λ,滑动终止系数η。The historical control performance evaluation results corresponding to all practical feasible control parameter combinations before the current time are obtained and stored in the sequence to obtain the historical iteration point performance sequence S H . The current control performance evaluation result is stored in the historical iteration point performance sequence S H , and the historical iteration point performance sequence S H is updated. The optimization process evaluation parameters include: the initial value of the termination state coefficient κ, the lower limit threshold of the termination state coefficient κ F , the lower limit threshold of the termination factor ζ T , the smoothing coefficient λ, and the sliding termination coefficient η.
例如,将当前次之前的所有实际可行控制参数组合分别对应的历史控制性能评估结果Y1、Y2、Y3和Y4存储到序列中,得到历史迭代点性能序列SH{Y1、Y2、Y3、Y4},将当前次的实际可行控制参数组合对应的控制性能评估结果Y5存储到历史迭代点性能序列SH{Y1、Y2、Y3、Y4},更新历史迭代点性能序列SH为{Y1、Y2、Y3、Y4、Y5}。For example, all practically feasible control parameters before the current time are combined The corresponding historical control performance evaluation results Y 1 , Y 2 , Y 3 and Y 4 are stored in the sequence to obtain the historical iteration point performance sequence S H {Y 1 , Y 2 , Y 3 , Y 4 }. The actual feasible control parameter combination of the current time The corresponding control performance evaluation result Y5 is stored in the historical iteration point performance sequence SH { Y1 , Y2 , Y3 , Y4 }, and the historical iteration point performance sequence SH is updated to { Y1 , Y2 , Y3 , Y4 , Y5 }.
S302、对历史控制性能评估结果进行排序,得到迭代点性能序列排列结果。S302: Sort the historical control performance evaluation results to obtain the iteration point performance sequence arrangement results.
其中,将历史迭代点性能序列SH中所有实际可行控制参数组合对应的控制性能评估结果根据控制性能评估结果进行排序,得到迭代点性能序列排列结果,即相对最优迭代点性能序列SRO,并基于当前次的实际可行控制参数组合对应的控制性能评估结果进行排序,更新相对最优迭代点性能序列SRO,当前次的实际可行控制参数组合指新的实际可行控制参数组合,指相对于当前次之前的历史次的实际可行控制参数组合为新的参数组合。Among them, the control performance evaluation results corresponding to all actual feasible control parameter combinations in the historical iteration point performance sequence SH are sorted according to the control performance evaluation results to obtain the iteration point performance sequence arrangement result, that is, the relatively optimal iteration point performance sequence SRO , and the control performance evaluation results corresponding to the current actual feasible control parameter combination are sorted to update the relatively optimal iteration point performance sequence SRO . The current actual feasible control parameter combination refers to the new actual feasible control parameter combination, which refers to the new parameter combination relative to the actual feasible control parameter combination of the historical times before the current time.
结合上述举例进行说明:根据控制性能评估结果对历史迭代点性能序列SH中所有控制性能评估结果进行排序后为Y1>Y3>Y2>Y4,则相对最优迭代点性能序列SRO为{Y1、Y3、Y2、Y4},由于新的实际可行控制参数组合对应的控制性能评估结果Y5的控制性能优于相对最优迭代点性能序列SRO{Y1、Y3、Y2、Y4}中任意一个控制性能评估结果,则更新相对最优迭代点性能序列SRO为{Y5、Y1、Y3、Y2、Y4}。Combined with the above example, all control performance evaluation results in the historical iteration point performance sequence SH are sorted according to the control performance evaluation results to be Y 1 >Y 3 >Y 2 >Y 4 , then the relative optimal iteration point performance sequence SR0 is {Y 1 , Y 3 , Y 2 , Y 4 }. If the control performance of the corresponding control performance evaluation result Y 5 is better than any control performance evaluation result in the relative optimal iteration point performance sequence S RO {Y 1 , Y 3 , Y 2 , Y 4 }, the relative optimal iteration point performance sequence S RO is updated to {Y 5 , Y 1 , Y 3 , Y 2 , Y 4 }.
其中,相对最优迭代点性能序列SRO具体通过如下公式(1)计算:The relative optimal iteration point performance sequence S RO is specifically calculated by the following formula (1):
SRO(i)=min(SH) (1)S RO (i) = min (S H ) (1)
其中,i表示最优迭代点性能序列SRO的第i个数。Wherein, i represents the i-th number of the optimal iteration point performance sequence S RO .
S303、根据预设的优化进程评估参数和迭代点性能序列排列结果,对迭代点性能序列排列结果进行平滑处理,得到平滑终止序列。S303: Smoothing the results of the performance sequence arrangement of the iteration points according to the preset optimization process evaluation parameters and the results of the performance sequence arrangement of the iteration points to obtain a smoothed termination sequence.
其中,对迭代点性能序列排列结果进行平滑处理,得到平滑终止序列,具体包括:Among them, the arrangement result of the iteration point performance sequence is smoothed to obtain a smooth termination sequence, which specifically includes:
将迭代点性能序列排列结果,即相对最优迭代点性能序列SRO通过滑动平均方法进行平滑处理,获得平滑趋势序列SST;对平滑趋势序列SST再进行平滑处理,得到平滑终止序列STM,其中,平滑终止序列STM用于控制实际可行控制参数组合迭代终止。The result of arranging the iteration point performance sequence, that is, the relatively optimal iteration point performance sequence S RO, is smoothed by a sliding average method to obtain a smooth trend sequence S ST ; the smooth trend sequence S ST is further smoothed to obtain a smooth termination sequence S TM , wherein the smooth termination sequence S TM is used to control the termination of the iteration of the actual feasible control parameter combination.
其中,平滑趋势序列SST具体通过如下公式(2)计算:The smoothed trend sequence S ST is calculated by the following formula (2):
其中,n是参数的维数,λ是平滑系数,k1表示最优迭代点性能序列SRO的第k1个数。Among them, n is the dimension of the parameter, λ is the smoothing coefficient, and k 1 represents the k 1th number of the optimal iteration point performance sequence S RO .
平滑终止序列STM具体通过如下公式(3)计算:The smooth termination sequence S TM is specifically calculated by the following formula (3):
其中,η是滑动终止系数。Where η is the sliding termination coefficient.
S304、根据平滑终止序列,确定终止因子,并对终止因子进行归一化处理,得到归一化后的终止因子。S304: Determine a termination factor according to the smoothed termination sequence, and normalize the termination factor to obtain a normalized termination factor.
其中,根据平滑终止序列,确定终止因子,并对终止因子进行归一化处理,得到归一化后的终止因子,具体包括:Among them, according to the smooth termination sequence, the termination factor is determined, and the termination factor is normalized to obtain the normalized termination factor, which specifically includes:
根据平滑终止序列STM计算差分控制序列ΔSTM;根据差分控制序列ΔSTM计算终止因子ξ(i),并对终止因子ξ(i)进行归一化处理,得到归一化后的终止因子ζ(i)。A differential control sequence ΔS TM is calculated according to the smoothed termination sequence S TM ; a termination factor ξ(i) is calculated according to the differential control sequence ΔS TM , and the termination factor ξ(i) is normalized to obtain a normalized termination factor ζ(i).
其中,差分控制序列ΔSTM具体通过如下公式(4)计算:The differential control sequence ΔS TM is specifically calculated by the following formula (4):
其中,归一化后的终止因子ζ(i)具体通过如下公式(5)和(6)计算:The normalized termination factor ζ(i) is calculated by the following formulas (5) and (6):
其中,min(Sξ)为终止因子ξ(i)的最小值,max(Sξ)为终止因子ξ(i)的最大值。Among them, min(S ξ ) is the minimum value of the termination factor ξ(i), and max(S ξ ) is the maximum value of the termination factor ξ(i).
S305、根据归一化后的终止因子和预设的优化进程评估参数,得到预设条件。S305 , obtaining preset conditions according to the normalized termination factor and preset optimization process evaluation parameters.
在上述实施例的基础上,根据归一化后的终止因子和预设的优化进程评估参数,得到预设条件的一种可选的实现方式,具体包括:On the basis of the above embodiment, an optional implementation method of obtaining the preset condition according to the normalized termination factor and the preset optimization process evaluation parameter specifically includes:
确定归一化后的终止因子小于终止因子下限阈值的第一次数;将第一次数与终止状态系数下限阈值相等,且归一化后的终止因子小于终止因子下限阈值时的条件确定为预设条件。Determine the first number of times that the normalized termination factor is less than the lower limit threshold of the termination factor; determine the condition when the first number is equal to the lower limit threshold of the termination state coefficient and the normalized termination factor is less than the lower limit threshold of the termination factor as the preset condition.
其中,若归一化后的终止因子ζ(i)小于终止因子下限阈值ζT,且满足ζ(i)<ζT的次数κ等于终止状态系数下限阈值κF时,则当前次的控制性能评估结果满足预设条件。Among them, if the normalized termination factor ζ(i) is less than the termination factor lower limit threshold ζ T , and the number of times κ that satisfies ζ(i)<ζ T is equal to the termination state coefficient lower limit threshold κ F , then the current control performance evaluation result meets the preset conditions.
其中,预设条件具体通过如下公式(7)计算:The preset condition is specifically calculated by the following formula (7):
(ζ(i)<ζT)∩(κ=κF) (7)(ζ(i)<ζ T )∩(κ=κ F ) (7)
本实施例提供的控制系统的参数整定方法,通过获取控制系统的当前次的实际可行控制参数组合,并向控制系统发送实际可行控制参数组合,以由控制系统根据实际可行控制参数组合运行以得到控制系统的响应测量值,进而接收控制系统发送的当前次的响应测量值,从而根据当前次的复合式控制性能指标对当前次的响应测量值进行评估,得到当前次的控制性能评估结果,若当前次的控制性能评估结果满足预设条件,则根据当前次的实际可行控制参数组合,确定目标控制参数组合。由于控制系统根据当前次的实际可行控制参数组合运行以得到控制系统的响应测量值,进而根据当前次的复合式控制性能指标对当前次的响应测量值进行评估,得到当前次的控制性能评估结果,从而判断当前次的控制性能评估结果是否满足预设条件,若当前次的控制性能评估结果满足预设条件,则根据当前次的实际可行控制参数组合,确定目标控制参数组合;若当前次的控制性能评估结果不满足预设条件,则获取控制系统的下一次的实际可行控制参数组合,然后按照本实施例提供的方法判断下一次的控制性能评估结果是否满足预设条件,以得到下一次的控制性能评估结果是否满足预设条件的判断结果,按照此方法直至得到满足预设条件的控制性能评估结果,将满足预设条件的控制性能评估结果所对应的实际可行控制参数组合确定目标控制参数组合,从而能够避免过度依赖专家经验,保证目标控制参数组合对应的控制系统的性能。The control system parameter setting method provided in the present embodiment obtains the actual feasible control parameter combination of the control system at the current time, and sends the actual feasible control parameter combination to the control system, so that the control system operates according to the actual feasible control parameter combination to obtain the response measurement value of the control system, and then receives the current response measurement value sent by the control system, thereby evaluating the current response measurement value according to the current composite control performance index to obtain the current control performance evaluation result, and if the current control performance evaluation result meets the preset conditions, the target control parameter combination is determined according to the current actual feasible control parameter combination. Since the control system operates according to the current actual feasible control parameter combination to obtain the response measurement value of the control system, and then evaluates the current response measurement value according to the current composite control performance index to obtain the current control performance evaluation result, it is judged whether the current control performance evaluation result meets the preset conditions. If the current control performance evaluation result meets the preset conditions, the target control parameter combination is determined according to the current actual feasible control parameter combination; if the current control performance evaluation result does not meet the preset conditions, the next actual feasible control parameter combination of the control system is obtained, and then it is judged whether the next control performance evaluation result meets the preset conditions according to the method provided in this embodiment to obtain the judgment result of whether the next control performance evaluation result meets the preset conditions. This method is followed until the control performance evaluation result that meets the preset conditions is obtained, and the target control parameter combination is determined by the actual feasible control parameter combination corresponding to the control performance evaluation result that meets the preset conditions, thereby avoiding excessive reliance on expert experience and ensuring the performance of the control system corresponding to the target control parameter combination.
在其中一些实施例中,如图4所示,图4为本申请实施例提供的一种当前次的复合式控制性能指标的确定方法的流程示意图。本实施例涉及的是如何确定当前次的复合式控制性能指标的一种可选的实现方式。在上述实施例的基础上,当前次的复合式控制性能指标的确定方法具体包括如下步骤:In some embodiments, as shown in FIG4, FIG4 is a flow chart of a method for determining a composite control performance index of the current time provided by an embodiment of the present application. This embodiment relates to an optional implementation method of how to determine the composite control performance index of the current time. Based on the above embodiment, the method for determining the composite control performance index of the current time specifically includes the following steps:
S401、确定当前次的响应测量值与控制系统的设定值之间的第一差值。S401. Determine a first difference between a current response measurement value and a set value of a control system.
S402、根据第一差值和控制系统的运行时间确定当前次的时间乘绝对误差积分指标ITAE和时间乘平方误差积分指标ITSE。S402 . Determine the current time multiplied absolute error integral index ITAE and the current time multiplied square error integral index ITSE according to the first difference and the operating time of the control system.
S403、根据当前次的ITAE、ITAE对应的权重系数、ITSE和ITSE对应的权重系数,确定当前次的复合式控制性能指标。S403. Determine the current composite control performance index according to the current ITAE, the weight coefficient corresponding to ITAE, ITSE and the weight coefficient corresponding to ITSE.
本实施例中,先确定当前次的响应测量值与控制系统的设定值之间的第一差值e(t),其次根据第一差值e(t)和控制系统的运行时间t确定当前次的时间乘绝对误差积分指标ITAE和时间乘平方误差积分指标ITSE,最后根据当前次的ITAE、ITAE对应的权重系数λ2、ITSE和ITSE对应的权重系数1-λ2,确定当前次的复合式控制性能指标Y,其中,λ2的取值范围为(0,1)。In this embodiment, the first difference e(t) between the current response measurement value and the set value of the control system is determined first, and then the current time multiplied absolute error integral index ITAE and the time multiplied square error integral index ITSE are determined according to the first difference e(t) and the running time t of the control system. Finally, the current composite control performance index Y is determined according to the current ITAE, the weight coefficient λ 2 corresponding to ITAE, ITSE and the weight coefficient 1-λ 2 corresponding to ITSE, where the value range of λ 2 is (0, 1).
其中,当前次的复合式控制性能指标Y具体是通过如下公式(8)计算:The current composite control performance index Y is specifically calculated by the following formula (8):
Y=lg(λ2*ITAE+(1-λ2)ITSE) (8)Y=lg(λ 2 *ITAE+(1-λ 2 )ITSE) (8)
其中, in,
本实施例提供的控制系统的参数整定方法,通过确定当前次的响应测量值与控制系统的设定值之间的第一差值,并根据第一差值和控制系统的运行时间确定当前次的时间乘绝对误差积分指标ITAE和时间乘平方误差积分指标ITSE,进而根据当前次的ITAE、ITAE对应的权重系数、ITSE和ITSE对应的权重系数,确定当前次的复合式控制性能指标。本实施例由于通过确定当前次的响应测量值与控制系统的设定值之间的第一差值,将第一差值和控制系统的运行时间确定当前次的时间乘绝对误差积分指标ITAE和时间乘平方误差积分指标ITSE,进而根据当前次的ITAE、ITAE对应的权重系数、ITSE和ITSE对应的权重系数,确定当前次的复合式控制性能指标,从而能够根据当前次的复合式控制性能指标对当前次的响应测量值进行评估,判断当前次的控制性能评估结果是否满足预设条件,以确定是否对当前次的实际可行控制参数组合继续进行优化迭代,以解决传统技术中控制参数的优化调整存在过度依赖专家经验的问题。The parameter setting method of the control system provided in the present embodiment determines the first difference between the current response measurement value and the setting value of the control system, and determines the current time multiplied absolute error integral index ITAE and the time multiplied square error integral index ITSE according to the first difference and the running time of the control system, and then determines the current composite control performance index according to the current ITAE, the weight coefficient corresponding to ITAE, ITSE and the weight coefficient corresponding to ITSE. In the present embodiment, by determining the first difference between the current response measurement value and the setting value of the control system, the first difference and the running time of the control system determine the current time multiplied absolute error integral index ITAE and the time multiplied square error integral index ITSE, and then determines the current composite control performance index according to the current ITAE, the weight coefficient corresponding to ITAE, ITSE and the weight coefficient corresponding to ITSE, so that the current response measurement value can be evaluated according to the current composite control performance index, and it is judged whether the current control performance evaluation result meets the preset conditions, so as to determine whether to continue to optimize and iterate the current actual feasible control parameter combination, so as to solve the problem of excessive reliance on expert experience in the optimization adjustment of control parameters in traditional technology.
参照图5,图5是本申请实施例提供的一种实际可行控制参数组合的获取方法的流程示意图。本实施例涉及的是如何获取控制系统的当前次的实际可行控制参数组合的一种可选的实现方式。在上述实施例的基础上,上述的S201中控制系统的当前次的实际可行控制参数组合的获取方法具体包括如下步骤:Referring to FIG. 5 , FIG. 5 is a flow chart of a method for obtaining an actual feasible control parameter combination provided by an embodiment of the present application. This embodiment relates to an optional implementation of how to obtain the actual feasible control parameter combination of the current control system. Based on the above embodiment, the method for obtaining the actual feasible control parameter combination of the current control system in S201 specifically includes the following steps:
S501、获取优化系统的当前次的初始控制参数组合和优化算法参数。S501. Obtain the current initial control parameter combination and optimization algorithm parameters of the optimization system.
其中,优化算法参数包括:初始迭代步长因子a、步长校正基准参数A、步长因子动态修正因子α、步长基准因子c、摄动步长衰减因子γ和迭代算子s。The optimization algorithm parameters include: initial iteration step size factor a, step size correction reference parameter A, step size factor dynamic correction factor α, step size reference factor c, perturbation step size attenuation factor γ and iteration operator s.
本实施例中,获取当前次的优化算法参数{a,A,c,α,γ}、当前次的迭代算子s和当前次的初始控制参数组合Xk,其中,k为控制参数组合的计数算子。例如,当迭代算子s=1时获取由工程师设定的当前次的初始控制参数组合X0和当前次的优化算法参数{a,A,c,α,γ}的初始值。In this embodiment, the current optimization algorithm parameters {a, A, c, α, γ}, the current iteration operator s and the current initial control parameter combination X k are obtained, where k is a counting operator of the control parameter combination. For example, when the iteration operator s=1, the current initial control parameter combination X 0 and the initial values of the current optimization algorithm parameters {a, A, c, α, γ} set by the engineer are obtained.
S502、对当前次的初始控制参数组合进行归一化处理,得到第一控制参数组合。S502: Normalize the current initial control parameter combination to obtain a first control parameter combination.
本实施例中,通过对当前次的控制参数组合Xk进行归一化处理,得到第一控制参数组合具体是通过如下公式(9)进行归一化处理:In this embodiment, the first control parameter combination Xk is obtained by normalizing the current control parameter combination Xk . Specifically, the normalization is performed using the following formula (9):
其中,为当前次的初始控制参数组合,为当前次的第一控制参数组合,为第t个控制参数的初值,t=1,2,…,n,n为控制参数的个数,(Xk t)L=inf(Xk t)为下界,(Xk t)H=sup(Xk t)为上界。in, is the initial control parameter combination for the current time, is the first control parameter combination of the current time, is the initial value of the tth control parameter, t = 1, 2, …, n, n is the number of control parameters, (X k t ) L = inf(X k t ) is the lower bound, and (X k t ) H = sup(X k t ) is the upper bound.
例如,通过对当前次的迭代算子s=1时当前次的初始控制参数组合X0进行归一化处理,通过上述公式(9)计算得到第一控制参数组合X0。For example, by normalizing the current initial control parameter combination X 0 when the current iteration operator s=1, the first control parameter combination X 0 is calculated by the above formula (9).
S503、根据当前次的优化算法参数和第一控制参数组合,通过优化算法对第一控制参数组合进行优化,得到当前次的第二控制参数组合。S503: According to the current optimization algorithm parameters and the first control parameter combination, the first control parameter combination is optimized by using an optimization algorithm to obtain the current second control parameter combination.
其中,采用的优化算法为同步扰动随机逼近算法(Simultaneous PerturbationStochastic Approximation,SPSA),SPSA是通过估计目标函数的梯度信息来逐渐逼近最优解。Among them, the optimization algorithm adopted is the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm. SPSA gradually approaches the optimal solution by estimating the gradient information of the objective function.
S504、对第二控制参数组合进行还原处理得到当前次的实际可行控制参数组合。S504: Perform restoration processing on the second control parameter combination to obtain the current actual feasible control parameter combination.
本实施例中,通过对第二控制参数组合进行还原处理,得到当前次的实际可行控制参数组合具体是通过如下公式(10)计算:In this embodiment, by combining the second control parameter Perform restoration processing to obtain the current actual feasible control parameter combination Specifically, it is calculated by the following formula (10):
本实施例提供的方法,通过获取优化系统的当前次的初始控制参数组合和优化算法参数,并对当前次的初始控制参数组合进行归一化处理,得到第一控制参数组合,进而根据当前次的优化算法参数和第一控制参数组合,通过优化算法对第一控制参数组合进行优化,得到当前次的第二控制参数组合,从而对第二控制参数组合进行还原处理得到当前次的实际可行控制参数组合。由于本实施通过优化算法对第一控制参数组合进行优化,得到当前次的第二控制参数组合,并对第二控制参数组合进行还原处理得到当前次的实际可行控制参数组合,从而能够减少优化过程中所需优化迭代的实验数量,以提高控制参数组合整定效率。The method provided in this embodiment obtains the current initial control parameter combination and optimization algorithm parameters of the optimization system, and normalizes the current initial control parameter combination to obtain a first control parameter combination, and then optimizes the first control parameter combination through the optimization algorithm according to the current optimization algorithm parameters and the first control parameter combination to obtain the current second control parameter combination, and then restores the second control parameter combination to obtain the current actual feasible control parameter combination. Since this implementation optimizes the first control parameter combination through the optimization algorithm to obtain the current second control parameter combination, and restores the second control parameter combination to obtain the current actual feasible control parameter combination, the number of experiments required for optimization iterations during the optimization process can be reduced to improve the efficiency of control parameter combination setting.
参照图6,图6是本申请实施例提供的一种当前次的第二控制参数组合的确定方法的流程示意图,本实施例涉及的是如何根据当前次的优化算法参数和第一控制参数组合,通过优化算法对第一控制参数组合进行优化,得到当前次的第二控制参数组合的一种可选的实现方式,在上述实施例的基础上,上述S503具体包括如下步骤:6, which is a flow chart of a method for determining a current second control parameter combination provided by an embodiment of the present application. This embodiment relates to an optional implementation method of how to optimize the first control parameter combination by an optimization algorithm according to the current optimization algorithm parameters and the first control parameter combination to obtain the current second control parameter combination. On the basis of the above embodiment, the above S503 specifically includes the following steps:
S601、确定当前次的摄动步长与蒙特卡洛摄动向量的乘积结果;当前次的摄动步长根据当前次的优化算法参数确定。S601, determining the product result of the current perturbation step length and the Monte Carlo perturbation vector; the current perturbation step length is determined according to the current optimization algorithm parameters.
其中,蒙特卡洛摄动向量Δs是一个n维向量,每个一维向量都是由伯努利分布±1随机产生,且每个一维向量元素都是独立的、并满足零均值原则。Among them, the Monte Carlo perturbation vector Δs is an n-dimensional vector, each one-dimensional vector is randomly generated by Bernoulli distribution ±1, and each one-dimensional vector element is independent and satisfies the zero mean principle.
当前次的摄动步长根据当前次的优化算法参数确定,可选的,当前次的摄动步长cs是通过当前次的迭代算子s、步长基准因子c和摄动步长衰减因子γ计算得到,具体是通过如下公式(11)计算:The current perturbation step size is determined according to the current optimization algorithm parameters. Optionally, the current perturbation step size cs is calculated by the current iteration operator s, the step size reference factor c and the perturbation step size attenuation factor γ, and is specifically calculated by the following formula (11):
本实施例中,通过确定当前次的摄动步长cs与蒙特卡洛摄动向量Δs的乘积结果csΔs。In this embodiment, the product result c s Δ s of the current perturbation step length c s and the Monte Carlo perturbation vector Δ s is determined.
S602、确定第一控制参数组合与当前次的乘积结果的求和结果,并将求和结果作为当前次的正摄动点。S602: Determine a sum of the first control parameter combination and the current multiplication result, and use the sum as the current positive perturbation point.
本实施例中,当前次的正摄动点是通过第一控制参数组合和当前次的乘积结果csΔs计算得到,具体是通过如下公式(12)计算:In this embodiment, the current positive perturbation point is the combination of the first control parameters The product result c s Δ s of the current time is calculated, which is specifically calculated by the following formula (12):
例如,确定当前次的迭代算子s=1时第一控制参数组合与当前次的乘积结果的求和结果c1Δ1,并将求和结果c1Δ1作为当前次的正摄动点 For example, determine the first control parameter combination when the current iteration operator s=1 The sum of the product result c 1 Δ 1 and the current product result c 1 Δ 1 is used as the positive perturbation point of the current time.
需要说明的是:将形成的迭代点性能组添加至迭代点性能序列中。It should be noted that the performance group of the iteration point formed Added to the iteration point performance sequence.
S603、若当前次的正摄动点所对应的控制性能评估结果满足预设条件,则将当前次的正摄动点作为当前次的第二控制参数组合。S603: If the control performance evaluation result corresponding to the current positive perturbation point meets the preset condition, the current positive perturbation point is used as the current second control parameter combination.
本实施例中,若当前次的正摄动点所对应的控制性能评估结果Yk+1满足预设条件,则将当前次的正摄动点作为当前次的第二控制参数组合;若当前次的正摄动点所对应的控制性能评估结果Yk+1不满足预设条件,则继续执行下述步骤S701至S702获取当前次的负摄动点作为当前次的第二控制参数组合。In this embodiment, if the current positive perturbation point If the corresponding control performance evaluation result Y k+1 meets the preset conditions, the current positive perturbation point As the second control parameter combination of the current time; if the current positive perturbation point If the corresponding control performance evaluation result Y k+1 does not meet the preset conditions, then continue to execute the following steps S701 to S702 to obtain the current negative perturbation point As the second control parameter combination for the current time.
结合上述举例进行说明,若当前次的正摄动点所对应的控制性能评估结果Y1满足预设条件,则将当前次的正摄动点作为当前次的第二控制参数组合。Combined with the above example, if the current positive perturbation point is If the corresponding control performance evaluation result Y1 meets the preset conditions, the current positive perturbation point As the second control parameter combination for the current time.
本实施例提供的方法,通过确定当前次的摄动步长与蒙特卡洛摄动向量的乘积结果,并确定第一控制参数组合与当前次的乘积结果的求和结果,并将求和结果作为当前次的正摄动点,若当前次的正摄动点所对应的控制性能评估结果满足预设条件,则将正摄动点作为当前次的第二控制参数组合。也就是说,本实施例根据当前次的摄动步长与蒙特卡洛摄动向量,确定第一控制参数组合与当前次的乘积结果的求和结果,并将求和结果作为当前次的正摄动点,通过判断当前次的正摄动点所对应的控制性能评估结果是否满足预设条件,确定是否对当前次的正摄动点继续进行优化,从而能够减少优化过程中所需优化迭代的实验数量,以提高控制参数组合整定效率。The method provided in this embodiment determines the product result of the current perturbation step length and the Monte Carlo perturbation vector, determines the sum result of the first control parameter combination and the current product result, and uses the sum result as the current positive perturbation point. If the control performance evaluation result corresponding to the current positive perturbation point meets the preset conditions, the positive perturbation point is used as the current second control parameter combination. That is to say, this embodiment determines the sum result of the first control parameter combination and the current product result according to the current perturbation step length and the Monte Carlo perturbation vector, and uses the sum result as the current positive perturbation point. By judging whether the control performance evaluation result corresponding to the current positive perturbation point meets the preset conditions, it is determined whether to continue to optimize the current positive perturbation point, thereby reducing the number of experiments required for optimization iterations in the optimization process to improve the efficiency of control parameter combination tuning.
可选的,如图7所示,图7为本申请提供的一种当前次的负摄动点的确定方法的流程示意图。本实施例涉及的是如何确定当前次的负摄动点,在上述实施例的基础上,还可以包括如下实现方式:Optionally, as shown in Figure 7, Figure 7 is a flow chart of a method for determining the current negative perturbation point provided by the present application. This embodiment relates to how to determine the current negative perturbation point. Based on the above embodiment, the following implementation methods may also be included:
S701、若当前次的正摄动点所对应的控制性能评估结果不满足预设条件,则确定第一控制参数组合与当前次的乘积结果的第二差值,并将第二差值作为当前次的负摄动点。S701. If the control performance evaluation result corresponding to the current positive perturbation point does not meet the preset conditions, determine the second difference between the first control parameter combination and the current multiplication result, and use the second difference as the current negative perturbation point.
本实施例中,当前次的负摄动点是通过第一控制参数组合和当前次的乘积结果csΔs计算得到,具体是通过如下公式(13)计算:In this embodiment, the current negative perturbation point is the combination of the first control parameters The product result c s Δ s of the current time is calculated, which is specifically calculated by the following formula (13):
结合上述举例进行说明,若当前次的正摄动点所对应的控制性能评估结果Y1不满足预设条件,则确定第一控制参数组合和当前次的乘积结果csΔs的第二差值,并将第二差值作为当前次的负摄动点 Combined with the above example, if the current positive perturbation point is If the corresponding control performance evaluation result Y1 does not meet the preset conditions, the first control parameter combination is determined The second difference between the product result c s Δ s and the current one, and the second difference is used as the negative perturbation point of the current one
需要说明的是:将形成的迭代点性能组添加至迭代点性能序列中。It should be noted that the performance group of the iteration point formed Added to the iteration point performance sequence.
S702、若当前次的负摄动点所对应的控制性能评估结果满足预设条件,则将负摄动点作为当前次的第二控制参数组合。S702: If the control performance evaluation result corresponding to the current negative perturbation point meets the preset condition, the negative perturbation point is used as the current second control parameter combination.
本实施例中,若当前次的负摄动点所对应的控制性能评估结果Yk+2满足预设条件,则将当前次的负摄动点作为当前次的第二控制参数组合;若当前次的负摄动点所对应的控制性能评估结果Yk+2不满足预设条件,则继续执行下述步骤S801至S802获取当前次的优化估计点作为当前次的第二控制参数组合。In this embodiment, if the current negative perturbation point If the corresponding control performance evaluation result Y k+2 meets the preset conditions, the current negative perturbation point As the second control parameter combination of the current time; if the negative perturbation point of the current time If the corresponding control performance evaluation result Y k+2 does not meet the preset conditions, then continue to execute the following steps S801 to S802 to obtain the current optimization estimation point As the second control parameter combination for the current time.
结合上述举例进行说明,若当前次的负摄动点所对应的控制性能评估结果Y2满足预设条件,则将当前次的负摄动点作为当前次的第二控制参数组合。Combined with the above example, if the current negative perturbation point If the corresponding control performance evaluation result Y2 meets the preset conditions, the current negative perturbation point As the second control parameter combination for the current time.
本实施例提供的方法,通过确定第一控制参数组合与当前次的乘积结果的第二差值,并将第二差值作为当前次的负摄动点,若当前次的负摄动点所对应的控制性能评估结果满足预设条件,则将负摄动点作为当前次的第二控制参数组合。也就是说,本实施例通过确定第一控制参数组合与当前次的乘积结果的第二差值,并将第二差值作为当前次的负摄动点,通过判断当前次的负摄动点所对应的控制性能评估结果是否满足预设条件,确定是否对当前次的负摄动点继续进行优化以得到目标控制参数组合,从而能够提高目标控制参数组合的整定准确率,以保证目标控制参数组合对应的控制系统的性能。The method provided by this embodiment determines the second difference between the multiplication result of the first control parameter combination and the current time, and uses the second difference as the negative perturbation point of the current time. If the control performance evaluation result corresponding to the negative perturbation point of the current time meets the preset conditions, the negative perturbation point is used as the second control parameter combination of the current time. That is to say, this embodiment determines the second difference between the multiplication result of the first control parameter combination and the current time, and uses the second difference as the negative perturbation point of the current time. By judging whether the control performance evaluation result corresponding to the negative perturbation point of the current time meets the preset conditions, it is determined whether to continue to optimize the negative perturbation point of the current time to obtain the target control parameter combination, thereby improving the setting accuracy of the target control parameter combination to ensure the performance of the control system corresponding to the target control parameter combination.
参照图8,图8是本申请实施例提供的一种当前次的优化估计点的获取方法的流程示意图。本实施例涉及的是如何确定当前次的优化估计点,在上述实施例的基础上,还可以包括如下实现方式:Referring to Figure 8, Figure 8 is a flow chart of a method for obtaining the current optimization estimation point provided by an embodiment of the present application. This embodiment involves how to determine the current optimization estimation point. Based on the above embodiment, the following implementation methods may also be included:
S801、若当前次的负摄动点所对应的控制性能评估结果不满足预设条件,则基于第一历史控制性能评估结果、第二历史控制性能评估结果、当前次的正摄动点、当前次的负摄动点以及第一控制参数组合,得到当前次的优化估计点。S801. If the control performance evaluation result corresponding to the current negative perturbation point does not meet the preset conditions, the current optimization estimation point is obtained based on the first historical control performance evaluation result, the second historical control performance evaluation result, the current positive perturbation point, the current negative perturbation point and the first control parameter combination.
其中,第一历史控制性能评估结果为当前次的正摄动点所对应的控制性能评估结果,第二历史控制性能评估结果为当前次的负摄动点所对应的控制性能评估结果。The first historical control performance evaluation result is the control performance evaluation result corresponding to the current positive perturbation point, and the second historical control performance evaluation result is the control performance evaluation result corresponding to the current negative perturbation point.
本实施例中,根据第一历史控制性能评估结果Yk+1、第二历史控制性能评估结果Yk+2、当前次的正摄动点当前次的负摄动点以及第一控制参数组合得到当前次的优化估计点 In this embodiment, according to the first historical control performance evaluation result Y k+1 , the second historical control performance evaluation result Y k+2 , and the current positive perturbation point The current negative perturbation point And the first control parameter combination Get the current optimization estimate point
需要说明的是:将形成的迭代点性能组添加至迭代点性能序列中,并将当前次的优化估计点添加至优化估计点性能序列中。It should be noted that the performance group of the iteration point formed Add to the iteration point performance sequence and make the current optimization estimate point Added to the optimization estimate point performance sequence.
结合上述举例进行说明,若当前次的负摄动点所对应的控制性能评估结果Y2不满足预设条件,则根据第一历史控制性能评估结果Y1、第二历史控制性能评估结果Y2、当前次的正摄动点当前次的负摄动点以及第一控制参数组合得到当前次的优化估计点 Combined with the above example, if the current negative perturbation point is If the corresponding control performance evaluation result Y2 does not meet the preset conditions, then according to the first historical control performance evaluation result Y1 , the second historical control performance evaluation result Y2 , the current positive perturbation point The current negative perturbation point And the first control parameter combination Get the current optimization estimate point
S802、若优化估计点所对应的控制性能评估结果满足预设条件,则将优化估计点作为当前次的第二控制参数组合。S802: If the control performance evaluation result corresponding to the optimized estimation point meets the preset condition, the optimized estimation point is used as the second control parameter combination for the current time.
本实施例中,若当前次的优化估计点所对应的控制性能评估结果Yk+3满足预设条件,则将当前次的优化估计点作为当前次的第二控制参数组合;若当前次的优化估计点所对应的控制性能评估结果Yk+3不满足预设条件,则返回至上述步骤S601至S603获取下一次的正摄动点作为当前次的第二控制参数组合,此时迭代算子s加1。In this embodiment, if the current optimization estimation point If the corresponding control performance evaluation result Y k+3 meets the preset conditions, the current optimization estimation point As the second control parameter combination for the current time; if the current optimization estimation point If the corresponding control performance evaluation result Y k+3 does not meet the preset conditions, then return to the above steps S601 to S603 to obtain the next positive perturbation point As the second control parameter combination for the current time, the iteration operator s is increased by 1.
需要说明的是:在进行下一次的优化时,第一控制参数组合为上一次的优化估计点。It should be noted that: when performing the next optimization, the first control parameter combination is the optimization estimation point of the previous time.
本实施例提供的方法,通过根据第一历史控制性能评估结果、第二历史控制性能评估结果、当前次的正摄动点、当前次的负摄动点以及第一控制参数组合,得到当前次的优化估计点,通过判断当前次的优化估计点所对应的控制性能评估结果是否满足预设条件,确定是否对当前次的优化估计点继续进行优化以得到目标控制参数组合,从而能够提高目标控制参数组合的整定准确率,以保证目标控制参数组合对应的控制系统的性能。The method provided in this embodiment obtains the current optimization estimation point based on the first historical control performance evaluation result, the second historical control performance evaluation result, the current positive perturbation point, the current negative perturbation point and the first control parameter combination, and determines whether to continue to optimize the current optimization estimation point to obtain the target control parameter combination by judging whether the control performance evaluation result corresponding to the current optimization estimation point meets the preset conditions, thereby improving the setting accuracy of the target control parameter combination to ensure the performance of the control system corresponding to the target control parameter combination.
在上述实施例的基础上,本实施例涉及的是如何基于第一历史控制性能评估结果、第二历史控制性能评估结果、当前次的正摄动点、当前次的负摄动点以及第一控制参数组合,得到当前次的优化估计点。上述S801、基于第一历史控制性能评估结果、第二历史控制性能评估结果、当前次的正摄动点、当前次的负摄动点以及第一控制参数组合,得到当前次的优化估计点还可以通过如下方式实现:On the basis of the above embodiment, this embodiment involves how to obtain the current optimization estimation point based on the first historical control performance evaluation result, the second historical control performance evaluation result, the current positive perturbation point, the current negative perturbation point and the first control parameter combination. The above S801, based on the first historical control performance evaluation result, the second historical control performance evaluation result, the current positive perturbation point, the current negative perturbation point and the first control parameter combination, obtaining the current optimization estimation point can also be achieved in the following way:
确定第一历史控制性能评估结果与第二历史控制性能评估结果之间的第三差值,确定当前次的正摄动点与当前次的负摄动点之间的第四差值,确定第三差值与第四差值之间的比值,基于比值和当前次的第一控制参数组合,得到当前次的优化估计点。Determine the third difference between the first historical control performance evaluation result and the second historical control performance evaluation result, determine the fourth difference between the current positive perturbation point and the current negative perturbation point, determine the ratio between the third difference and the fourth difference, and obtain the current optimization estimation point based on the ratio and the current first control parameter combination.
本实施例中,先确定第一历史控制性能评估结果与第二历史控制性能评估结果之间的第三差值为Yk+1-Yk+2,再确定当前次的正摄动点与当前次的负摄动点之间的第四差值为最后确定第三差值与第四差值之间的比值g(s),即当前次的梯度近似值g(s),具体是通过如下公式(14)计算:In this embodiment, the third difference between the first historical control performance evaluation result and the second historical control performance evaluation result is first determined to be Y k+1 -Y k+2 , and then the fourth difference between the current positive perturbation point and the current negative perturbation point is determined to be Finally, the ratio g(s) between the third difference and the fourth difference is determined, that is, the current gradient approximation g(s), which is specifically calculated by the following formula (14):
其中,均来自迭代点性能序列,由于当前次的梯度近似值g(s)为一个向量,则将当前次的梯度近似值g(s)存入梯度估计序列中。in, They all come from the iteration point performance sequence. Since the current gradient approximation g(s) is a vector, the current gradient approximation g(s) is stored in the gradient estimation sequence.
在上述实施例的基础上,基于比值和当前次的第一控制参数组合,得到当前次的优化估计点,具体是通过如下公式(15)-(28)计算:On the basis of the above embodiment, based on the ratio and the first control parameter combination of the current time, the current optimization estimation point is obtained, which is specifically calculated by the following formulas (15)-(28):
其中,G(s)是校正后的当前次的梯度值,g(s)是当前次的梯度近似值和ρs是当前次的迭代算子s对应的梯度补偿因子。Among them, G(s) is the corrected gradient value of the current time, g(s) is the gradient approximation of the current time and ρs is the gradient compensation factor corresponding to the current iterative operator s.
其中,ρBench是补偿因子基准值、ρE是补偿因子修正偏差值、s是当前次的迭代算子和σ是修正系数。Among them, ρ Bench is the compensation factor benchmark value, ρ E is the compensation factor correction deviation value, s is the current iteration operator and σ is the correction coefficient.
ds=as×(1+max(dsG,dsI)) (17)d s =a s ×(1+max(d sG ,d sI )) (17)
其中,ds是步长动态调整算子、as是迭代步长因子、dsG是梯度修正步长调整算子、dsI是相邻摄动步长调整算子。Among them, ds is the step size dynamic adjustment operator, as is the iteration step size factor, dsG is the gradient correction step size adjustment operator, and dsI is the adjacent perturbation step size adjustment operator.
其中,A是步长校正基准参数、a是迭代步长因子、s是当前次的迭代算子和α是步长因子动态修正因子。Among them, A is the step size correction reference parameter, a is the iteration step size factor, s is the current iteration operator and α is the step size factor dynamic correction factor.
其中,dsG是梯度修正步长调整算子、RG是步长调整常数、ω是算子迭代调整系数、as是迭代步长因子和SIs是当前次的迭代算子s对应的指示因子。Among them, dsG is the gradient correction step size adjustment operator, RG is the step size adjustment constant, ω is the operator iteration adjustment coefficient, as is the iteration step size factor and SIs is the indicator factor corresponding to the current iteration operator s.
其中,G(s)是校正后的当前次的梯度值和g(s)是当前次的梯度近似值。Among them, G(s) is the corrected gradient value of the current time and g(s) is the approximate gradient value of the current time.
其中,dsI是相邻摄动步长调整算子、ξ是步长调节系数、是当前次的迭代算子s对应的优化进程状态信号、as是迭代步长因子和是迭代步长调整因子。其中,步长调节系数ξ的取值范围在(0,1)。Among them, dsI is the adjacent perturbation step adjustment operator, ξ is the step adjustment coefficient, is the optimization process status signal corresponding to the current iteration operator s, a s is the iteration step factor and is the iteration step adjustment factor. The value range of the step adjustment coefficient ξ is (0,1).
其中,是前一次的优化估计点、是当前次的优化估计点和是前前次的优化估计点。in, is the previous optimization estimate point, is the current optimization estimate point and is the previous optimization estimate point.
其中,sgn(·)是符号函数,构造判别因子如下:Among them, sgn(·) is the sign function, and the discriminant factor is constructed as follows:
其中,是当前次的优化估计点所对应的控制性能评估结果、是前一次的优化估计点所对应的控制性能评估结果、是前前次的优化估计点所对应的控制性能评估结果和δ是相对变化因子。in, is the control performance evaluation result corresponding to the current optimization estimation point, is the control performance evaluation result corresponding to the previous optimization estimation point, is the control performance evaluation result corresponding to the previous optimization estimation point and δ is the relative change factor.
需要注意的是:构造判别因子中当前次的迭代算子s≥3。It should be noted that the current iteration operator s≥3 in constructing the discriminant factor.
或 or
本实施例提供的方法,通过确定第一历史控制性能评估结果与第二历史控制性能评估结果之间的第三差值,并确定当前次的正摄动点与当前次的负摄动点之间的第四差值,进而确定第三差值与第四差值之间的比值,从而能够基于比值和当前次的第一控制参数组合,得到当前次的优化估计点。The method provided in this embodiment determines the third difference between the first historical control performance evaluation result and the second historical control performance evaluation result, and determines the fourth difference between the current positive perturbation point and the current negative perturbation point, and then determines the ratio between the third difference and the fourth difference, so that the current optimization estimation point can be obtained based on the ratio and the current first control parameter combination.
在上述实施例的基础上,还可以包括如下实现方式:Based on the above embodiments, the following implementations may also be included:
若优化估计点所对应的控制性能评估结果不满足预设条件,则获取控制系统的下一次的实际可行控制参数组合,并向控制系统发下一次的实际可行控制参数组合,以得到下一次的实际可行控制参数组合所对应的响应测量值,并根据下一次所对应的响应测量值确定目标控制参数组合。If the control performance evaluation result corresponding to the optimized estimation point does not meet the preset conditions, the next actual feasible control parameter combination of the control system is obtained, and the next actual feasible control parameter combination is sent to the control system to obtain the response measurement value corresponding to the next actual feasible control parameter combination, and the target control parameter combination is determined according to the next corresponding response measurement value.
例如,若迭代算子s=1对应的当前次的优化估计点所对应的控制性能评估结果Y3不满足预设条件,则获取迭代算子s=2对应的控制系统的下一次的实际可行控制参数组合并向控制系统发送下一次的实际可行控制参数组合以得到下一次的实际可行控制参数组合所对应的响应测量值,并根据下一次所对应的响应测量值确定目标控制参数组合。For example, if the iteration operator s = 1, the current optimization estimate point If the corresponding control performance evaluation result Y3 does not meet the preset conditions, the next practical feasible control parameter combination of the control system corresponding to the iteration operator s=2 is obtained. And send the next practical control parameter combination to the control system To obtain the next practical feasible control parameter combination The corresponding response measurement value is used to determine the target control parameter combination according to the next corresponding response measurement value.
本实施例提供的方法,通过获取控制系统的下一次的实际可行控制参数组合,并向控制系统发下一次的实际可行控制参数组合,以得到下一次的实际可行控制参数组合所对应的响应测量值,并根据下一次所对应的响应测量值确定目标控制参数组合,按照此方法循环进行直至确定目标控制参数组合,从而能够避免过度依赖专家经验,保证目标控制参数组合对应的控制系统的性能。The method provided in this embodiment obtains the next actual feasible control parameter combination of the control system and sends the next actual feasible control parameter combination to the control system to obtain the response measurement value corresponding to the next actual feasible control parameter combination, and determines the target control parameter combination according to the next corresponding response measurement value. This method is repeated until the target control parameter combination is determined, thereby avoiding excessive reliance on expert experience and ensuring the performance of the control system corresponding to the target control parameter combination.
为了便于本领域技术人员更清楚理解本申请提供的控制系统的参数整定方法,在此结合图9进行解释,图9为本申请实施例提供的另一种控制系统的参数整定方法的流程示意图,参数整定方法具体包括以下步骤:In order to facilitate those skilled in the art to more clearly understand the parameter setting method of the control system provided by the present application, an explanation is given here in conjunction with FIG. 9, which is a flow chart of another parameter setting method of the control system provided by an embodiment of the present application. The parameter setting method specifically includes the following steps:
S901、利用当前次的优化算法参数计算当前次的摄动步长和当前次的迭代步长因子。S901. Calculate the current perturbation step size and the current iteration step size factor using the current optimization algorithm parameters.
其中,计算当前次的摄动步长和当前次的迭代步长因子也就是算法增益计算。Among them, calculating the current perturbation step size and the current iteration step size factor is the algorithm gain calculation.
S902、根据当前次的第一控制参数组合和当前次的摄动步长,确定当前次的正摄动点,并判断当前次的正摄动点对应的控制性能评估结果是否满足预设条件。S902: Determine the current positive perturbation point according to the current first control parameter combination and the current perturbation step size, and judge whether the control performance evaluation result corresponding to the current positive perturbation point meets the preset conditions.
S903、根据当前次的第一控制参数组合和当前次的摄动步长,确定当前次的负摄动点,并判断当前次的负摄动点对应的控制性能评估结果是否满足预设条件。S903. Determine the current negative perturbation point according to the current first control parameter combination and the current perturbation step size, and judge whether the control performance evaluation result corresponding to the current negative perturbation point meets the preset conditions.
S904、根据当前次的正摄动点、当前次的正摄动点所对应的控制性能评估结果、当前次的负摄动点和当前次的负摄动点对应的控制性能评估结果,确定当前次的梯度近似值。S904, determine the current gradient approximation value according to the current positive perturbation point, the control performance evaluation result corresponding to the current positive perturbation point, the current negative perturbation point, and the control performance evaluation result corresponding to the current negative perturbation point.
S905、根据当前次的梯度近似值,确定当前次的迭代算子所对应的指示因子。S905 . Determine the indicator factor corresponding to the current iteration operator according to the current gradient approximation value.
S906、根据当前次的迭代算子所对应的指示因子,确定梯度修正步长调整算子。S906: Determine a gradient correction step size adjustment operator according to the indicator factor corresponding to the current iteration operator.
S907、根据当前次的迭代步长因子,确定相邻摄动步长调整算子。S907: Determine an adjacent perturbation step size adjustment operator according to the current iteration step size factor.
S908、根据相邻摄动步长调整算子和梯度修正步长调整算子,确定步长动态调整。S908. Determine the dynamic adjustment of the step size according to the adjacent perturbation step size adjustment operator and the gradient correction step size adjustment operator.
S909、根据第一控制参数组合和步长动态调整,确定优化估计点,并判断当前次的正摄动点对应的控制性能评估结果是否满足预设条件。S909: Determine the optimal estimation point according to the first control parameter combination and the dynamic adjustment of the step size, and judge whether the control performance evaluation result corresponding to the current positive perturbation point meets the preset conditions.
应该理解的是,虽然如上述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上该的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that, although the steps in the flowcharts involved in the above-mentioned embodiments are displayed in sequence according to the indication of the arrows, these steps are not necessarily executed in sequence according to the order indicated by the arrows. Unless there is a clear explanation in this article, the execution of these steps does not have a strict order restriction, and these steps can be executed in other orders. Moreover, at least a part of the steps in the flowcharts involved in the above-mentioned embodiments can include multiple steps or multiple stages, and these steps or stages are not necessarily executed at the same time, but can be executed at different times, and the execution order of these steps or stages is not necessarily carried out in sequence, but can be executed in turn or alternately with other steps or at least a part of the steps or stages in other steps.
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的控制系统的参数整定方法的参数整定系统。该参数整定系统所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个控制系统的参数整定系统实施例中的具体限定可以参见上文中对于参数整定方法的限定,在此不再赘述。Based on the same inventive concept, the embodiment of the present application also provides a parameter setting system for implementing the parameter setting method of the control system involved above. The implementation scheme for solving the problem provided by the parameter setting system is similar to the implementation scheme recorded in the above method, so the specific limitations in the embodiment of the parameter setting system of one or more control systems provided below can refer to the limitations of the parameter setting method above, and will not be repeated here.
在一个实施例中,如图10所示,提供了一种控制系统的参数整定系统,该参数整体系统1000包括:获取模块1001、接收模块1002、评估模块1003和第一确定模块1004,其中:In one embodiment, as shown in FIG10 , a parameter setting system for a control system is provided. The parameter
获取模块1001,用于获取控制系统的当前次的实际可行控制参数组合,并向控制系统发送实际可行控制参数组合,以由控制系统根据实际可行控制参数组合运行以得到控制系统的响应测量值;An
接收模块1002,用于接收控制系统发送的当前次的响应测量值;The
评估模块1003,用于根据当前次的复合式控制性能指标对当前次的响应测量值进行评估,得到当前次的控制性能评估结果;An
第一确定模块1004,用于若当前次的控制性能评估结果满足预设条件,则根据当前次的实际可行控制参数组合,确定目标控制参数组合。The
在其中一个实施例中,参数整体系统1000还包括:In one embodiment, the
第二确定模块,用于确定当前次的响应测量值与控制系统的设定值之间的第一差值;A second determination module, used to determine a first difference between a current response measurement value and a set value of the control system;
第三确定模块,用于根据第一差值和控制系统的运行时间确定当前次的时间乘绝对误差积分指标ITAE和时间乘平方误差积分指标ITSE;A third determination module is used to determine the current time multiplied absolute error integral index ITAE and the time multiplied square error integral index ITSE according to the first difference and the running time of the control system;
第四确定模块,用于根据当前次的ITAE、ITAE对应的权重系数、ITSE和ITSE对应的权重系数,确定当前次的复合式控制性能指标。The fourth determination module is used to determine the current composite control performance index according to the current ITAE, the weight coefficient corresponding to ITAE, ITSE and the weight coefficient corresponding to ITSE.
在其中一个实施例中,获取模块1001,包括获取单元、归一化单元、优化单元和还原单元:In one embodiment, the
获取单元,用于获取优化系统的当前次的初始控制参数组合和优化算法参数;An acquisition unit, used to acquire the current initial control parameter combination and optimization algorithm parameters of the optimization system;
归一化单元,用于对当前次的初始控制参数组合进行归一化处理,得到第一控制参数组合;A normalization unit, used for normalizing the current initial control parameter combination to obtain a first control parameter combination;
优化单元,用于根据当前次的优化算法参数和第一控制参数组合,通过优化算法对第一控制参数组合进行优化,得到当前次的第二控制参数组合;An optimization unit, configured to optimize the first control parameter combination by an optimization algorithm according to the current optimization algorithm parameters and the first control parameter combination, to obtain the current second control parameter combination;
还原单元,用于对第二控制参数组合进行还原处理得到当前次的实际可行控制参数组合。The restoration unit is used to restore the second control parameter combination to obtain the current actual feasible control parameter combination.
在其中一个实施例中,优化单元具体用于确定当前次的摄动步长与蒙特卡洛摄动向量的乘积结果;当前次的摄动步长根据当前次的优化算法参数确定;确定第一控制参数组合与当前次的乘积结果的求和结果,并将求和结果作为当前次的正摄动点;若当前次的正摄动点所对应的控制性能评估结果满足预设条件,则将正摄动点作为当前次的第二控制参数组合。In one of the embodiments, the optimization unit is specifically used to determine the product result of the current perturbation step size and the Monte Carlo perturbation vector; the current perturbation step size is determined according to the current optimization algorithm parameters; the sum of the first control parameter combination and the current product result is determined, and the sum result is used as the current positive perturbation point; if the control performance evaluation result corresponding to the current positive perturbation point meets the preset conditions, the positive perturbation point is used as the current second control parameter combination.
在其中一个实施例中,参数整体系统1000还包括:In one embodiment, the
第五确定模块,用于若当前次的正摄动点所对应的控制性能评估结果不满足预设条件,则确定第一控制参数组合与当前次的乘积结果的第二差值,并将第二差值作为当前次的负摄动点;A fifth determination module, for determining a second difference between the first control parameter combination and the current multiplication result if the control performance evaluation result corresponding to the current positive perturbation point does not meet the preset condition, and using the second difference as the current negative perturbation point;
第一判断模块,用于若当前次的负摄动点所对应的控制性能评估结果满足预设条件,则将负摄动点作为当前次的第二控制参数组合。The first judgment module is used to use the negative perturbation point as the second control parameter combination for the current time if the control performance evaluation result corresponding to the negative perturbation point for the current time meets the preset conditions.
在其中一个实施例中,参数整体系统1000还包括:In one embodiment, the
得到模块,用于若当前次的负摄动点所对应的控制性能评估结果不满足预设条件,则基于第一历史控制性能评估结果、第二历史控制性能评估结果、当前次的正摄动点、当前次的负摄动点以及第一控制参数组合,得到当前次的优化估计点;第一历史控制性能评估结果为当前次的正摄动点所对应的控制性能评估结果,第二历史控制性能评估结果为当前次的负摄动点所对应的控制性能评估结果;An obtaining module is used to obtain the current optimization estimation point based on the first historical control performance evaluation result, the second historical control performance evaluation result, the current positive perturbation point, the current negative perturbation point and the first control parameter combination if the control performance evaluation result corresponding to the current negative perturbation point does not meet the preset conditions; the first historical control performance evaluation result is the control performance evaluation result corresponding to the current positive perturbation point, and the second historical control performance evaluation result is the control performance evaluation result corresponding to the current negative perturbation point;
第二判断模块,用于若优化估计点所对应的控制性能评估结果满足预设条件,则将优化估计点作为当前次的第二控制参数组合。The second judgment module is used to use the optimized estimation point as the second control parameter combination for the current time if the control performance evaluation result corresponding to the optimized estimation point meets the preset condition.
在其中一个实施例中,得到模块具体用于确定第一历史控制性能评估结果与第二历史控制性能评估结果之间的第三差值;确定当前次的正摄动点与当前次的负摄动点之间的第四差值;确定第三差值与第四差值之间的比值;基于比值和当前次的第一控制参数组合,得到当前次的优化估计点。In one embodiment, the obtaining module is specifically used to determine the third difference between the first historical control performance evaluation result and the second historical control performance evaluation result; determine the fourth difference between the current positive perturbation point and the current negative perturbation point; determine the ratio between the third difference and the fourth difference; based on the ratio and the current first control parameter combination, obtain the current optimization estimation point.
在其中一个实施例中,参数整体系统1000还包括:In one embodiment, the
第六确定模块,用于若优化估计点所对应的控制性能评估结果不满足预设条件,则获取控制系统的下一次的实际可行控制参数组合,并向控制系统发送下一次的实际可行控制参数组合,以得到下一次的实际可行控制参数组合所对应的响应测量值,并根据下一次所对应的响应测量值确定目标控制参数组合。The sixth determination module is used to obtain the next actual feasible control parameter combination of the control system if the control performance evaluation result corresponding to the optimized estimation point does not meet the preset conditions, and send the next actual feasible control parameter combination to the control system to obtain the response measurement value corresponding to the next actual feasible control parameter combination, and determine the target control parameter combination according to the next corresponding response measurement value.
上述控制系统的参数整定系统中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。Each module in the parameter setting system of the control system can be implemented in whole or in part by software, hardware and a combination thereof. Each module can be embedded in or independent of a processor in a computer device in the form of hardware, or can be stored in a memory in a computer device in the form of software, so that the processor can call and execute the operations corresponding to each module.
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图11所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质和内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储控制性能评估结果数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种控制系统的参数整定方法。In one embodiment, a computer device is provided, which may be a server, and its internal structure diagram may be as shown in FIG11. The computer device includes a processor, a memory, and a network interface connected via a system bus. The processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium and an internal memory. The non-volatile storage medium stores an operating system, a computer program, and a database. The internal memory provides an environment for the operation of the operating system and the computer program in the non-volatile storage medium. The database of the computer device is used to store control performance evaluation result data. The network interface of the computer device is used to communicate with an external terminal via a network connection. When the computer program is executed by the processor, a parameter setting method of a control system is implemented.
本领域技术人员可以理解,图11中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art will understand that the structure shown in FIG. 11 is merely a block diagram of a partial structure related to the scheme of the present application, and does not constitute a limitation on the computer device to which the scheme of the present application is applied. The specific computer device may include more or fewer components than shown in the figure, or combine certain components, or have a different arrangement of components.
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:In one embodiment, a computer device is provided, including a memory and a processor, wherein a computer program is stored in the memory, and when the processor executes the computer program, the following steps are implemented:
获取控制系统的当前次的实际可行控制参数组合,并向控制系统发送实际可行控制参数组合,以由控制系统根据实际可行控制参数组合运行以得到控制系统的响应测量值;Acquire the current practical feasible control parameter combination of the control system, and send the practical feasible control parameter combination to the control system, so that the control system operates according to the practical feasible control parameter combination to obtain a response measurement value of the control system;
接收控制系统发送的当前次的响应测量值;Receiving the current response measurement value sent by the control system;
根据当前次的复合式控制性能指标对当前次的响应测量值进行评估,得到当前次的控制性能评估结果;The current response measurement value is evaluated according to the current composite control performance index to obtain the current control performance evaluation result;
若当前次的控制性能评估结果满足预设条件,则根据当前次的实际可行控制参数组合,确定目标控制参数组合。If the current control performance evaluation result meets the preset conditions, the target control parameter combination is determined based on the current actual feasible control parameter combination.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, when the processor executes the computer program, the processor further implements the following steps:
确定当前次的响应测量值与控制系统的设定值之间的第一差值;Determining a first difference between a current response measurement and a set point of the control system;
根据第一差值和控制系统的运行时间确定当前次的时间乘绝对误差积分指标ITAE和时间乘平方误差积分指标ITSE;Determine the current time multiplied absolute error integral index ITAE and the current time multiplied square error integral index ITSE according to the first difference and the running time of the control system;
根据当前次的ITAE、ITAE对应的权重系数、ITSE和ITSE对应的权重系数,确定当前次的复合式控制性能指标。The current composite control performance index is determined based on the current ITAE, the weight coefficient corresponding to ITAE, ITSE and the weight coefficient corresponding to ITSE.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, when the processor executes the computer program, the processor further implements the following steps:
获取优化系统的当前次的初始控制参数组合和优化算法参数;Obtain the current initial control parameter combination and optimization algorithm parameters of the optimization system;
对当前次的初始控制参数组合进行归一化处理,得到第一控制参数组合;Normalizing the current initial control parameter combination to obtain a first control parameter combination;
根据当前次的优化算法参数和第一控制参数组合,通过优化算法对第一控制参数组合进行优化,得到当前次的第二控制参数组合;According to the current optimization algorithm parameters and the first control parameter combination, the first control parameter combination is optimized by the optimization algorithm to obtain the current second control parameter combination;
对第二控制参数组合进行还原处理得到当前次的实际可行控制参数组合。The second control parameter combination is restored to obtain the current actual feasible control parameter combination.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, when the processor executes the computer program, the following steps are also implemented:
确定当前次的摄动步长与蒙特卡洛摄动向量的乘积结果;当前次的摄动步长根据当前次的优化算法参数确定;Determine the product result of the current perturbation step size and the Monte Carlo perturbation vector; the current perturbation step size is determined according to the current optimization algorithm parameters;
确定第一控制参数组合与当前次的乘积结果的求和结果,并将求和结果作为当前次的正摄动点;Determine the sum of the first control parameter combination and the current multiplication result, and use the sum as the current positive perturbation point;
若当前次的正摄动点所对应的控制性能评估结果满足预设条件,则将当前次的正摄动点作为当前次的第二控制参数组合。If the control performance evaluation result corresponding to the current positive perturbation point meets the preset condition, the current positive perturbation point is used as the current second control parameter combination.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, when the processor executes the computer program, the processor further implements the following steps:
若当前次的正摄动点所对应的控制性能评估结果不满足预设条件,则确定第一控制参数组合与当前次的乘积结果的第二差值,并将第二差值作为当前次的负摄动点;If the control performance evaluation result corresponding to the current positive perturbation point does not meet the preset condition, determine the second difference between the first control parameter combination and the current multiplication result, and use the second difference as the current negative perturbation point;
若当前次的负摄动点所对应的控制性能评估结果满足预设条件,则将负摄动点作为当前次的第二控制参数组合。If the control performance evaluation result corresponding to the current negative perturbation point meets the preset conditions, the negative perturbation point is used as the current second control parameter combination.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, when the processor executes the computer program, the following steps are also implemented:
若当前次的负摄动点所对应的控制性能评估结果不满足预设条件,则基于第一历史控制性能评估结果、第二历史控制性能评估结果、当前次的正摄动点、当前次的负摄动点以及第一控制参数组合,得到当前次的优化估计点;第一历史控制性能评估结果为当前次的正摄动点所对应的控制性能评估结果,第二历史控制性能评估结果为当前次的负摄动点所对应的控制性能评估结果;If the control performance evaluation result corresponding to the current negative perturbation point does not meet the preset conditions, then based on the first historical control performance evaluation result, the second historical control performance evaluation result, the current positive perturbation point, the current negative perturbation point and the first control parameter combination, the current optimization estimation point is obtained; the first historical control performance evaluation result is the control performance evaluation result corresponding to the current positive perturbation point, and the second historical control performance evaluation result is the control performance evaluation result corresponding to the current negative perturbation point;
若优化估计点所对应的控制性能评估结果满足预设条件,则将优化估计点作为当前次的第二控制参数组合。If the control performance evaluation result corresponding to the optimized estimation point meets the preset conditions, the optimized estimation point is used as the second control parameter combination for the current time.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, when the processor executes the computer program, the processor further implements the following steps:
确定第一历史控制性能评估结果与第二历史控制性能评估结果之间的第三差值;determining a third difference between the first historical control performance evaluation result and the second historical control performance evaluation result;
确定当前次的正摄动点与当前次的负摄动点之间的第四差值;Determine a fourth difference between the current positive perturbation point and the current negative perturbation point;
确定第三差值与第四差值之间的比值;determining a ratio between the third difference and the fourth difference;
基于比值和当前次的第一控制参数组合,得到当前次的优化估计点。Based on the ratio and the current first control parameter combination, the current optimization estimation point is obtained.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:In one embodiment, when the processor executes the computer program, the processor further implements the following steps:
若优化估计点所对应的控制性能评估结果不满足预设条件,则获取控制系统的下一次的实际可行控制参数组合,并向控制系统发送下一次的实际可行控制参数组合,以得到下一次的实际可行控制参数组合所对应的响应测量值,并根据下一次所对应的响应测量值确定目标控制参数组合。If the control performance evaluation result corresponding to the optimized estimation point does not meet the preset conditions, the next actual feasible control parameter combination of the control system is obtained, and the next actual feasible control parameter combination is sent to the control system to obtain the response measurement value corresponding to the next actual feasible control parameter combination, and the target control parameter combination is determined according to the next corresponding response measurement value.
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:In one embodiment, a computer-readable storage medium is provided, on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
获取控制系统的当前次的实际可行控制参数组合,并向控制系统发送实际可行控制参数组合,以由控制系统根据实际可行控制参数组合运行以得到控制系统的响应测量值;Acquire the current practical feasible control parameter combination of the control system, and send the practical feasible control parameter combination to the control system, so that the control system operates according to the practical feasible control parameter combination to obtain a response measurement value of the control system;
接收控制系统发送的当前次的响应测量值;Receive the current response measurement value sent by the control system;
根据当前次的复合式控制性能指标对当前次的响应测量值进行评估,得到当前次的控制性能评估结果;The current response measurement value is evaluated according to the current composite control performance index to obtain the current control performance evaluation result;
若当前次的控制性能评估结果满足预设条件,则根据当前次的实际可行控制参数组合,确定目标控制参数组合。If the current control performance evaluation result meets the preset conditions, the target control parameter combination is determined based on the current actual feasible control parameter combination.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, when the computer program is executed by a processor, the following steps are also implemented:
确定当前次的响应测量值与控制系统的设定值之间的第一差值;Determining a first difference between a current response measurement and a set point of the control system;
根据第一差值和控制系统的运行时间确定当前次的时间乘绝对误差积分指标ITAE和时间乘平方误差积分指标ITSE;Determine the current time multiplied absolute error integral index ITAE and the current time multiplied square error integral index ITSE according to the first difference and the running time of the control system;
根据当前次的ITAE、ITAE对应的权重系数、ITSE和ITSE对应的权重系数,确定当前次的复合式控制性能指标。The current composite control performance index is determined based on the current ITAE, the weight coefficient corresponding to ITAE, ITSE and the weight coefficient corresponding to ITSE.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, when the computer program is executed by a processor, the following steps are also implemented:
获取优化系统的当前次的初始控制参数组合和优化算法参数;Obtain the current initial control parameter combination and optimization algorithm parameters of the optimization system;
对当前次的初始控制参数组合进行归一化处理,得到第一控制参数组合;Normalizing the current initial control parameter combination to obtain a first control parameter combination;
根据当前次的优化算法参数和第一控制参数组合,通过优化算法对第一控制参数组合进行优化,得到当前次的第二控制参数组合;According to the current optimization algorithm parameters and the first control parameter combination, the first control parameter combination is optimized by the optimization algorithm to obtain the current second control parameter combination;
对第二控制参数组合进行还原处理得到当前次的实际可行控制参数组合。The second control parameter combination is restored to obtain the current actual feasible control parameter combination.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, when the computer program is executed by a processor, the following steps are also implemented:
确定当前次的摄动步长与蒙特卡洛摄动向量的乘积结果;当前次的摄动步长根据当前次的优化算法参数确定;Determine the product result of the current perturbation step size and the Monte Carlo perturbation vector; the current perturbation step size is determined according to the current optimization algorithm parameters;
确定第一控制参数组合与当前次的乘积结果的求和结果,并将求和结果作为当前次的正摄动点;Determine the sum of the first control parameter combination and the current multiplication result, and use the sum as the current positive perturbation point;
若当前次的正摄动点所对应的控制性能评估结果满足预设条件,则将当前次的正摄动点作为当前次的第二控制参数组合。If the control performance evaluation result corresponding to the current positive perturbation point meets the preset condition, the current positive perturbation point is used as the current second control parameter combination.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, when the computer program is executed by a processor, the following steps are also implemented:
若当前次的正摄动点所对应的控制性能评估结果不满足预设条件,则确定第一控制参数组合与当前次的乘积结果的第二差值,并将第二差值作为当前次的负摄动点;If the control performance evaluation result corresponding to the current positive perturbation point does not meet the preset condition, determine the second difference between the first control parameter combination and the current multiplication result, and use the second difference as the current negative perturbation point;
若当前次的负摄动点所对应的控制性能评估结果满足预设条件,则将负摄动点作为当前次的第二控制参数组合。If the control performance evaluation result corresponding to the current negative perturbation point meets the preset conditions, the negative perturbation point is used as the current second control parameter combination.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, when the computer program is executed by a processor, the following steps are also implemented:
若当前次的负摄动点所对应的控制性能评估结果不满足预设条件,则基于第一历史控制性能评估结果、第二历史控制性能评估结果、当前次的正摄动点、当前次的负摄动点以及第一控制参数组合,得到当前次的优化估计点;第一历史控制性能评估结果为当前次的正摄动点所对应的控制性能评估结果,第二历史控制性能评估结果为当前次的负摄动点所对应的控制性能评估结果;If the control performance evaluation result corresponding to the current negative perturbation point does not meet the preset conditions, then based on the first historical control performance evaluation result, the second historical control performance evaluation result, the current positive perturbation point, the current negative perturbation point and the first control parameter combination, the current optimization estimation point is obtained; the first historical control performance evaluation result is the control performance evaluation result corresponding to the current positive perturbation point, and the second historical control performance evaluation result is the control performance evaluation result corresponding to the current negative perturbation point;
若优化估计点所对应的控制性能评估结果满足预设条件,则将优化估计点作为当前次的第二控制参数组合。If the control performance evaluation result corresponding to the optimized estimation point meets the preset conditions, the optimized estimation point is used as the second control parameter combination for the current time.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, when the computer program is executed by a processor, the following steps are also implemented:
确定第一历史控制性能评估结果与第二历史控制性能评估结果之间的第三差值;determining a third difference between the first historical control performance evaluation result and the second historical control performance evaluation result;
确定当前次的正摄动点与当前次的负摄动点之间的第四差值;Determine a fourth difference between the current positive perturbation point and the current negative perturbation point;
确定第三差值与第四差值之间的比值;determining a ratio between the third difference and the fourth difference;
基于比值和当前次的第一控制参数组合,得到当前次的优化估计点。Based on the ratio and the current first control parameter combination, the current optimization estimation point is obtained.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, when the computer program is executed by a processor, the following steps are also implemented:
若优化估计点所对应的控制性能评估结果不满足预设条件,则获取控制系统的下一次的实际可行控制参数组合,并向控制系统发送下一次的实际可行控制参数组合,以得到下一次的实际可行控制参数组合所对应的响应测量值,并根据下一次所对应的响应测量值确定目标控制参数组合。If the control performance evaluation result corresponding to the optimized estimation point does not meet the preset conditions, the next actual feasible control parameter combination of the control system is obtained, and the next actual feasible control parameter combination is sent to the control system to obtain the response measurement value corresponding to the next actual feasible control parameter combination, and the target control parameter combination is determined according to the next corresponding response measurement value.
在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下步骤:In one embodiment, a computer program product is provided, comprising a computer program, which, when executed by a processor, implements the following steps:
获取控制系统的当前次的实际可行控制参数组合,并向控制系统发送实际可行控制参数组合,以由控制系统根据实际可行控制参数组合运行以得到控制系统的响应测量值;Acquire the current practical feasible control parameter combination of the control system, and send the practical feasible control parameter combination to the control system, so that the control system operates according to the practical feasible control parameter combination to obtain a response measurement value of the control system;
接收控制系统发送的当前次的响应测量值;Receive the current response measurement value sent by the control system;
根据当前次的复合式控制性能指标对当前次的响应测量值进行评估,得到当前次的控制性能评估结果;The current response measurement value is evaluated according to the current composite control performance index to obtain the current control performance evaluation result;
若当前次的控制性能评估结果满足预设条件,则根据当前次的实际可行控制参数组合,确定目标控制参数组合。If the current control performance evaluation result meets the preset conditions, the target control parameter combination is determined based on the current actual feasible control parameter combination.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, when the computer program is executed by a processor, the following steps are also implemented:
确定当前次的响应测量值与控制系统的设定值之间的第一差值;Determining a first difference between a current response measurement and a set point of the control system;
根据第一差值和控制系统的运行时间确定当前次的时间乘绝对误差积分指标ITAE和时间乘平方误差积分指标ITSE;Determine the current time multiplied absolute error integral index ITAE and the current time multiplied square error integral index ITSE according to the first difference and the running time of the control system;
根据当前次的ITAE、ITAE对应的权重系数、ITSE和ITSE对应的权重系数,确定当前次的复合式控制性能指标。The current composite control performance index is determined based on the current ITAE, the weight coefficient corresponding to ITAE, ITSE and the weight coefficient corresponding to ITSE.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, when the computer program is executed by a processor, the following steps are also implemented:
获取优化系统的当前次的初始控制参数组合和优化算法参数;Obtain the current initial control parameter combination and optimization algorithm parameters of the optimization system;
对当前次的初始控制参数组合进行归一化处理,得到第一控制参数组合;Normalizing the current initial control parameter combination to obtain a first control parameter combination;
根据当前次的优化算法参数和第一控制参数组合,通过优化算法对第一控制参数组合进行优化,得到当前次的第二控制参数组合;According to the current optimization algorithm parameters and the first control parameter combination, the first control parameter combination is optimized by the optimization algorithm to obtain the current second control parameter combination;
对第二控制参数组合进行还原处理得到当前次的实际可行控制参数组合。The second control parameter combination is restored to obtain the current actual feasible control parameter combination.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, when the computer program is executed by a processor, the following steps are also implemented:
确定当前次的摄动步长与蒙特卡洛摄动向量的乘积结果;当前次的摄动步长根据当前次的优化算法参数确定;Determine the product result of the current perturbation step size and the Monte Carlo perturbation vector; the current perturbation step size is determined according to the current optimization algorithm parameters;
确定第一控制参数组合与当前次的乘积结果的求和结果,并将求和结果作为当前次的正摄动点;Determine the sum of the first control parameter combination and the current multiplication result, and use the sum as the current positive perturbation point;
若当前次的正摄动点所对应的控制性能评估结果满足预设条件,则将当前次的正摄动点作为当前次的第二控制参数组合。If the control performance evaluation result corresponding to the current positive perturbation point meets the preset condition, the current positive perturbation point is used as the current second control parameter combination.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, when the computer program is executed by a processor, the following steps are also implemented:
若当前次的正摄动点所对应的控制性能评估结果不满足预设条件,则确定第一控制参数组合与当前次的乘积结果的第二差值,并将第二差值作为当前次的负摄动点;If the control performance evaluation result corresponding to the current positive perturbation point does not meet the preset condition, determine the second difference between the first control parameter combination and the current multiplication result, and use the second difference as the current negative perturbation point;
若当前次的负摄动点所对应的控制性能评估结果满足预设条件,则将负摄动点作为当前次的第二控制参数组合。If the control performance evaluation result corresponding to the current negative perturbation point meets the preset conditions, the negative perturbation point is used as the current second control parameter combination.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, when the computer program is executed by a processor, the following steps are also implemented:
若当前次的负摄动点所对应的控制性能评估结果不满足预设条件,则基于第一历史控制性能评估结果、第二历史控制性能评估结果、当前次的正摄动点、当前次的负摄动点以及第一控制参数组合,得到当前次的优化估计点;第一历史控制性能评估结果为当前次的正摄动点所对应的控制性能评估结果,第二历史控制性能评估结果为当前次的负摄动点所对应的控制性能评估结果;If the control performance evaluation result corresponding to the current negative perturbation point does not meet the preset conditions, then based on the first historical control performance evaluation result, the second historical control performance evaluation result, the current positive perturbation point, the current negative perturbation point and the first control parameter combination, the current optimization estimation point is obtained; the first historical control performance evaluation result is the control performance evaluation result corresponding to the current positive perturbation point, and the second historical control performance evaluation result is the control performance evaluation result corresponding to the current negative perturbation point;
若优化估计点所对应的控制性能评估结果满足预设条件,则将优化估计点作为当前次的第二控制参数组合。If the control performance evaluation result corresponding to the optimized estimation point meets the preset conditions, the optimized estimation point is used as the second control parameter combination for the current time.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, when the computer program is executed by a processor, the following steps are also implemented:
确定第一历史控制性能评估结果与第二历史控制性能评估结果之间的第三差值;determining a third difference between the first historical control performance evaluation result and the second historical control performance evaluation result;
确定当前次的正摄动点与当前次的负摄动点之间的第四差值;Determine a fourth difference between the current positive perturbation point and the current negative perturbation point;
确定第三差值与第四差值之间的比值;determining a ratio between the third difference and the fourth difference;
基于比值和当前次的第一控制参数组合,得到当前次的优化估计点。Based on the ratio and the current first control parameter combination, the current optimization estimation point is obtained.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:In one embodiment, when the computer program is executed by a processor, the following steps are also implemented:
若优化估计点所对应的控制性能评估结果不满足预设条件,则获取控制系统的下一次的实际可行控制参数组合,并向控制系统发送下一次的实际可行控制参数组合,以得到下一次的实际可行控制参数组合所对应的响应测量值,并根据下一次所对应的响应测量值确定目标控制参数组合。If the control performance evaluation result corresponding to the optimized estimation point does not meet the preset conditions, the next actual feasible control parameter combination of the control system is obtained, and the next actual feasible control parameter combination is sent to the control system to obtain the response measurement value corresponding to the next actual feasible control parameter combination, and the target control parameter combination is determined according to the next corresponding response measurement value.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,该的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-OnlyMemory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic RandomAccess Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。Those skilled in the art can understand that all or part of the processes in the above-mentioned embodiment methods can be completed by instructing the relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer-readable storage medium. When the computer program is executed, it can include the processes of the embodiments of the above-mentioned methods. Among them, any reference to the memory, database or other medium used in the embodiments provided in the present application can include at least one of non-volatile and volatile memory. Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive random access memory (ReRAM), magnetoresistive random access memory (MRAM), ferroelectric random access memory (FRAM), phase change memory (PCM), graphene memory, etc. Volatile memory can include random access memory (RAM) or external cache memory, etc. As an illustration and not limitation, RAM can be in various forms, such as static random access memory (SRAM) or dynamic random access memory (DRAM). The database involved in each embodiment provided in this application may include at least one of a relational database and a non-relational database. Non-relational databases may include distributed databases based on blockchains, etc., but are not limited to this. The processor involved in each embodiment provided in this application may be a general-purpose processor, a central processing unit, a graphics processor, a digital signal processor, a programmable logic device, a data processing logic device based on quantum computing, etc., but are not limited to this.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments may be arbitrarily combined. To make the description concise, not all possible combinations of the technical features in the above embodiments are described. However, as long as there is no contradiction in the combination of these technical features, they should be considered to be within the scope of this specification.
以上该实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。The above embodiments only express several implementation methods of the present application, and the descriptions thereof are relatively specific and detailed, but they cannot be understood as limiting the scope of the present application. It should be pointed out that, for a person of ordinary skill in the art, several variations and improvements can be made without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the protection scope of the present application shall be subject to the attached claims.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211562589.5A CN115933597A (en) | 2022-12-07 | 2022-12-07 | Parameter setting method, system and computer equipment of control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211562589.5A CN115933597A (en) | 2022-12-07 | 2022-12-07 | Parameter setting method, system and computer equipment of control system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115933597A true CN115933597A (en) | 2023-04-07 |
Family
ID=86655567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211562589.5A Pending CN115933597A (en) | 2022-12-07 | 2022-12-07 | Parameter setting method, system and computer equipment of control system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115933597A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117193140A (en) * | 2023-10-19 | 2023-12-08 | 中广核工程有限公司 | Method, device, computer equipment and storage medium for determining control parameters |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080126881A1 (en) * | 2006-07-26 | 2008-05-29 | Tilmann Bruckhaus | Method and apparatus for using performance parameters to predict a computer system failure |
CN108540029A (en) * | 2018-05-18 | 2018-09-14 | 厦门理工学院 | A kind of motor speed Optimization about control parameter method and system based on modified SPSA |
CN108958029A (en) * | 2018-06-25 | 2018-12-07 | 中国神华能源股份有限公司 | For parameter tuning method and system |
CN114266430A (en) * | 2021-09-26 | 2022-04-01 | 国网浙江省电力有限公司杭州供电公司 | Overhead transmission line risk assessment method and device based on variation and assimilation |
-
2022
- 2022-12-07 CN CN202211562589.5A patent/CN115933597A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080126881A1 (en) * | 2006-07-26 | 2008-05-29 | Tilmann Bruckhaus | Method and apparatus for using performance parameters to predict a computer system failure |
CN108540029A (en) * | 2018-05-18 | 2018-09-14 | 厦门理工学院 | A kind of motor speed Optimization about control parameter method and system based on modified SPSA |
CN108958029A (en) * | 2018-06-25 | 2018-12-07 | 中国神华能源股份有限公司 | For parameter tuning method and system |
CN114266430A (en) * | 2021-09-26 | 2022-04-01 | 国网浙江省电力有限公司杭州供电公司 | Overhead transmission line risk assessment method and device based on variation and assimilation |
Non-Patent Citations (1)
Title |
---|
XIANGSONG KONG 等: "SPSA-based PID parameters optimization for a dual-tank liquid-level control system", 《2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM)》, 29 December 2016 (2016-12-29), pages 1463 - 1467, XP033031946, DOI: 10.1109/IEEM.2016.7798120 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117193140A (en) * | 2023-10-19 | 2023-12-08 | 中广核工程有限公司 | Method, device, computer equipment and storage medium for determining control parameters |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10733332B2 (en) | Systems for solving general and user preference-based constrained multi-objective optimization problems | |
Parise et al. | Graphon games: A statistical framework for network games and interventions | |
CN116700017B (en) | A dynamic control method for reentrant manufacturing systems based on observed states | |
CN111522235B (en) | MIMO different factor tight format model-free control method with self-setting parameters | |
CN102982250A (en) | Stochastic model modification method based on uncertainty of stochastic response surface estimated parameter | |
CN115329530A (en) | A Reliability Evaluation Method for Structural Hybrid Gradient Based on Adaptive Point-Adding Strategy | |
CN115933597A (en) | Parameter setting method, system and computer equipment of control system | |
CN115481767A (en) | Operation data processing method and device for power distribution network maintenance and computer equipment | |
CN107093904B (en) | Selection method of reactive power compensation action point in distribution network based on random matrix spectrum analysis | |
CN116667377A (en) | Multi-energy power system oscillation stability evaluation method, device, equipment and medium | |
CN115545490A (en) | Power station engineering cost analysis method and device based on small sample machine learning | |
CN114243690A (en) | A method, device, electronic device and storage medium for active power safety correction of power grid | |
CN112488550A (en) | Uncertainty power grid static security analysis method and system based on deep learning | |
CN110763951B (en) | Fastest change detection model construction method for power transmission line power failure detection and identification | |
CN118983953A (en) | Method, device, computer equipment, readable storage medium and program product for monitoring the status of compensation capacitors in distribution station areas | |
CN118281878A (en) | Power system flow determination method, device, computer equipment and storage medium | |
CN119313054A (en) | Power material number prediction method, device, computer equipment and storage medium | |
CN114597899A (en) | Intelligent distribution network power quality management equipment configuration method and device | |
CN116933974A (en) | Method and device for determining full life cycle resource value of power transmission project and computer equipment | |
CN115562016A (en) | Robust Optimal Control Method for Uncertain Systems, Computer Equipment, and Method for Monitoring Online Loan Fraud Detection Level | |
CN118868127A (en) | Reactive voltage sensitivity prediction method, device, computer equipment and storage medium | |
CN117251474A (en) | Database construction method, device, equipment and medium for calculating carbon flow of electric power system | |
CN117277345A (en) | Voltage sag frequency assessment method, device and computer equipment | |
CN118069478A (en) | Chip computing power determination method, device, computer equipment and storage medium | |
CN118394610A (en) | Equipment early warning method, device, computer equipment, readable storage medium and product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |