CN115933463A - Numerical control valve control system with closed-loop feedback control - Google Patents

Numerical control valve control system with closed-loop feedback control Download PDF

Info

Publication number
CN115933463A
CN115933463A CN202211476176.5A CN202211476176A CN115933463A CN 115933463 A CN115933463 A CN 115933463A CN 202211476176 A CN202211476176 A CN 202211476176A CN 115933463 A CN115933463 A CN 115933463A
Authority
CN
China
Prior art keywords
control
controller
valve
feedback
expected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211476176.5A
Other languages
Chinese (zh)
Other versions
CN115933463B (en
Inventor
李云
郭彪
李运鹏
张桂凯
巫泉文
陈世勋
高克勤
许飞
唐涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Materials of CAEP
Original Assignee
Institute of Materials of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Materials of CAEP filed Critical Institute of Materials of CAEP
Priority to CN202211476176.5A priority Critical patent/CN115933463B/en
Publication of CN115933463A publication Critical patent/CN115933463A/en
Application granted granted Critical
Publication of CN115933463B publication Critical patent/CN115933463B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Feedback Control In General (AREA)

Abstract

The invention discloses a numerical control valve control system of closed loop feedback control, which relates to the field of numerical control valve control and comprises: the system comprises a central controller, a base layer controller, a man-machine interaction module and a feedback execution module; the central controller is respectively connected with the base layer controller and the man-machine interaction module; the feedback execution module is respectively connected with the base layer controller and the central controller; the human-computer interaction module is used for inputting a control target value of the pipeline valve; the central controller is used for receiving the control target value of the human-computer interaction module and the feedback data of the pipeline valve acquired by the feedback execution module, and calculating the control quantity of the pipeline valve by adopting a feedback control algorithm according to the control target value and the feedback data; a base layer controller for applying a control quantity to the pipeline valve; and the feedback execution module is used for detecting the state of the pipeline valve in real time to obtain feedback data. The invention can realize the accurate control of the pipeline valve, thereby realizing the accurate control of the pipeline valve on the flow and the flow speed of a pipeline system.

Description

一种闭环反馈控制的数控阀门控制系统A Numerical Control Valve Control System with Closed-loop Feedback Control

技术领域technical field

本发明涉及数控阀门控制领域,特别是涉及一种闭环反馈控制的数控阀门控制系统。The invention relates to the field of numerical control valve control, in particular to a closed-loop feedback control numerical control valve control system.

背景技术Background technique

当前市面上现有阀门管路系统中对于阀门控制普遍采用简单的开关控制,且控制精度低,难以实现高精度的集成控制,对于一些对控制流量或速率控制要求较高的应用场景,也只是在管路系统中增加流量质量控制器来实现,整个控制系统显得不统一,且对于阀门转动位置或者力矩要求较高的应用场景无法实现。In the existing valve pipeline systems currently on the market, simple switch control is generally used for valve control, and the control accuracy is low, so it is difficult to achieve high-precision integrated control. For some application scenarios that require high flow control or rate control, it is only Adding a flow quality controller to the pipeline system makes the entire control system appear inconsistent, and application scenarios that require high valve rotation position or torque cannot be realized.

现有的实施例中,如公开号为“CN 107035904A”、名称为“可提供双重保护的双作用气动执行器驱动的自动阀门系统”的实施例,其主要涉及一种可以提供双重保护的在压力超过设定值时自动开启或关闭的由双作用气动执行器驱动的阀门系统,主要针对的是自动阀门的开关问题,并不涉及基于阀门对管路系统流量和流速的精确控制问题。Among the existing embodiments, such as the embodiment with the publication number "CN 107035904A" and the name "double-acting pneumatic actuator-driven automatic valve system that can provide double protection", it mainly relates to an in-line valve system that can provide double protection. The valve system driven by a double-acting pneumatic actuator that automatically opens or closes when the pressure exceeds the set value is mainly aimed at the switching of automatic valves, and does not involve the precise control of the flow and velocity of the pipeline system based on the valve.

发明内容Contents of the invention

基于此,本发明实施例提供一种闭环反馈控制的数控阀门控制系统,以实现对管路阀门的精确控制,从而实现管路阀门对管路系统流量和流速的精确控制。Based on this, the embodiment of the present invention provides a closed-loop feedback control numerical control valve control system to realize precise control of pipeline valves, thereby realizing precise control of pipeline system flow and velocity by pipeline valves.

为实现上述目的,本发明提供了如下方案:To achieve the above object, the present invention provides the following scheme:

一种闭环反馈控制的数控阀门控制系统,包括:中央控制器、基层控制器、人机交互模块和反馈执行模块;A closed-loop feedback control numerical control valve control system, including: a central controller, a basic controller, a human-computer interaction module and a feedback execution module;

所述中央控制器分别与所述基层控制器和所述人机交互模块连接;所述反馈执行模块分别与所述基层控制器和所述中央控制器连接;The central controller is respectively connected with the basic controller and the human-computer interaction module; the feedback execution module is connected with the basic controller and the central controller respectively;

所述人机交互模块,用于:The human-computer interaction module is used for:

输入管路阀门的控制目标值;所述控制目标值,包括:期望转动位置、期望转动速度和期望转动中的最大电流阈值中的至少一者;Input the control target value of the pipeline valve; the control target value includes: at least one of the expected rotation position, the expected rotation speed and the maximum current threshold in the expected rotation;

所述中央控制器,用于:The central controller is used for:

接收所述人机交互模块的控制目标值和所述反馈执行模块采集的所述管路阀门的反馈数据;receiving the control target value of the human-computer interaction module and the feedback data of the pipeline valve collected by the feedback execution module;

根据所述控制目标值和所述反馈数据,采用反馈控制算法计算管路阀门的控制量;According to the control target value and the feedback data, a feedback control algorithm is used to calculate the control amount of the pipeline valve;

其中,所述反馈数据,包括:实际转动位置、实际转动速度和实际转动中的电流中的至少一者;所述控制量,包括:力位控制量、位置控制量、速度控制量和力矩控制量中的至少一者;Wherein, the feedback data includes: at least one of actual rotation position, actual rotation speed and current in actual rotation; the control amount includes: force position control amount, position control amount, speed control amount and torque control at least one of the quantities;

所述基层控制器,用于:The basic controller is used for:

将所述控制量作用于所述管路阀门;applying the control amount to the pipeline valve;

所述反馈执行模块,用于:The feedback execution module is used for:

实时检测所述管路阀门的状态,得到所述反馈数据。The state of the pipeline valve is detected in real time to obtain the feedback data.

可选地,所述中央控制器,包括:数据接收模块和多模式控制模块;Optionally, the central controller includes: a data receiving module and a multi-mode control module;

所述数据接收模块,用于:The data receiving module is used for:

若当前控制模式为力位混控模式,则接收所述人机交互模块发送的期望转动位置和期望转动速度,以及所述反馈执行模块采集的所述管路阀门的实际转动位置和实际转动速度;If the current control mode is the force-position mixed control mode, receive the expected rotational position and expected rotational speed sent by the human-computer interaction module, and the actual rotational position and actual rotational speed of the pipeline valve collected by the feedback execution module ;

若当前控制模式为伺服位置控制模式,则接收所述人机交互模块发送的期望转动位置、期望转动速度和期望转动中的最大电流阈值,以及所述反馈执行模块采集的所述管路阀门的实际转动位置、实际转动速度和实际转动中的电流;If the current control mode is the servo position control mode, then receive the expected rotation position, expected rotation speed and maximum current threshold in the expected rotation sent by the human-computer interaction module, and the pipeline valve collected by the feedback execution module Actual rotation position, actual rotation speed and actual rotation current;

若当前控制模式为伺服速度控制模式,则接收所述人机交互模块发送的期望转动速度,以及所述反馈执行模块采集的所述管路阀门的实际转动速度;If the current control mode is the servo speed control mode, receiving the expected rotation speed sent by the human-computer interaction module and the actual rotation speed of the pipeline valve collected by the feedback execution module;

若当前控制模式为伺服力矩控制模式,则接收所述人机交互模块发送的期望转动位置、期望转动速度和期望转动中的最大电流阈值,以及所述反馈执行模块采集的所述管路阀门的实际转动位置、实际转动速度和实际转动中的电流;If the current control mode is the servo torque control mode, then receive the expected rotation position, expected rotation speed and maximum current threshold in the expected rotation sent by the human-computer interaction module, and the pipeline valve collected by the feedback execution module Actual rotation position, actual rotation speed and actual rotation current;

所述多模式控制模块,内置PD控制器和PI控制器,用于:The multi-mode control module has a built-in PD controller and a PI controller for:

若当前控制模式为力位混控模式,则将所述期望转动位置、所述期望转动速度、所述实际转动位置和所述实际转动速度输入所述PD控制器,所述PD控制器向所述管路阀门施加力位控制量;If the current control mode is the force-position mixed control mode, then input the expected rotational position, the expected rotational speed, the actual rotational position and the actual rotational speed into the PD controller, and the PD controller sends The force position control amount of the pipeline valve;

若当前控制模式为伺服位置控制模式,则将所述期望转动位置、所述期望转动速度、所述实际转动位置和所述实际转动速度输入PD控制器,将所述PD控制器的输出量、所述期望转动中的最大电流阈值和所述实际转动中的电流输入所述PI控制器,所述PI控制器经过第一PI控制算法向所述管路阀门施加位置控制量;If the current control mode is the servo position control mode, then input the expected rotational position, the expected rotational speed, the actual rotational position and the actual rotational speed into the PD controller, and input the output of the PD controller, The maximum current threshold in the expected rotation and the current in the actual rotation are input to the PI controller, and the PI controller applies a position control amount to the pipeline valve through a first PI control algorithm;

若当前控制模式为伺服速度控制模式,则将所述期望转动速度和所述实际转动速度输入所述PD控制器,所述PD控制器向所述管路阀门施加速度控制量;If the current control mode is a servo speed control mode, inputting the expected rotation speed and the actual rotation speed into the PD controller, and the PD controller applies a speed control amount to the pipeline valve;

若当前控制模式为伺服力矩控制模式,则将所述期望转动位置、所述期望转动速度、所述实际转动位置和所述实际转动速度输入PD控制器,将所述PD控制器的输出量、将所述期望转动中的最大电流阈值和所述实际转动中的电流输入所述PI控制器,所述PI控制器经过第二PI控制算法向所述管路阀门施加力矩控制量。If the current control mode is the servo torque control mode, then input the expected rotational position, the expected rotational speed, the actual rotational position and the actual rotational speed into the PD controller, and input the output of the PD controller, The maximum current threshold in the expected rotation and the current in the actual rotation are input into the PI controller, and the PI controller applies a torque control amount to the pipeline valve through a second PI control algorithm.

可选地,所述闭环反馈控制的数控阀门控制系统,还包括:外部数据测量装置;Optionally, the closed-loop feedback control numerical control valve control system further includes: an external data measuring device;

所述外部数据测量装置分别与所述中央控制器和所述基层控制器连接;The external data measuring device is respectively connected with the central controller and the basic controller;

所述外部数据测量装置用于获取所述管路阀门所处环境的环境数据,并将所述环境数据通过所述中央控制器传输至所述人机交互模块;The external data measuring device is used to obtain environmental data of the environment where the pipeline valve is located, and transmit the environmental data to the human-computer interaction module through the central controller;

其中,所述环境数据,包括:温湿度、压力和真空度;Wherein, the environmental data include: temperature and humidity, pressure and vacuum degree;

所述人机交互模块用于显示所述环境数据;所述管路阀门的控制目标值是根据所述环境数据确定的。The human-computer interaction module is used to display the environmental data; the control target value of the pipeline valve is determined according to the environmental data.

可选地,所述人机交互模块,还用于:Optionally, the human-computer interaction module is also used for:

输入管路阀门的设定最大扭矩数值、设定最大电流和设定转动速度量;Input the set maximum torque value, set maximum current and set rotation speed of the pipeline valve;

所述中央控制器,还用于:The central controller is also used for:

当所述期望转动位置超过所述设定最大扭矩数值,所述期望转动速度超过所述设定转动速度量,或者所述期望转动中的最大电流阈值超过所述设定最大电流时,控制所述管路阀门停止运行。When the desired rotation position exceeds the set maximum torque value, the desired rotation speed exceeds the set rotation speed amount, or the maximum current threshold in the desired rotation exceeds the set maximum current, the control The above-mentioned pipeline valve stops operating.

可选地,所述闭环反馈控制的数控阀门控制系统,还包括:限位传感器;所述限位传感器设置在所述管路阀门的转动极限位置。Optionally, the closed-loop feedback control numerical control valve control system further includes: a limit sensor; the limit sensor is set at a rotation limit position of the pipeline valve.

可选地,所述闭环反馈控制的数控阀门控制系统,还包括:伺服控制器和伺服电机;Optionally, the closed-loop feedback control numerical control valve control system also includes: a servo controller and a servo motor;

所述基层控制器与所述伺服控制器连接;所述伺服控制器通过所述伺服电机与所述管路阀门连接;所述反馈执行模块通过所述伺服电机与所述管路阀门连接。The primary controller is connected to the servo controller; the servo controller is connected to the pipeline valve through the servo motor; the feedback execution module is connected to the pipeline valve through the servo motor.

可选地,所述中央控制器通过网络总线与所述人机交互模块连接。Optionally, the central controller is connected to the human-computer interaction module through a network bus.

可选地,所述基层控制器通过CAN总线与所述伺服控制器连接。Optionally, the base controller is connected to the servo controller through a CAN bus.

与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:

本发明实施例提出了一种闭环反馈控制的数控阀门控制系统,该系统包括:中央控制器、基层控制器、人机交互模块和反馈执行模块;中央控制器分别与基层控制器和人机交互模块连接;反馈执行模块分别与基层控制器和中央控制器连接,中央控制器根据控制目标值和反馈执行模块采集的管路阀门的反馈数据,得到力位控制量、位置控制量、速度控制量和力矩控制量中的至少一者,实现对管路阀门的精确控制,从而对适用于管路系统中流量或速率有较高要求的应用场景实现精确控制。The embodiment of the present invention proposes a closed-loop feedback control CNC valve control system, the system includes: a central controller, a basic controller, a human-computer interaction module and a feedback execution module; the central controller communicates with the basic controller and the human-computer interaction respectively Module connection; the feedback execution module is connected with the primary controller and the central controller respectively, and the central controller obtains the force position control amount, position control amount, and speed control amount according to the control target value and the feedback data of the pipeline valve collected by the feedback execution module At least one of the control amount of torque and torque can realize the precise control of the pipeline valve, so as to realize the precise control of the application scenarios applicable to the pipeline system with high requirements on the flow or rate.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the accompanying drawings required in the embodiments. Obviously, the accompanying drawings in the following description are only some of the present invention. Embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without paying creative labor.

图1为本发明实施例提供的闭环反馈控制的数控阀门控制系统的结构图;Fig. 1 is the structural diagram of the numerical control valve control system of the closed-loop feedback control that the embodiment of the present invention provides;

图2为本发明实施例提供的闭环反馈控制的数控阀门控制系统的原理结构图;Fig. 2 is the schematic structural diagram of the numerical control valve control system of the closed-loop feedback control provided by the embodiment of the present invention;

图3为本发明实施例提供的执行器的结构图;FIG. 3 is a structural diagram of an actuator provided by an embodiment of the present invention;

图4为本发明实施例提供的力位混控模式的控制框图;Fig. 4 is a control block diagram of the force-position mixed control mode provided by the embodiment of the present invention;

图5为本发明实施例提供的伺服位置控制模式的控制框图;5 is a control block diagram of a servo position control mode provided by an embodiment of the present invention;

图6为本发明实施例提供的管路系统结构图。Fig. 6 is a structural diagram of the pipeline system provided by the embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

本发明目的在于控制管路系统中气体及液体的流量、流速、压力等阀门的高精确控制调节。The purpose of the present invention is to control the high-precision control and adjustment of valves such as the flow rate, flow rate and pressure of gas and liquid in the pipeline system.

针对管路系统中的阀门控制问题,提出了一种可具备多种模式闭环反馈控制的数控阀门控制系统,采用本发明的优势在于通过工艺系统预设与外部数据等整定阀门关闭力矩、打开位置等转动量,实现管路系统压力、速率、流量等调节实现多阀门自动联动控制。本发明获得的数控阀门控制组件具有体积小巧,阀门开关自动控制,阀门转动力矩、位置等模式可控可调,管路内流量、流速可控可调,采用伺服控制作为执行部件控制精度高等特点,尤其适合管路系统中气体及液体的流量、流速、压力等阀门的高精确控制调节。Aiming at the problem of valve control in the pipeline system, a numerical control valve control system with multiple modes of closed-loop feedback control is proposed. The advantage of adopting the present invention is that the closing torque and opening position of the valve can be adjusted through process system presets and external data. The amount of rotation is equal to realize the adjustment of the pressure, speed and flow of the pipeline system to realize the automatic linkage control of multiple valves. The numerical control valve control assembly obtained by the present invention has the characteristics of small size, automatic valve switch control, controllable and adjustable modes such as valve rotational torque and position, controllable and adjustable flow and flow rate in the pipeline, and high control precision by using servo control as the executive component. , especially suitable for high-precision control and adjustment of gas and liquid flow, flow velocity, pressure and other valves in the pipeline system.

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.

图1为本发明实施例提供的闭环反馈控制的数控阀门控制系统的结构图。参见图1,所述系统,包括:中央控制器、基层控制器、人机交互模块和反馈执行模块。FIG. 1 is a structural diagram of a closed-loop feedback control numerical control valve control system provided by an embodiment of the present invention. Referring to Fig. 1, the system includes: a central controller, a basic controller, a human-computer interaction module and a feedback execution module.

所述中央控制器分别与所述基层控制器和所述人机交互模块连接;所述反馈执行模块分别与所述基层控制器和所述中央控制器连接。The central controller is respectively connected with the basic controller and the human-computer interaction module; the feedback execution module is connected with the basic controller and the central controller respectively.

所述人机交互模块,用于:输入管路阀门的控制目标值;所述控制目标值,包括:期望转动位置、期望转动速度和期望转动中的最大电流阈值中的至少一者。The human-computer interaction module is used to: input the control target value of the pipeline valve; the control target value includes: at least one of the expected rotation position, the expected rotation speed and the maximum current threshold in the expected rotation.

所述中央控制器作为阀门控制系统主控制器,主要用于反馈数据处理,并运算得到控制量发送到基层控制器。具体的,所述中央控制器,用于:接收所述人机交互模块的控制目标值和所述反馈执行模块采集的所述管路阀门的反馈数据;根据所述控制目标值和所述反馈数据,采用反馈控制算法计算管路阀门的控制量。所述反馈控制算法可以为PI/PD控制算法。The central controller, as the main controller of the valve control system, is mainly used for feedback data processing, and the calculated control quantity is sent to the basic controller. Specifically, the central controller is configured to: receive the control target value of the human-computer interaction module and the feedback data of the pipeline valve collected by the feedback execution module; Data, using the feedback control algorithm to calculate the control amount of the pipeline valve. The feedback control algorithm may be a PI/PD control algorithm.

其中,所述反馈数据,包括:实际转动位置、实际转动速度和实际转动中的电流中的至少一者;所述控制量,包括:力位控制量、位置控制量、速度控制量和力矩控制量中的至少一者。所述人机交互模块上的人机界面(操作界面)可以显示系统控制状态、控制量、初始值输入(目标值)等。Wherein, the feedback data includes: at least one of actual rotation position, actual rotation speed and current in actual rotation; the control amount includes: force position control amount, position control amount, speed control amount and torque control at least one of the quantities. The man-machine interface (operating interface) on the man-machine interaction module can display system control status, control quantity, initial value input (target value) and so on.

所述基层控制器以中央控制器的控制量为输入,基于控制量精确控制作为执行器的管路阀门。因此,所述基层控制器,用于:将所述控制量作用于所述管路阀门。The primary controller takes the control quantity of the central controller as input, and precisely controls the pipeline valve as an actuator based on the control quantity. Therefore, the primary controller is configured to: apply the control amount to the pipeline valve.

所述反馈执行模块,用于:实时检测所述管路阀门的状态,得到所述反馈数据。所述反馈执行模块包括执行器和反馈部分;管路阀门可以作为执行器;反馈部分可以为安装在管路阀门末端的反馈传感器,以检测管理阀门开启精度,得到反馈数据。The feedback execution module is configured to: detect the state of the pipeline valve in real time to obtain the feedback data. The feedback execution module includes an actuator and a feedback part; the pipeline valve can be used as the actuator; the feedback part can be a feedback sensor installed at the end of the pipeline valve to detect the opening accuracy of the management valve and obtain feedback data.

所述中央控制器具备自动执行、手动执行等控制模式,在自动执行的程序下,中央控制器,包括力位混控模式、伺服位置控制模式、伺服速度控制模式和伺服力矩(电流)控制模式,根据需求选取合适的控制模式,实现管路阀门控制。控制程序还可以实现暂停、采用绝对坐标与增量坐标控制阀门位置等功能。The central controller has control modes such as automatic execution and manual execution. Under the automatic execution program, the central controller includes force-position mixed control mode, servo position control mode, servo speed control mode and servo torque (current) control mode , according to the demand to select the appropriate control mode, to achieve pipeline valve control. The control program can also realize functions such as pausing, using absolute coordinates and incremental coordinates to control the valve position, etc.

所述人机交互模块通过网络总线与中央控制器相连,可将系统当前数据传输至人机界面中显示,可在人机界面进行自动、手动模式选择。The man-machine interaction module is connected with the central controller through the network bus, and can transmit the current data of the system to the man-machine interface for display, and can select the automatic mode or the manual mode on the man-machine interface.

在一个示例中,在自动控制模式下,在中央控制器的反馈控制算法下,根据反馈部分的反馈数据(实际值)与人机交互模块的管路阀门的控制目标值的误差,计算得到当前中央控制器输出的控制量,基层控制器在接收中央控制器控制量后,自动实现多阀门独立或联动功能。In one example, in the automatic control mode, under the feedback control algorithm of the central controller, the current The control quantity output by the central controller, the grassroots controller automatically realizes the multi-valve independent or linkage function after receiving the control quantity of the central controller.

在手动控制模式下,操作人员通过人机界面输入系统各阀门转动位置或转动力矩,手动点动控制阀门开闭。In the manual control mode, the operator inputs the rotation position or torque of each valve in the system through the man-machine interface, and manually controls the opening and closing of the valve by jogging.

具体的,所述中央控制器,包括:数据接收模块和多模式控制模块。Specifically, the central controller includes: a data receiving module and a multi-mode control module.

其中,数据接收模块主要用于读取反馈数据,将反馈数据作为多模式控制模块的输入。数据接收模块还具备与人机交互模块的通讯接口,中央控制器通过通讯端口与人机交互模块信息交互,亦可与外界网络建立通讯连接。Among them, the data receiving module is mainly used to read the feedback data, and the feedback data is used as the input of the multi-mode control module. The data receiving module also has a communication interface with the human-computer interaction module. The central controller can exchange information with the human-computer interaction module through the communication port, and can also establish a communication connection with the external network.

具体的,所述数据接收模块,用于:Specifically, the data receiving module is used for:

若当前控制模式为力位混控模式,则接收所述人机交互模块发送的期望转动位置和期望转动速度,以及所述反馈执行模块采集的所述管路阀门的实际转动位置和实际转动速度。If the current control mode is the force-position mixed control mode, receive the expected rotational position and expected rotational speed sent by the human-computer interaction module, and the actual rotational position and actual rotational speed of the pipeline valve collected by the feedback execution module .

若当前控制模式为伺服位置控制模式,则接收所述人机交互模块发送的期望转动位置、期望转动速度和期望转动中的最大电流阈值,以及所述反馈执行模块采集的所述管路阀门的实际转动位置、实际转动速度和实际转动中的电流。If the current control mode is the servo position control mode, then receive the expected rotation position, expected rotation speed and maximum current threshold in the expected rotation sent by the human-computer interaction module, and the pipeline valve collected by the feedback execution module Actual rotational position, actual rotational speed and actual rotational current.

若当前控制模式为伺服速度控制模式,则接收所述人机交互模块发送的期望转动速度,以及所述反馈执行模块采集的所述管路阀门的实际转动速度。If the current control mode is the servo speed control mode, receiving the expected rotation speed sent by the human-computer interaction module and the actual rotation speed of the pipeline valve collected by the feedback execution module.

若当前控制模式为伺服力矩(电流)控制模式,则接收所述人机交互模块发送的期望转动位置、期望转动速度和期望转动中的最大电流阈值,以及所述反馈执行模块采集的所述管路阀门的实际转动位置、实际转动速度和实际转动中的电流。If the current control mode is the servo torque (current) control mode, then receive the expected rotation position, expected rotation speed and maximum current threshold in the expected rotation sent by the human-computer interaction module, and the tube collected by the feedback execution module The actual rotation position, actual rotation speed and actual rotation current of the circuit valve.

其中,所述多模式控制模块,内置PD控制器和PI控制器具体的,所述多模式控制模块,用于:Wherein, the multi-mode control module has a built-in PD controller and a PI controller. Specifically, the multi-mode control module is used for:

1)若当前控制模式为力位混控模式,则将所述期望转动位置、所述期望转动速度、所述实际转动位置和所述实际转动速度输入所述PD控制器,所述PD控制器向所述管路阀门施加力位控制量。1) If the current control mode is force-position mixed control mode, then input the expected rotational position, the expected rotational speed, the actual rotational position and the actual rotational speed into the PD controller, and the PD controller A force level control amount is applied to the pipeline valve.

2)若当前控制模式为伺服位置控制模式,则将所述期望转动位置、所述期望转动速度、所述实际转动位置和所述实际转动速度输入PD控制器,将所述PD控制器的输出量、所述期望转动中的最大电流阈值和所述实际转动中的电流输入所述PI控制器,所述PI控制器经过第一PI控制算法向所述管路阀门施加位置控制量。2) If the current control mode is the servo position control mode, then input the expected rotational position, the expected rotational speed, the actual rotational position and the actual rotational speed into the PD controller, and input the output of the PD controller The quantity, the maximum current threshold in the expected rotation and the current in the actual rotation are input to the PI controller, and the PI controller applies a position control quantity to the pipeline valve through a first PI control algorithm.

3)若当前控制模式为伺服速度控制模式,则将所述期望转动速度和所述实际转动速度输入所述PD控制器,所述PD控制器向所述管路阀门施加速度控制量。3) If the current control mode is the servo speed control mode, input the expected rotation speed and the actual rotation speed into the PD controller, and the PD controller applies a speed control amount to the pipeline valve.

4)若当前控制模式为伺服力矩控制模式,则将所述期望转动位置、所述期望转动速度、所述实际转动位置和所述实际转动速度输入PD控制器,将所述PD控制器的输出量、将所述期望转动中的最大电流阈值和所述实际转动中的电流输入所述PI控制器,所述PI控制器经过第二PI控制算法向所述管路阀门施加力矩控制量。4) If the current control mode is the servo torque control mode, input the expected rotational position, the expected rotational speed, the actual rotational position and the actual rotational speed into the PD controller, and input the output of the PD controller The amount, the maximum current threshold in the expected rotation and the current in the actual rotation are input to the PI controller, and the PI controller applies a torque control amount to the pipeline valve through a second PI control algorithm.

在另一个示例中,所述闭环反馈控制的数控阀门控制系统,还包括:外部数据测量装置。In another example, the closed-loop feedback control numerical control valve control system further includes: an external data measuring device.

所述外部数据测量装置分别与所述中央控制器和所述基层控制器连接;所述外部数据测量装置用于获取所述管路阀门所处环境的环境数据,并将所述环境数据通过所述中央控制器传输至所述人机交互模块;其中,所述环境数据,包括:温湿度、压力和真空度。The external data measuring device is respectively connected with the central controller and the basic controller; the external data measuring device is used to obtain the environmental data of the environment where the pipeline valve is located, and pass the environmental data through the The central controller transmits to the human-computer interaction module; wherein, the environmental data includes: temperature and humidity, pressure and vacuum degree.

所述中央控制器输出的控制量在反馈控制算法下,根据管路工艺设定的初始值(或目标值)、外部数据(压力、真空度等)等得到的各管路阀门需实时自动调节阀门“开闭量”或转动位置。具体的,中央控制器根据管路系统工艺设定的初始值与外部数据实时自整定调节阀门转动开度和位置,基于两者之间的匹配关系,实现自动控制管路系统压力速率或流量。The control quantity output by the central controller is under the feedback control algorithm, and each pipeline valve obtained according to the initial value (or target value) set by the pipeline process and external data (pressure, vacuum degree, etc.) needs to be automatically adjusted in real time Valve "opening" or rotational position. Specifically, the central controller adjusts the valve rotation opening and position automatically in real time according to the initial value set by the pipeline system process and external data, and realizes automatic control of the pressure rate or flow of the pipeline system based on the matching relationship between the two.

所述基层控制器以中央控制器的控制量为输入,基于控制量精确控制执行器(如基于中央控制器的控制量,基层控制器作用于伺服控制器,自动控制管路阀门开合大小,使管路系统完成工艺要求压力速率或流量),基层控制器在执行器与中央控制器之间起“承上启下”作用,并包含控制数据接收、解码、发送的功能;同时,可解码中央控制器的“I/O”信号指令,对系统外设进行开关量控制,实现温湿度、压力、真空等启停控制,并反馈当前状态量(当前环境数据)输入至中央控制器。The basic-level controller takes the control quantity of the central controller as input, and precisely controls the actuator based on the control quantity (for example, based on the control quantity of the central controller, the basic-level controller acts on the servo controller to automatically control the opening and closing of the pipeline valve, Make the pipeline system complete the process required pressure rate or flow), the basic controller acts as a link between the actuator and the central controller, and includes the functions of receiving, decoding and sending control data; at the same time, it can decode the central controller The "I/O" signal command is used to control the switching value of the peripherals of the system, realize the start-stop control of temperature, humidity, pressure, vacuum, etc., and feed back the current state quantity (current environmental data) to the central controller.

所述人机交互模块用于显示所述环境数据;所述管路阀门的控制目标值是根据所述环境数据确定的。The human-computer interaction module is used to display the environmental data; the control target value of the pipeline valve is determined according to the environmental data.

在另一个示例中,参见图2,所述闭环反馈控制的数控阀门控制系统,还包括:伺服控制器和伺服电机。图2中虚线框中的结构之间为机械连接。In another example, referring to FIG. 2 , the closed-loop feedback control numerical control valve control system further includes: a servo controller and a servo motor. The structures in the dotted box in Figure 2 are mechanically connected.

所述基层控制器与所述伺服控制器连接;所述伺服控制器通过所述伺服电机与所述管路阀门连接;所述反馈执行模块通过所述伺服电机与所述管路阀门连接。本示例中伺服控制器、伺服电机和管路阀门构成执行器,如图3所示,伺服电机1通过机械连接至管路阀门2的主体,伺服控制器通过线缆与伺服电机连接,反馈传感器安装于伺服电机1的末端。The primary controller is connected to the servo controller; the servo controller is connected to the pipeline valve through the servo motor; the feedback execution module is connected to the pipeline valve through the servo motor. In this example, the servo controller, servo motor and pipeline valve constitute the actuator. As shown in Figure 3, the servo motor 1 is mechanically connected to the main body of the pipeline valve 2, the servo controller is connected to the servo motor through a cable, and the feedback sensor Installed at the end of the servo motor 1.

所述执行器还可以由多组伺服控制器、多组伺服电机和多组管路阀门组成;可根据管路系统需求,串/并联增加执行器的轴数,而伺服控制器与基层控制器基于CAN总线连接,将控制数据传输至多轴伺服控制器(多个伺服控制器组成),进而直接控制执行器部件中伺服电机转动。The actuator can also be composed of multiple sets of servo controllers, multiple sets of servo motors and multiple sets of pipeline valves; the number of axes of the actuator can be increased in series/parallel according to the requirements of the pipeline system, and the servo controller and the basic controller Based on the CAN bus connection, the control data is transmitted to the multi-axis servo controller (composed of multiple servo controllers), and then directly controls the rotation of the servo motor in the actuator component.

所述中央控制器通过网络总线与所述人机交互模块连接。The central controller is connected to the human-computer interaction module through a network bus.

所述基层控制器通过CAN总线与所述伺服控制器连接。所述基层控制器为中央控制器的“下级”控制器,其接收中央控制器的控制量,通过CAN总线连接执行器,控制管路阀门的转动力矩/位置/速率等,并经反馈传感器实时的向中央控制器传回反馈数据(阀门实时转动数据)。The basic controller is connected with the servo controller through a CAN bus. The basic-level controller is the "lower-level" controller of the central controller, which receives the control amount of the central controller, connects the actuator through the CAN bus, controls the rotational torque/position/speed of the pipeline valve, and transmits it in real time through the feedback sensor. Feedback data (valve real-time rotation data) is sent back to the central controller.

反馈执行模块中的反馈部分与执行器机械连接安装,直接检测阀门转动位置角度,实现对阀门“开度”检测,进而精确调节系统流速。The feedback part in the feedback execution module is mechanically connected and installed with the actuator to directly detect the rotation position angle of the valve, realize the detection of the "opening degree" of the valve, and then accurately adjust the flow rate of the system.

在又一个示例中,所述人机交互模块可设定过载保护、限位保护、电流(力矩)调节、阀门转动速度等初始值,或对阀门系统的目标值设定,发送至中央控制器。In yet another example, the human-computer interaction module can set initial values such as overload protection, limit protection, current (torque) adjustment, valve rotation speed, etc., or set the target value of the valve system and send it to the central controller .

具体的,所述人机交互模块,还用于:输入管路阀门的设定最大扭矩数值、设定最大电流和设定转动速度量。Specifically, the human-computer interaction module is also used for: inputting the set maximum torque value, set maximum current and set rotation speed of the pipeline valve.

所述中央控制器,还用于:当所述期望转动位置超过所述设定最大扭矩数值,所述期望转动速度超过所述设定转动速度量,或者所述期望转动中的最大电流阈值超过所述设定最大电流时,控制所述管路阀门停止运行。The central controller is further configured to: when the desired rotation position exceeds the set maximum torque value, the desired rotation speed exceeds the set rotation speed amount, or the maximum current threshold in the desired rotation exceeds When the maximum current is set, the pipeline valve is controlled to stop running.

其中,所述闭环反馈控制的数控阀门控制系统,还包括:限位传感器;所述限位传感器设置在所述管路阀门的转动极限位置。Wherein, the numerical control valve control system of the closed-loop feedback control further includes: a limit sensor; the limit sensor is set at the rotation limit position of the pipeline valve.

本示例中,中央控制器具备过载保护、限位保护、电流(力矩)调节、阀门转动速度设定等保护功能。In this example, the central controller has protection functions such as overload protection, limit protection, current (torque) adjustment, and valve rotation speed setting.

上述实施例中,根据管路系统和工艺等不同要求,可实现任意阀门的组合编程运行,各阀门组合灵活可变;控制系统通过电流模式可以精准实现阀门关闭/打开时的力矩控制;控制系统通过位置模式可以精准实现阀门关闭/打开时的位置控制。In the above-mentioned embodiments, according to different requirements of the pipeline system and process, the combination programming operation of any valve can be realized, and the combination of each valve is flexible and variable; the control system can accurately realize the torque control when the valve is closed/opened through the current mode; the control system The position control when the valve is closed/opened can be accurately realized through the position mode.

本实施例的闭环反馈控制的数控阀门控制系统,整体系统支持多阀门联动控制,基于工艺系统预设与外部数据等整定阀门关闭力矩、打开位置等转动量,实现管路系统压力、速率、流量等调节实现多阀门自动联动控制。本实施例中获得的数控阀门控制组件具有体积小巧,阀门开关自动控制,阀门转动力矩、位置等模式可控可调,管路内流量、流速可控可调,采用伺服控制作为执行部件控制精度高等特点,尤其适合管路系统中气体及液体的流量、流速、压力等阀门的高精度自动控制调节。The CNC valve control system with closed-loop feedback control in this embodiment supports multi-valve linkage control, and adjusts valve closing torque, opening position and other rotations based on process system presets and external data to realize the pressure, speed, and flow of the pipeline system. and other adjustments to realize multi-valve automatic linkage control. The numerical control valve control assembly obtained in this example has the advantages of small size, automatic valve switch control, controllable and adjustable modes such as valve rotational torque and position, controllable and adjustable flow rate and flow rate in the pipeline, and adopts servo control as the executive component to control the accuracy. Advanced features, especially suitable for high-precision automatic control and adjustment of gas and liquid flow, flow rate, pressure and other valves in pipeline systems.

下面给出几个具体实施例对上述闭环反馈控制的数控阀门控制系统进行进一步详细说明。Several specific embodiments are given below to further describe the above-mentioned closed-loop feedback control numerical control valve control system in detail.

具体实施例1:Specific embodiment 1:

本具体实例的多模式闭环反馈控制的数控阀门控制系统中,中央控制器为数控阀门控制系统的主控部分,主要由数据接收模块和多模式控制模块组成;其中多模式控制模块主要为阀门提供精确控制算法,数据接收模块接收系统的反馈量并解码,其作为控制算法输入。多模式控制模块的PI/PD控制算法,将反馈传感器采集的反馈数据作为输入与阀门控制目标值进行对比,经算法计算后得到的控制量,经CAN总线发送至基层控制器;而数据接收模块接收读取反馈数据,并将反馈数据作为多模式控制模块的输入,同时其具备与人机界面的通讯接口,中央控制器通过通讯端口与人机界面信息交互,亦可与外界网络建立通讯连接。In the numerical control valve control system of multi-mode closed-loop feedback control in this specific example, the central controller is the main control part of the numerical control valve control system, which is mainly composed of a data receiving module and a multi-mode control module; the multi-mode control module is mainly for valves. Precise control algorithm, the data receiving module receives and decodes the feedback quantity of the system, which is used as the input of the control algorithm. The PI/PD control algorithm of the multi-mode control module compares the feedback data collected by the feedback sensor with the valve control target value as input, and the control amount calculated by the algorithm is sent to the basic controller through the CAN bus; and the data receiving module Receive and read the feedback data, and use the feedback data as the input of the multi-mode control module. At the same time, it has a communication interface with the human-machine interface. The central controller interacts with the information of the human-machine interface through the communication port, and can also establish a communication connection with the external network. .

数控阀门控制系统中,人机界面用于实时显示控制系统控制量和状态数据信息,与中央控制器相连,中央控制器将数据传输至人机界面中显示,操作人员在界面输出初始值或控制值;本实施例中,人机界面为可触控操作、可显示、并与中央控制器基于网络总线协议连接的触摸屏显示器。In the CNC valve control system, the man-machine interface is used to display the control system control quantity and status data information in real time, and is connected to the central controller. The central controller transmits the data to the man-machine interface for display, and the operator outputs the initial value or controls on the interface value; in this embodiment, the man-machine interface is a touch-screen display that can be operated by touch, can be displayed, and is connected to the central controller based on the network bus protocol.

基层控制器为数控阀门控制系统的分控制,“串联”在执行器与中央控制器之间,包含控制数据接收、解码、发送等功能。基于CAN总线连接伺服控制器,根据解码得到的控制量对阀门转动力矩/位置/速率等进行直接控制,经反馈部分将阀门实时转动数据传回中央控制器。基层控制器可直接作用于各伺服控制器,控制阀门实现多阀门独立或联动功能;根据管路系统工艺设定的控制初始值(人机界面设定)与外部数据(压力、真空度等)等调节阀门转动“开闭量”和位置。The basic controller is the sub-control of the CNC valve control system, which is "serialized" between the actuator and the central controller, including the functions of receiving, decoding and sending control data. Connect the servo controller based on the CAN bus, and directly control the valve rotation torque/position/speed according to the control quantity obtained by decoding, and transmit the real-time rotation data of the valve back to the central controller through the feedback part. The basic controller can directly act on each servo controller to control the valve to realize multi-valve independent or linkage function; according to the control initial value (man-machine interface setting) and external data (pressure, vacuum degree, etc.) set according to the process of the pipeline system Adjust the valve rotation "opening and closing amount" and position.

反馈部分与执行器部分机械连接,反馈传感器安装在电机后端,电机与阀门通过联轴器相连,为此传感器可直接检测阀门转动位置角度、转动速度,实现对阀门“开闭量”检测,进而精确调节系统流速。The feedback part is mechanically connected with the actuator part. The feedback sensor is installed at the rear end of the motor, and the motor and the valve are connected through a coupling. Therefore, the sensor can directly detect the rotation position angle and rotation speed of the valve, and realize the detection of the "opening and closing amount" of the valve. And then precisely adjust the system flow rate.

本具体实施例基于上述系统控制关系,对数控阀门控制系统中的力位混控模式、伺服位置控制模式、伺服速度控制模式进行说明。Based on the above-mentioned system control relationship, this specific embodiment describes the force-position mixed control mode, servo position control mode, and servo speed control mode in the numerical control valve control system.

(1)在力位混控模式实施方式中,人机界面先选择力位混控模式,此时中央控制器的控制模块中,调用的控制算法为PD控制算法,参照图4所示。如图4所示,在力位混控模式实施方式中,输入为人机交互模块的目标值P(期望转动位置pos_desired、期望转动速度spd__desired),以及反馈部分的实际值P0(实际转动位置pos_current、实际转动速度spd_current),并经过PD控制器得到力位控制量motor_current1,最终输出到伺服电机,如下式所示:(1) In the implementation of force-position mixed control mode, the human-machine interface first selects the force-position mixed control mode. At this time, in the control module of the central controller, the control algorithm called is the PD control algorithm, as shown in Figure 4. As shown in Figure 4, in the implementation of force-position mixed control mode, the input is the target value P of the human-computer interaction module (desired rotational position pos_desired, desired rotational speed spd__desired), and the actual value P 0 of the feedback part (actual rotational position pos_current , the actual rotation speed spd_current), and the force position control value motor_current1 is obtained through the PD controller, and finally output to the servo motor, as shown in the following formula:

motor_current1=motor_current1=

KP*(pos_desired-pos_current)+KP*(pos_desired-pos_current)+

KD*(spd_desired-spd_current)+Torque/KT KD*(spd_desired-spd_current)+Torque/K T

其中KP为反馈补偿增益;KD为阻尼系数,KP和KD可基于系统调试过程确定合适的值;KT为电机扭矩常数;Torque为电机扭矩。Among them, KP is the feedback compensation gain; KD is the damping coefficient, KP and KD can determine the appropriate value based on the system debugging process; K T is the motor torque constant; Torque is the motor torque.

(2)如图5所示,在伺服位置控制模式实施方式中,人机界面先选择伺服位置控制模式,中央控制器的控制模块中,调用的控制算法为PI/PD双闭环控制,参见图5。该模式下,其主要输入为反馈部分的实际转动位置和实际转动速度;外环为位置环控制,实际为PD控制器;内环为电流环,电流环主要为PI控制器,PI控制器的输入为PD控制器的输出量和实际转动中的电流,PD控制器和PI控制器中的参数,用户不可更改。此伺服位置控制模式下,在人机界面中,其需三个输入期望参数,分别为期望转动位置pos_desired、期望转动速度spd__desired和期望转动中的最大电流阈值Imax,即电机控制阀门从当前位置P0运转到期望转动位置pos_desired;在P0到pos_desired过程中,电机最大电流为Imax,产生最大扭矩=Imax*电机扭矩常数KT,若遇到的负载超过该扭矩,则电机堵转。伺服位置控制模式下,经过PD控制器和PI控制器得到位置控制量motor_current2,最终输出到伺服电机。PI控制器基于PD控制器的输出量motor_current,采用第一PI控制算法得到位置控制量motor_current2,其公式表示为:(2) As shown in Figure 5, in the implementation of the servo position control mode, the human-machine interface first selects the servo position control mode, and in the control module of the central controller, the control algorithm called is PI/PD double closed-loop control, see Fig. 5. In this mode, its main input is the actual rotation position and actual rotation speed of the feedback part; the outer loop is position loop control, which is actually a PD controller; the inner loop is a current loop, and the current loop is mainly a PI controller. The input is the output of the PD controller and the current in actual rotation. The parameters in the PD controller and PI controller cannot be changed by the user. In this servo position control mode, in the human-machine interface, it needs three input expected parameters, namely the desired rotational position pos_desired, the desired rotational speed spd__desired and the maximum current threshold I max in the desired rotational speed, that is, the motor controls the valve from the current position P0 rotates to the desired rotation position pos_desired; during the process from P0 to pos_desired, the maximum current of the motor is I max , and the maximum torque generated = I max * motor torque constant K T , if the encountered load exceeds this torque, the motor will stall. In the servo position control mode, the position control value motor_current2 is obtained through the PD controller and PI controller, and finally output to the servo motor. Based on the output motor_current of the PD controller, the PI controller adopts the first PI control algorithm to obtain the position control value motor_current2, and its formula is expressed as:

Figure BDA0003960080140000121
Figure BDA0003960080140000121

其中,motor_current表示PD控制器的输出量,即电流值Ic;motor_current2(t+1)表示t+1时刻的位置控制量;motor_current2(t)表示t时刻的位置控制量,本质上即为t时刻的实际转动中的电流Im,Im≤Imax;KI为积分时间常数。motor_current的计算公式为:Among them, motor_current represents the output of the PD controller, that is, the current value I c ; motor_current2(t+1) represents the position control value at time t+1; motor_current2(t) represents the position control value at time t, which is essentially t The current I m in the actual rotation at the moment, I m ≤ I max ; KI is the integral time constant. The calculation formula of motor_current is:

Figure BDA0003960080140000131
Figure BDA0003960080140000131

(3)在伺服速度控制模式实施方式中,人机界面选择伺服速度控制模式,中央控制器的控制模块中,调用的控制算法为PD控制器。此实施方式中,输入为反馈部分的实际转动速度spd_current,同时在人机界面中输入期望转动速度spd__desired,并经过PI控制得到速度控制量motor_current3,最终输出电流给伺服电机,此种模式控制方式与力位混控模式相一致,其公式表示为:。(3) In the implementation of the servo speed control mode, the man-machine interface selects the servo speed control mode, and in the control module of the central controller, the control algorithm called is the PD controller. In this embodiment, the input is the actual rotation speed spd_current of the feedback part, and at the same time input the desired rotation speed spd__desired in the human-machine interface, and obtain the speed control value motor_current3 through PI control, and finally output the current to the servo motor. This mode of control is the same as The force-position mixed control mode is consistent, and its formula is expressed as: .

Figure BDA0003960080140000132
Figure BDA0003960080140000132

(4)在伺服力矩控制模式实施方式中,人机界面选择伺服力矩控制模式,中央控制器的控制模块中,调用的控制算法为PI控制器和PD控制器。此实施方式中,PD控制器输出控制量motor_current,PI控制器的输入为motor_current,反馈部分的实际转动中的电流,以及人机界面输入的期望转动中的最大电流阈值Imax,并经过PI控制得到力矩控制量motor_current4,最终输出给伺服电机。PI控制器基于PD控制器的输出量motor_current,采用第二PI控制算法得到位置控制量motor_current4,其公式表示为:(4) In the implementation of the servo torque control mode, the man-machine interface selects the servo torque control mode, and in the control module of the central controller, the control algorithms called are PI controller and PD controller. In this embodiment, the PD controller outputs the control quantity motor_current, the input of the PI controller is motor_current, the current in the actual rotation of the feedback part, and the maximum current threshold I max in the expected rotation input by the man-machine interface, and is controlled by PI Get the torque control value motor_current4, and finally output it to the servo motor. The PI controller is based on the output quantity motor_current of the PD controller, and uses the second PI control algorithm to obtain the position control quantity motor_current4, and its formula is expressed as:

Figure BDA0003960080140000133
Figure BDA0003960080140000133

其中,motor_current表示PD控制器的输出量,具体计算公式与伺服位置控制模式的计算公式相同,在此不再赘述。motor_current4(t+1)表示t+1时刻的力矩控制量;motor_current4(t)表示t时刻的力矩控制量,本质上即为t时刻的实际转动中的电流Im,Im≤ImaxWherein, motor_current represents the output of the PD controller, and the specific calculation formula is the same as that of the servo position control mode, and will not be repeated here. motor_current4(t+1) indicates the torque control amount at time t+1; motor_current4(t) indicates the torque control amount at time t, which is essentially the current I m in actual rotation at time t, and Im ≤ I max .

需要说明的是,上述几种实施方式中所有控制量(力位控制量、位置控制量、速度控制量、力矩控制量)都是电流,本实施例通过各种控制器得到每个状态下最适宜的电流控制量,再通过电机驱动器控制电机得到适宜的力矩(伺服力矩控制模式)或位置(伺服位置控制模式下)。因此,所有的模式控制量在本质上都是电流来控制电机,只是在不同模式下所需要精确控制的“目标量不同”。即伺服力矩控制模式下,是以力矩作为判定条件;伺服位置控制模式下,以位置作为判定条件。It should be noted that all the control quantities (force-position control quantity, position control quantity, speed control quantity, and torque control quantity) in the above-mentioned several implementations are currents. In this embodiment, various controllers are used to obtain the most Appropriate current control amount, and then control the motor through the motor driver to obtain appropriate torque (servo torque control mode) or position (servo position control mode). Therefore, all mode control quantities are essentially current to control the motor, but the "target quantity" required for precise control is different in different modes. That is, in the servo torque control mode, the torque is used as the judgment condition; in the servo position control mode, the position is used as the judgment condition.

上述几种实施方式为数控阀门控制系统的自动模式下的实施案例。在本实施案例中,在人机界面上选择自动模式,或在数控阀门控制系统运行过程的初始状态为自动模式。其根据中央控制器不同实施方式得到控制量,发送至基层控制器,经分析具体发送到执行器部分的单个或多个阀门进行系统流量或速率控制。在自动模式下,根据管路工艺设定的初始值(或目标值)、外部数据(压力、真空度等)等得到的各阀门需实时自动调节阀门“开闭量”或转动位置,中央控制器根据设定速率或流量,自动控制阀门开合大小,使管路系统完成工艺要求压力、速率或流量。The above several implementation modes are implementation cases in the automatic mode of the numerical control valve control system. In this implementation case, the automatic mode is selected on the man-machine interface, or the initial state of the numerical control valve control system is the automatic mode. According to different implementations of the central controller, the control quantity is obtained, sent to the basic controller, and then sent to the single or multiple valves of the actuator part for system flow or rate control after analysis. In the automatic mode, each valve obtained according to the initial value (or target value) set by the pipeline process and external data (pressure, vacuum degree, etc.) needs to automatically adjust the "opening and closing amount" or rotation position of the valve in real time, and the central control The controller automatically controls the opening and closing of the valve according to the set rate or flow, so that the pipeline system can complete the pressure, rate or flow required by the process.

具体实施例2:Specific embodiment 2:

作为本发明又一具体实施案例,本实施案例公开了数控阀门控制系统的手动模式。在手动模式下,在人机界面对管路系统的任意阀门进行开闭控制,即通过数控阀门控制系统的人机界面可“点动”开关系统中任意阀门;同时,可基于人机界面设置阀门“开合”期望值,通过中央控制器、基层控制器等直接控制阀门转动角度,以期望控制管路系统流量。在本实施案例中,手动模式下,在通过人机界面设定期望流量参数、结合外部数据(压力、真空等),可设置流过阀门的气体或液体的速率或流量,中央控制器根据设定速率或流量,控制阀门位置开合量完成工艺要求。As another specific implementation case of the present invention, this implementation case discloses the manual mode of the numerical control valve control system. In the manual mode, any valve in the pipeline system can be opened and closed on the man-machine interface, that is, any valve in the system can be "jogged" through the man-machine interface of the numerical control valve control system; at the same time, it can be set based on the man-machine interface The expected value of valve "opening and closing" directly controls the rotation angle of the valve through the central controller and the grass-roots controller, so as to control the flow of the pipeline system. In this implementation case, in manual mode, after setting the desired flow parameters through the man-machine interface and combining external data (pressure, vacuum, etc.), the rate or flow of gas or liquid flowing through the valve can be set, and the central controller can Constant speed or flow rate, control the opening and closing of the valve position to complete the process requirements.

具体实施例3:Specific embodiment 3:

作为本发明又一具体实施案例,本实施案例公开了数控阀门控制系统的过载保护、限位保护、电流(力矩)调节、阀门转动速度设定等保护功能。在实施案例中,系统过载保护主要是在人机界面设定阀门开合的最大扭矩数值,当电机最大扭矩操作该数值时,电机停止运动、系统处于过载保护状态,通过此方式保护电机、延长系统寿命。限位保护为在电机驱动阀门转动过程,在其转动极限位置设置限位传感器,保证阀门旋转不超限、保护整体阀门控制系统。电流(力矩)调节、阀门转动速度设定等均是在人机界面上设定最大的电流、转动速度量,当设定的期望值超过该设定时,系统自动判断有误、停止运行,以保护整体阀门数控系统。在本实施案例中,还规定了系统遇到“失控、阀门转动超限或其他紧急状态”,操作人员可在通过急停按钮实现整体系统紧急停止。As another specific implementation case of the present invention, this implementation case discloses protection functions such as overload protection, limit protection, current (torque) adjustment, and valve rotation speed setting of the numerical control valve control system. In the implementation case, the system overload protection is mainly to set the maximum torque value of the valve opening and closing on the man-machine interface. When the maximum torque of the motor operates the value, the motor stops moving and the system is in the state of overload protection. System lifetime. The limit protection is to set a limit sensor at the limit position of the motor-driven valve rotation to ensure that the valve rotation does not exceed the limit and protect the overall valve control system. Current (torque) adjustment, valve rotation speed setting, etc. are set on the man-machine interface to set the maximum current and rotation speed. When the set expected value exceeds the setting, the system will automatically judge that there is an error and stop running. Protect the overall valve numerical control system. In this implementation case, it is also stipulated that the system encounters "out of control, valve rotation overrun or other emergency state", and the operator can realize the emergency stop of the whole system through the emergency stop button.

具体实施例4:Specific embodiment 4:

作为本发明又一具体实施案例,本实施案例公开了如图6所示的气体混气系统管路,可基于本实施例数控阀门系统对其进行精确控制,图6中MFC为质量流量控制器,SV为执行器部分的管路阀门和伺服电机组成的结构。在图6所示的实施案例中,布置了3路气体输入和4路气体输出,在实际案例基于本实施例数控阀门系统可进行扩展,进而满足多路(不小于16路)气体输入/输出功能。在实施案例中,基于数控阀门控制系统控制系统流量输入/输出,并基于质量流量控制器反馈当前管路流量、至中央控制器,进而通过基层控制器进一步实现对每路气体流量的精确控制;亦可通过反馈部分,实现对系统阀门的精确“开闭”、转动力矩。同时实施案例中,通过流量的精确控制,实现混气罐内部气体精确比例的混合,以得到精确比例成分的目标气体。As another specific implementation case of the present invention, this implementation case discloses the pipeline of the gas mixing system as shown in Figure 6, which can be precisely controlled based on the numerical control valve system of this embodiment, and MFC in Figure 6 is a mass flow controller , SV is the structure composed of pipeline valves and servo motors in the actuator part. In the implementation case shown in Figure 6, 3 gas inputs and 4 gas outputs are arranged. In actual cases, based on this embodiment, the numerical control valve system can be expanded to meet multiple (not less than 16) gas input/output Function. In the implementation case, the flow input/output of the control system is controlled based on the numerical control valve control system, and the current pipeline flow is fed back to the central controller based on the mass flow controller, and then the precise control of each gas flow is further realized through the basic controller; The precise "opening and closing" and rotational torque of the system valve can also be realized through the feedback part. At the same time, in the implementation case, through the precise control of the flow rate, the precise proportion of the gas inside the gas mixing tank can be mixed to obtain the target gas with precise proportion and composition.

本发明数控阀门控制系统对适用于管路系统中流量或速率有较高要求的应用场景实现精确控制,且转动力矩和位置可控可调,控制系统可通过外部输入做自适应整定和调节,可输出信号控制外部器件,人机界面友好,操作界面简单等。本发明基于多模式阀门控制解决了管路系统的流量、流速、压力等高精确控制调节问题,保证了阀门转矩、位置可控可调,提高了管路系统控制精度和增加了控制模式。The numerical control valve control system of the present invention realizes precise control for application scenarios with high requirements for flow rate or rate in the pipeline system, and the rotational torque and position are controllable and adjustable, and the control system can be adaptively set and adjusted through external input, Can output signals to control external devices, friendly man-machine interface, simple operation interface, etc. Based on the multi-mode valve control, the present invention solves the problem of high precision control and adjustment of the flow, velocity and pressure of the pipeline system, ensures controllable and adjustable valve torque and position, improves the control precision of the pipeline system and adds control modes.

本发明的闭环反馈控制的数控阀门控制系统,具体具有如下优点:The numerical control valve control system of the closed-loop feedback control of the present invention has the following advantages:

1、本发明通过人机界面、中央控制器、基层控制器、执行器、反馈部分形成控制作业闭环,可实现对阀门内流通的气体或液体流量、速率的精确控制,实现阀门开闭状态的精确调节,进而精确控制阀门所在的管路系统。1. The present invention forms a control operation closed loop through the man-machine interface, central controller, basic controller, actuator and feedback part, which can realize the precise control of the gas or liquid flow and rate circulating in the valve, and realize the control of the valve opening and closing state. Precise adjustment, and then precise control of the piping system where the valve is located.

2、本发明具备多种模式,包括力位混控模式、伺服位置模式、电流(力矩)控制模式,根据需求选着合适控制模式,实现阀门控制。同时,控制系统还具备自动执行模式和手动执行模式,保证在自动模式出现“错误”状态下,亦可通过手动模式完成阀门控制和系统流量控制。2. The present invention has multiple modes, including force-position mixed control mode, servo position mode, and current (torque) control mode. Select an appropriate control mode according to requirements to realize valve control. At the same time, the control system also has an automatic execution mode and a manual execution mode to ensure that the valve control and system flow control can also be completed through the manual mode when an "error" occurs in the automatic mode.

3、本发明可实现外部温湿度、压力、真空等状态量的启停控制,并将其状态反馈输出到中央控制器,进而作用于执行器、可实现基于上述状态量下的阀门精确控制。3. The present invention can realize the start-stop control of external temperature and humidity, pressure, vacuum and other state quantities, and output the state feedback to the central controller, and then act on the actuator to realize precise control of the valve based on the above state quantities.

4、本发明执行器的阀门使用全伺服电机控制,转动精度高、运动精度可达±5μm,且阀门“开闭量”或转动的力矩、位置可控可调。4. The valve of the actuator of the present invention is controlled by a full servo motor, with high rotation accuracy and movement accuracy of ±5 μm, and the "opening and closing amount" of the valve or the torque and position of rotation are controllable and adjustable.

5、本发明中央控制器可支持多阀门联动功能,即可控制多个阀门同时开闭;并且中央控制器、基层控制器可支持执行器多轴扩展,即支持串/并联增加执行器的轴数,进而实现管路系统功能扩展。5. The central controller of the present invention can support the multi-valve linkage function, which can control multiple valves to open and close at the same time; and the central controller and the basic controller can support multi-axis expansion of the actuator, that is, support series/parallel connection to increase the axis of the actuator Number, and then realize the function expansion of the piping system.

6、本发明的控制系统可根据管路系统和工艺等不同要求实现任意阀门的组合编程运行,各阀门组合灵活可变;同时可在控制算法下,基于外部数据(压力、真空度等)等得到的各阀门需实时自动调节阀门“开闭量”或转动位置。6. The control system of the present invention can realize the combination programming operation of any valve according to different requirements such as pipeline system and process, and the combination of each valve is flexible; at the same time, it can be based on external data (pressure, vacuum degree, etc.) under the control algorithm, etc. The obtained valves need to automatically adjust the "opening and closing amount" or the rotation position of the valves in real time.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。In this paper, specific examples have been used to illustrate the principle and implementation of the present invention. The description of the above embodiments is only used to help understand the core idea of the present invention; meanwhile, for those of ordinary skill in the art, according to the thought of the present invention, There will be changes in specific implementation methods and application ranges. In summary, the contents of this specification should not be construed as limiting the present invention.

Claims (8)

1.一种闭环反馈控制的数控阀门控制系统,其特征在于,包括:中央控制器、基层控制器、人机交互模块和反馈执行模块;1. A numerically controlled valve control system of closed-loop feedback control, characterized in that, comprising: a central controller, a basic controller, a human-computer interaction module and a feedback execution module; 所述中央控制器分别与所述基层控制器和所述人机交互模块连接;所述反馈执行模块分别与所述基层控制器和所述中央控制器连接;The central controller is respectively connected with the basic controller and the human-computer interaction module; the feedback execution module is connected with the basic controller and the central controller respectively; 所述人机交互模块,用于:The human-computer interaction module is used for: 输入管路阀门的控制目标值;所述控制目标值,包括:期望转动位置、期望转动速度和期望转动中的最大电流阈值中的至少一者;Input the control target value of the pipeline valve; the control target value includes: at least one of the expected rotation position, the expected rotation speed and the maximum current threshold in the expected rotation; 所述中央控制器,用于:The central controller is used for: 接收所述人机交互模块的控制目标值和所述反馈执行模块采集的所述管路阀门的反馈数据;receiving the control target value of the human-computer interaction module and the feedback data of the pipeline valve collected by the feedback execution module; 根据所述控制目标值和所述反馈数据,采用反馈控制算法计算管路阀门的控制量;According to the control target value and the feedback data, a feedback control algorithm is used to calculate the control amount of the pipeline valve; 其中,所述反馈数据,包括:实际转动位置、实际转动速度和实际转动中的电流中的至少一者;所述控制量,包括:力位控制量、位置控制量、速度控制量和力矩控制量中的至少一者;Wherein, the feedback data includes: at least one of actual rotation position, actual rotation speed and current in actual rotation; the control amount includes: force position control amount, position control amount, speed control amount and torque control at least one of the quantities; 所述基层控制器,用于:The basic controller is used for: 将所述控制量作用于所述管路阀门;applying the control amount to the pipeline valve; 所述反馈执行模块,用于:The feedback execution module is used for: 实时检测所述管路阀门的状态,得到所述反馈数据。The state of the pipeline valve is detected in real time to obtain the feedback data. 2.根据权利要求1所述的一种闭环反馈控制的数控阀门控制系统,其特征在于,所述中央控制器,包括:数据接收模块和多模式控制模块;2. The numerical control valve control system of a kind of closed-loop feedback control according to claim 1, is characterized in that, described central controller comprises: data receiving module and multimode control module; 所述数据接收模块,用于:The data receiving module is used for: 若当前控制模式为力位混控模式,则接收所述人机交互模块发送的期望转动位置和期望转动速度,以及所述反馈执行模块采集的所述管路阀门的实际转动位置和实际转动速度;If the current control mode is the force-position mixed control mode, receive the expected rotational position and expected rotational speed sent by the human-computer interaction module, and the actual rotational position and actual rotational speed of the pipeline valve collected by the feedback execution module ; 若当前控制模式为伺服位置控制模式,则接收所述人机交互模块发送的期望转动位置、期望转动速度和期望转动中的最大电流阈值,以及所述反馈执行模块采集的所述管路阀门的实际转动位置、实际转动速度和实际转动中的电流;If the current control mode is the servo position control mode, then receive the expected rotation position, expected rotation speed and maximum current threshold in the expected rotation sent by the human-computer interaction module, and the pipeline valve collected by the feedback execution module Actual rotation position, actual rotation speed and actual rotation current; 若当前控制模式为伺服速度控制模式,则接收所述人机交互模块发送的期望转动速度,以及所述反馈执行模块采集的所述管路阀门的实际转动速度;If the current control mode is the servo speed control mode, receiving the expected rotation speed sent by the human-computer interaction module and the actual rotation speed of the pipeline valve collected by the feedback execution module; 若当前控制模式为伺服力矩控制模式,则接收所述人机交互模块发送的期望转动位置、期望转动速度和期望转动中的最大电流阈值,以及所述反馈执行模块采集的所述管路阀门的实际转动位置、实际转动速度和实际转动中的电流;If the current control mode is the servo torque control mode, then receive the expected rotation position, expected rotation speed and maximum current threshold in the expected rotation sent by the human-computer interaction module, and the pipeline valve collected by the feedback execution module Actual rotation position, actual rotation speed and actual rotation current; 所述多模式控制模块,内置PD控制器和PI控制器,用于:The multi-mode control module has a built-in PD controller and a PI controller for: 若当前控制模式为力位混控模式,则将所述期望转动位置、所述期望转动速度、所述实际转动位置和所述实际转动速度输入所述PD控制器,所述PD控制器向所述管路阀门施加力位控制量;If the current control mode is the force-position mixed control mode, then input the expected rotational position, the expected rotational speed, the actual rotational position and the actual rotational speed into the PD controller, and the PD controller sends The force position control amount of the pipeline valve; 若当前控制模式为伺服位置控制模式,则将所述期望转动位置、所述期望转动速度、所述实际转动位置和所述实际转动速度输入PD控制器,将所述PD控制器的输出量、所述期望转动中的最大电流阈值和所述实际转动中的电流输入所述PI控制器,所述PI控制器经过第一PI控制算法向所述管路阀门施加位置控制量;If the current control mode is the servo position control mode, then input the expected rotational position, the expected rotational speed, the actual rotational position and the actual rotational speed into the PD controller, and input the output of the PD controller, The maximum current threshold in the expected rotation and the current in the actual rotation are input to the PI controller, and the PI controller applies a position control amount to the pipeline valve through a first PI control algorithm; 若当前控制模式为伺服速度控制模式,则将所述期望转动速度和所述实际转动速度输入所述PD控制器,所述PD控制器向所述管路阀门施加速度控制量;If the current control mode is a servo speed control mode, inputting the expected rotation speed and the actual rotation speed into the PD controller, and the PD controller applies a speed control amount to the pipeline valve; 若当前控制模式为伺服力矩控制模式,则将所述期望转动位置、所述期望转动速度、所述实际转动位置和所述实际转动速度输入PD控制器,将所述PD控制器的输出量、将所述期望转动中的最大电流阈值和所述实际转动中的电流输入所述PI控制器,所述PI控制器经过第二PI控制算法向所述管路阀门施加力矩控制量。If the current control mode is the servo torque control mode, then input the expected rotational position, the expected rotational speed, the actual rotational position and the actual rotational speed into the PD controller, and input the output of the PD controller, The maximum current threshold in the expected rotation and the current in the actual rotation are input into the PI controller, and the PI controller applies a torque control amount to the pipeline valve through a second PI control algorithm. 3.根据权利要求1所述的一种闭环反馈控制的数控阀门控制系统,其特征在于,还包括:外部数据测量装置;3. The numerical control valve control system of a kind of closed-loop feedback control according to claim 1, is characterized in that, also comprises: external data measuring device; 所述外部数据测量装置分别与所述中央控制器和所述基层控制器连接;The external data measuring device is respectively connected with the central controller and the basic controller; 所述外部数据测量装置用于获取所述管路阀门所处环境的环境数据,并将所述环境数据通过所述中央控制器传输至所述人机交互模块;The external data measuring device is used to obtain environmental data of the environment where the pipeline valve is located, and transmit the environmental data to the human-computer interaction module through the central controller; 其中,所述环境数据,包括:温湿度、压力和真空度;Wherein, the environmental data include: temperature and humidity, pressure and vacuum degree; 所述人机交互模块用于显示所述环境数据;所述管路阀门的控制目标值是根据所述环境数据确定的。The human-computer interaction module is used to display the environmental data; the control target value of the pipeline valve is determined according to the environmental data. 4.根据权利要求1所述的一种闭环反馈控制的数控阀门控制系统,其特征在于,所述人机交互模块,还用于:4. The numerical control valve control system of a kind of closed-loop feedback control according to claim 1, is characterized in that, described human-computer interaction module is also used for: 输入管路阀门的设定最大扭矩数值、设定最大电流和设定转动速度量;Input the set maximum torque value, set maximum current and set rotation speed of the pipeline valve; 所述中央控制器,还用于:The central controller is also used for: 当所述期望转动位置超过所述设定最大扭矩数值,所述期望转动速度超过所述设定转动速度量,或者所述期望转动中的最大电流阈值超过所述设定最大电流时,控制所述管路阀门停止运行。When the desired rotation position exceeds the set maximum torque value, the desired rotation speed exceeds the set rotation speed amount, or the maximum current threshold in the desired rotation exceeds the set maximum current, the control The above-mentioned pipeline valve stops operating. 5.根据权利要求1所述的一种闭环反馈控制的数控阀门控制系统,其特征在于,还包括:限位传感器;所述限位传感器设置在所述管路阀门的转动极限位置。5 . The numerically controlled valve control system with closed-loop feedback control according to claim 1 , further comprising: a limit sensor; and the limit sensor is set at a rotation limit position of the pipeline valve. 6 . 6.根据权利要求1所述的一种闭环反馈控制的数控阀门控制系统,其特征在于,还包括:伺服控制器和伺服电机;6. The numerical control valve control system of a kind of closed-loop feedback control according to claim 1, is characterized in that, also comprises: servo controller and servo motor; 所述基层控制器与所述伺服控制器连接;所述伺服控制器通过所述伺服电机与所述管路阀门连接;所述反馈执行模块通过所述伺服电机与所述管路阀门连接。The primary controller is connected to the servo controller; the servo controller is connected to the pipeline valve through the servo motor; the feedback execution module is connected to the pipeline valve through the servo motor. 7.根据权利要求1所述的一种闭环反馈控制的数控阀门控制系统,其特征在于,所述中央控制器通过网络总线与所述人机交互模块连接。7. A numerically controlled valve control system with closed-loop feedback control according to claim 1, wherein the central controller is connected to the human-computer interaction module through a network bus. 8.根据权利要求6所述的一种闭环反馈控制的数控阀门控制系统,其特征在于,所述基层控制器通过CAN总线与所述伺服控制器连接。8 . A closed-loop feedback control numerical control valve control system according to claim 6 , wherein the basic controller is connected to the servo controller through a CAN bus.
CN202211476176.5A 2022-11-23 2022-11-23 A closed-loop feedback control system for numerically controlled valves Active CN115933463B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211476176.5A CN115933463B (en) 2022-11-23 2022-11-23 A closed-loop feedback control system for numerically controlled valves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211476176.5A CN115933463B (en) 2022-11-23 2022-11-23 A closed-loop feedback control system for numerically controlled valves

Publications (2)

Publication Number Publication Date
CN115933463A true CN115933463A (en) 2023-04-07
CN115933463B CN115933463B (en) 2025-02-07

Family

ID=86549726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211476176.5A Active CN115933463B (en) 2022-11-23 2022-11-23 A closed-loop feedback control system for numerically controlled valves

Country Status (1)

Country Link
CN (1) CN115933463B (en)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383577A (en) * 2013-07-18 2013-11-06 中国航天空气动力技术研究院 Pressure regulation and control system of pressure regulating valve
KR101341600B1 (en) * 2013-04-19 2013-12-13 김진택 Intelligent control system and method for controlling fluid flow rate
US20140083514A1 (en) * 2012-09-25 2014-03-27 Mks Instruments, Inc. Method and Apparatus for Self Verification of Pressured Based Mass Flow Controllers
CN104102145A (en) * 2014-07-07 2014-10-15 无锡锐泰节能系统科学有限公司 Intelligent valve controller
WO2016154242A1 (en) * 2015-03-23 2016-09-29 Fisher Controls International Llc Integrated process controller with loop and valve control capability
CN206111702U (en) * 2016-08-31 2017-04-19 深圳职业技术学院 Electro -hydraulic servo control system
CN206988515U (en) * 2017-07-07 2018-02-09 湖南福陆特科技发展有限公司 One kind rotation fork type servo-electric actuator
CN107962480A (en) * 2017-11-28 2018-04-27 华中科技大学 Force control method is processed in a kind of blade robot sbrasive belt grinding
KR20190022366A (en) * 2017-08-25 2019-03-06 아즈빌주식회사 Controller and deterioration position detection method
CN110308748A (en) * 2019-06-17 2019-10-08 常州大学 A kind of valve intelligent controller and control method based on STM32
US20200011197A1 (en) * 2018-07-03 2020-01-09 Pentair Residential Filtration, Llc Valve Controller System and Method
CN111219520A (en) * 2020-03-13 2020-06-02 大亚木业(肇庆)有限公司 PLC-based electric valve control system and use method thereof
US20200321225A1 (en) * 2019-04-05 2020-10-08 Mks Instruments, Inc. Method and Apparatus for Pulse Gas Delivery
CN111963747A (en) * 2020-09-17 2020-11-20 北京雷蒙赛博机电技术有限公司 Automatic control system of valve actuator
CN112113019A (en) * 2020-09-17 2020-12-22 北京雷蒙赛博机电技术有限公司 Automatic control method for valve actuator
CN113007405A (en) * 2021-02-08 2021-06-22 北京七星华创流量计有限公司 Flow valve, mass flow control device, and flow valve opening control method
CN113406895A (en) * 2020-02-28 2021-09-17 南京理工大学 Method for constructing control system of intelligent valve electric actuator
CN114114916A (en) * 2021-11-23 2022-03-01 浙江大学 Method and system for real-time control of droplet size
CN114294461A (en) * 2021-12-17 2022-04-08 南京理工大学 Method for constructing control system of intelligent valve electric actuator
CN114888813A (en) * 2022-06-21 2022-08-12 广州大学 Mechanical arm position force hybrid control method and device
CN115257995A (en) * 2022-05-19 2022-11-01 伍福人工智能(河南)有限公司 Robot control method, device, terminal device and storage medium
CN115344064A (en) * 2021-05-13 2022-11-15 中移(上海)信息通信科技有限公司 Valve flow control method and device and electronic equipment

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140083514A1 (en) * 2012-09-25 2014-03-27 Mks Instruments, Inc. Method and Apparatus for Self Verification of Pressured Based Mass Flow Controllers
KR101341600B1 (en) * 2013-04-19 2013-12-13 김진택 Intelligent control system and method for controlling fluid flow rate
CN103383577A (en) * 2013-07-18 2013-11-06 中国航天空气动力技术研究院 Pressure regulation and control system of pressure regulating valve
CN104102145A (en) * 2014-07-07 2014-10-15 无锡锐泰节能系统科学有限公司 Intelligent valve controller
WO2016154242A1 (en) * 2015-03-23 2016-09-29 Fisher Controls International Llc Integrated process controller with loop and valve control capability
CN206111702U (en) * 2016-08-31 2017-04-19 深圳职业技术学院 Electro -hydraulic servo control system
CN206988515U (en) * 2017-07-07 2018-02-09 湖南福陆特科技发展有限公司 One kind rotation fork type servo-electric actuator
KR20190022366A (en) * 2017-08-25 2019-03-06 아즈빌주식회사 Controller and deterioration position detection method
CN107962480A (en) * 2017-11-28 2018-04-27 华中科技大学 Force control method is processed in a kind of blade robot sbrasive belt grinding
US20200011197A1 (en) * 2018-07-03 2020-01-09 Pentair Residential Filtration, Llc Valve Controller System and Method
US20200321225A1 (en) * 2019-04-05 2020-10-08 Mks Instruments, Inc. Method and Apparatus for Pulse Gas Delivery
CN110308748A (en) * 2019-06-17 2019-10-08 常州大学 A kind of valve intelligent controller and control method based on STM32
CN113406895A (en) * 2020-02-28 2021-09-17 南京理工大学 Method for constructing control system of intelligent valve electric actuator
CN111219520A (en) * 2020-03-13 2020-06-02 大亚木业(肇庆)有限公司 PLC-based electric valve control system and use method thereof
CN111963747A (en) * 2020-09-17 2020-11-20 北京雷蒙赛博机电技术有限公司 Automatic control system of valve actuator
CN112113019A (en) * 2020-09-17 2020-12-22 北京雷蒙赛博机电技术有限公司 Automatic control method for valve actuator
CN113007405A (en) * 2021-02-08 2021-06-22 北京七星华创流量计有限公司 Flow valve, mass flow control device, and flow valve opening control method
CN115344064A (en) * 2021-05-13 2022-11-15 中移(上海)信息通信科技有限公司 Valve flow control method and device and electronic equipment
CN114114916A (en) * 2021-11-23 2022-03-01 浙江大学 Method and system for real-time control of droplet size
CN114294461A (en) * 2021-12-17 2022-04-08 南京理工大学 Method for constructing control system of intelligent valve electric actuator
CN115257995A (en) * 2022-05-19 2022-11-01 伍福人工智能(河南)有限公司 Robot control method, device, terminal device and storage medium
CN114888813A (en) * 2022-06-21 2022-08-12 广州大学 Mechanical arm position force hybrid control method and device

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
张越: ""新型电动阀门执行器的开发及精密定位控制策略研究"", 《中国优秀硕士学位论文全文数据库-工程科技II辑》, 15 February 2021 (2021-02-15), pages 029 - 320 *
杜梦婷: ""智能阀门电动执行机构控制系统研究"", 《中国优秀硕士学位论文全文数据库-工程科技II辑》, 15 January 2022 (2022-01-15), pages 029 - 416 *
杜梦婷: ""智能阀门电动执行机构控制系统研究"", 中国优秀硕士学位论文全文数据库, 15 January 2022 (2022-01-15), pages 029 - 416 *
杨洋: "《机器人控制理论基础》", 31 October 2021, 机械工业出版社, pages: 275 - 276 *
程鲲鹏: ""基于CAN总线的多通道开度阀控制系统的设计"", 《机械与电子》, 30 September 2020 (2020-09-30), pages 65 - 68 *
罗新河: ""柔顺磨削终端执行器系统设计"", 《中国优秀硕士学位论文全文数据库》, 15 July 2021 (2021-07-15), pages 022 - 523 *

Also Published As

Publication number Publication date
CN115933463B (en) 2025-02-07

Similar Documents

Publication Publication Date Title
JP7022163B2 (en) Control valve control unit, control valve device, air conditioning system, and control valve control method
CN103955231B (en) Intelligent control method, device and system for multi-joint mechanical arm
CN108381529B (en) Human-computer cooperation teaching method for industrial mechanical arm
RU2627755C1 (en) Valve and method for controlling valve
JPH11166655A (en) Electro-pneumatic positioner
CN103148035B (en) A kind of directly-fed Digital Hydraulic Valve position control system
US20090222180A1 (en) Method for real-time learning of actuator transfer characteristics
CN103488189B (en) Control method of servo motor
US10379548B2 (en) System and method for controlling a valve
CN104191429A (en) Mixed control method of tendon drive mechanical arm position and tendon tension and control device thereof
US20090222179A1 (en) Dynamic learning of solenoid p-i curves for closed loop pressure controls
CN115933463A (en) Numerical control valve control system with closed-loop feedback control
CN101782088A (en) Method and electronic device for compensation of the hysteresis of pneumatically driven fittings
CN110045597A (en) The improvement fuzzy PID control method precisely to work for Tool monitoring mechanical arm
CN105570239B (en) Stepping type hydraulic element anti-blocking control equipment, system, method and mechanical equipment
CN111140669A (en) A high-frequency response large-flow proportional valve and its control system
CN215062758U (en) Venturi air volume regulator with pressure independence
CN107390729B (en) Locator
CN106738740A (en) A kind of injection machine closed-loop self-adaptation control method
CN113188245A (en) Venturi air volume regulator with pressure independence
CN108880366B (en) A control method of torque loading controller for gearbox test bench
CN116972921A (en) Valve-controlled water meter and control method thereof
CN114576411B (en) Self-learning valve controller and control method
CN204241974U (en) Multi-radar antenna cooperative control system
JP2532920Y2 (en) Valve control device with built-in electronic control device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant