CN115924141B - A UAV rotor mechanism - Google Patents
A UAV rotor mechanism Download PDFInfo
- Publication number
- CN115924141B CN115924141B CN202310016349.3A CN202310016349A CN115924141B CN 115924141 B CN115924141 B CN 115924141B CN 202310016349 A CN202310016349 A CN 202310016349A CN 115924141 B CN115924141 B CN 115924141B
- Authority
- CN
- China
- Prior art keywords
- propeller
- drive shaft
- rotor mechanism
- slider
- uav
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 13
- 230000009467 reduction Effects 0.000 abstract description 7
- 230000030279 gene silencing Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/40—Weight reduction
Landscapes
- Toys (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
技术领域technical field
本发明属于螺旋桨技术领域,具体涉及一种无人机旋翼机构。The invention belongs to the technical field of propellers, and in particular relates to an unmanned aerial vehicle rotor mechanism.
背景技术Background technique
无人驾驶飞机简称“无人机”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,或者由车载计算机完全地或间歇地自主地操作,与有人驾驶的飞机相比,无人机往往更适合那些太“愚钝,肮脏或危险”的任务,其中,无人机的飞行主要有电机带动螺旋桨旋转来完成,且,为了降低螺旋桨旋转时所产生的噪音,会通过对螺旋桨结构上的改进来完成降噪效果,而此类螺旋桨又被称为降噪螺旋桨。Unmanned aircraft, referred to as "UAV", is an unmanned aircraft controlled by radio remote control equipment and self-contained program control device, or is completely or intermittently operated autonomously by the on-board computer. , UAVs are often more suitable for tasks that are too "dull, dirty or dangerous". Among them, the flight of UAVs is mainly completed by the motor driving the propeller to rotate, and, in order to reduce the noise generated when the propeller rotates, it will pass Improve the structure of the propeller to complete the noise reduction effect, and this type of propeller is also called noise reduction propeller.
现有技术存在的问题:Problems existing in the prior art:
现有无人机在飞行过程中,当降噪螺旋桨遭受意外阻碍致使直接停止旋转时,驱动螺旋桨旋转的电机也将同时被阻碍,进而在短时间内大大增加该电机的工作负荷,最终可能导致电机被直接损坏,且在螺旋桨刚刚停止旋转时,由于转速过高的部件突然停止了旋转,其过程中所产生的惯性力将直接作用在电机轴与螺旋桨的连接处,极可能导致该连接处直接发生断裂,更有甚者,可能直接加剧无人机的受损程度,进而产生高昂的维修以及更换费用。During the flight of existing UAVs, when the noise reduction propeller is unexpectedly blocked and stops rotating directly, the motor driving the propeller will also be blocked at the same time, which will greatly increase the working load of the motor in a short period of time, which may eventually lead to The motor is directly damaged, and when the propeller just stops rotating, the parts with too high speed stop rotating suddenly, and the inertial force generated during the process will directly act on the connection between the motor shaft and the propeller, which is likely to cause the connection to be damaged. Breakage occurs directly, and what's more, it may directly aggravate the damage of the drone, resulting in high maintenance and replacement costs.
发明内容Contents of the invention
本发明的目的是提供一种无人机旋翼机构,能够在实现飞行降噪的同时,还可将水平气流变化为垂直气流,借此提高无人机的上升力,另外,还可在螺旋桨意外停止时,通过使电机带动驱动轴空转的方式,大大降低电机发生损坏以及对应连接处断裂的可能。The purpose of the present invention is to provide a UAV rotor mechanism, which can change the horizontal airflow into a vertical airflow while realizing flight noise reduction, thereby improving the lifting force of the UAV. When stopping, by making the motor drive the drive shaft to idle, the possibility of damage to the motor and breakage of the corresponding connection is greatly reduced.
本发明采取的技术方案具体如下:The technical scheme that the present invention takes is specifically as follows:
一种无人机旋翼机构,包括与无人机体固定安装的消音导流罩以及与电机输出轴相连接的驱动轴,所述驱动轴的顶端装配有旋桨接壳,所述旋桨接壳的顶端一体式固定连接有顶接块,所述顶接块的外表面环形阵列式固定连接有螺旋桨叶;A UAV rotor mechanism, including a sound-absorbing shroud fixedly installed with the UAV body and a drive shaft connected to the output shaft of the motor, the top of the drive shaft is equipped with a propeller housing, and the propeller housing The top of the top is integrally fixedly connected with a top joint block, and the outer surface of the top joint block is fixedly connected with propeller blades in an annular array;
所述旋桨接壳的内部活动安装有内转环板,且所述驱动轴的顶端与所述内转环板构成可分离式连接关系,所述驱动轴的顶端外壁环形阵列式开设有卡孔,所述内转环板的上表面环形阵列式开设有导杆槽,且所述内转环板的下表面环形阵列式开设有导块槽;The inside of the propeller housing is movably installed with an inner swivel plate, and the top end of the drive shaft forms a detachable connection relationship with the inner swivel plate, and the outer wall of the top end of the drive shaft is provided with a card ring in an annular array. holes, the upper surface of the inner swivel plate is provided with guide rod grooves in an annular array, and the lower surface of the inner swivel plate is provided with guide block grooves in an annular array;
所述旋桨接壳的内部顶端边缘环形阵列式转动连接有接杆一,所述接杆一的底端均固定连接有接板,所述接板的末端下表面均固定连接有接杆二,所述接杆二的底端转动安装有滑块,其中所述接杆二活动贯穿所述导杆槽,而所述滑块滑动安装在所述导块槽的内部,所述滑块的一端设置为尖端,且所述滑块的尖端活动插入在所述卡孔的内部。The inner top edge of the propeller housing is rotatably connected with a connecting
所述导杆槽与所述导块槽的数量相同且位置对应,且所述导杆槽与所述导块槽相通。The number of the guide rod grooves is the same as that of the guide block grooves and the positions correspond to each other, and the guide rod grooves communicate with the guide block grooves.
所述滑块背离尖端的一端与所述导块槽的内壁之间连接有弹簧。A spring is connected between the end of the slide block away from the tip and the inner wall of the guide block groove.
所述内转环板的外径尺寸与所述旋桨接壳的内径尺寸相同,所述内转环板的内径尺寸与所述驱动轴的直径尺寸相同。The outer diameter of the inner swivel plate is the same as the inner diameter of the propeller housing, and the inner diameter of the inner swivel plate is the same as the diameter of the drive shaft.
所述螺旋桨叶的末端均一体式固定设置有扰流板,且所述螺旋桨叶靠近扰流板一端的上表面等距开设有分流槽。The end of the propeller blade is uniformly and fixedly provided with a spoiler, and the upper surface of the propeller blade close to the end of the spoiler is equidistantly provided with splitter grooves.
所述扰流板与所述螺旋桨叶之间并背离螺旋桨叶旋转方向的一侧设置为钝角。The side between the spoiler and the propeller blade and away from the direction of rotation of the propeller blade is set at an obtuse angle.
所述消音导流罩的下方一体式固定设置有拓展罩体,且所述拓展罩体的直径尺寸大于所述消音导流罩的直径尺寸。The lower part of the sound-absorbing air guide cover is integrally and fixedly provided with an extended cover body, and the diameter of the expanded cover body is larger than that of the sound-absorbing air guide cover.
本发明取得的技术效果为:The technical effect that the present invention obtains is:
(1)本发明,消音导流罩的设计可有效降低水平高速气流撞击外围空气时所产生的噪音,而又通过降低气流对消音导流罩冲击力的方式,进一步缩小高速气流之间所产生的噪音,以此来实现飞行降噪的效果,此外,拓展罩体的设置可改变冲向消音导流罩的气流,使其由水平气流变化为垂直气流,且此垂直气流的方向竖直向下,从而进一步提高该螺旋桨叶工作所产生的向下推力,间接提高该无人机的上升力。(1) In the present invention, the design of the sound-absorbing shroud can effectively reduce the noise generated when the horizontal high-speed airflow hits the surrounding air, and further reduce the noise generated between the high-speed airflow by reducing the impact force of the airflow on the sound-absorbing shroud. In order to achieve the effect of flight noise reduction, in addition, the setting of the expansion cover can change the airflow rushing to the sound-absorbing shroud, making it change from horizontal airflow to vertical airflow, and the direction of this vertical airflow is vertical Down, thereby further improving the downward thrust generated by the propeller blade work, and indirectly improving the lift of the UAV.
(2)本发明,当螺旋桨叶遭到意外阻挡导致直接停止旋转时,驱动轴连同内转环板将与旋桨接壳之间产生相对旋转,滑块将沿着导块槽的方向远离驱动轴移动,当滑块脱离卡孔之后,驱动轴便与内转环板之间分离,最终电机便可带动驱动轴进行空转,上述过程,可在螺旋桨叶意外停止旋转后,直接使驱动轴与螺旋桨叶之间断开传动连接关系,进而避免阻碍驱动螺旋桨叶旋转的电机工作,且通过使该电机带动驱动轴空转的方式,大大降低电机工作负荷,降低电机发生损坏的可能,避免电机被直接损坏。(2) In the present invention, when the propeller blade is accidentally blocked and stops rotating directly, the drive shaft together with the inner rotating ring plate will rotate relative to the propeller housing, and the slider will move away from the drive along the direction of the guide block groove. The shaft moves, and when the slider breaks away from the card hole, the drive shaft is separated from the inner swivel plate, and finally the motor can drive the drive shaft to idle. The above process can directly make the drive shaft and the propeller blade stop rotating unexpectedly Disconnect the transmission connection between the propeller blades, so as to avoid hindering the work of the motor that drives the propeller blades to rotate, and by making the motor drive the drive shaft to idle, the working load of the motor is greatly reduced, the possibility of motor damage is reduced, and the motor is prevented from being directly damaged .
(3)本发明,在螺旋桨叶刚刚停止旋转时,内转环板会在旋桨接壳内旋转,且过程中滑块将直线移动并挤压弹簧,利用此过程使驱动轴在分离前有一个过渡过程,可避免螺旋桨叶突然的停止致使驱动轴与内转环板的转接处发生损坏。(3) In the present invention, when the propeller blade has just stopped rotating, the inner swivel ring plate will rotate in the propeller joint housing, and the slider will move linearly and squeeze the spring during the process, so that the drive shaft will have a certain speed before separation. A transition process, which can avoid the sudden stop of the propeller blades and cause damage to the joint between the drive shaft and the inner swivel plate.
附图说明Description of drawings
图1是本发明的实施例所提供的消音导流罩与螺旋桨叶的组装结构图;Fig. 1 is the assembling structure diagram of the sound-absorbing dome provided by the embodiment of the present invention and propeller blade;
图2是本发明的实施例所提供的螺旋桨叶工作时气流的流动示意图;Fig. 2 is the flow schematic diagram of the airflow when the propeller blade provided by the embodiment of the present invention works;
图3是本发明的实施例所提供的旋桨接壳的内部剖视图;Fig. 3 is an internal cross-sectional view of the propeller housing provided by the embodiment of the present invention;
图4是本发明的实施例所提供的驱动轴、旋桨接壳以及内转环板的组装分解图;Fig. 4 is an assembly and exploded view of the drive shaft, the propeller housing and the inner swivel plate provided by the embodiment of the present invention;
图5是图4中A处的局部放大结构图。Fig. 5 is a partially enlarged structure diagram at point A in Fig. 4 .
附图中,各标号所代表的部件列表如下:In the accompanying drawings, the list of parts represented by each label is as follows:
1、消音导流罩;101、拓展罩体;2、驱动轴;201、卡孔;3、旋桨接壳;301、顶接块;302、内转环板;303、导杆槽;304、导块槽;305、接杆一;306、接板;307、接杆二;308、滑块;309、弹簧;4、螺旋桨叶;401、分流槽;402、扰流板。1. Silencer shroud; 101. Expansion cover body; 2. Drive shaft; 201. Clamping hole; 3. Propeller connection shell; 301. Top connection block; 302. Inner rotary ring plate; 303. Guide rod groove; 305, connecting rod one; 306, connecting plate; 307, connecting rod two; 308, slide block; 309, spring; 4, propeller blade; 401, splitter groove; 402, spoiler.
具体实施方式Detailed ways
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行具体说明。应当理解,以下文字仅仅用以描述本发明的一种或几种具体的实施方式,并不对本发明具体请求的保护范围进行严格限定。In order to make the objects and advantages of the present invention clearer, the present invention will be specifically described below in conjunction with examples. It should be understood that the following words are only used to describe one or several specific implementation modes of the present invention, and do not strictly limit the protection scope of the specific claims of the present invention.
如图1-5所示,一种无人机旋翼机构,包括与无人机体固定安装的消音导流罩1以及与电机输出轴相连接的驱动轴2,驱动轴2的顶端装配有旋桨接壳3(该装配方式选择可拆卸式,且在未拆卸前,旋桨接壳3与驱动轴2之间的固定效果保持较佳状态),旋桨接壳3的顶端一体式固定连接有顶接块301,顶接块301的外表面环形阵列式固定连接有螺旋桨叶4。As shown in Figures 1-5, a UAV rotor mechanism includes a sound-absorbing
根据上述结构,无人机机臂上的电机带动驱动轴2旋转时,其将带动旋桨接壳3、顶接块301以及螺旋桨叶4高速旋转,螺旋桨叶4在旋转时,通过使大量气流向下流动产生推力进而完成无人机飞行的工作。According to the above structure, when the motor on the arm of the UAV drives the
参照附图3、图4和图5,旋桨接壳3的内部活动安装有内转环板302,且驱动轴2的顶端与内转环板302构成可分离式连接关系,驱动轴2的顶端外壁环形阵列式开设有卡孔201,内转环板302的上表面环形阵列式开设有导杆槽303,且内转环板302的下表面环形阵列式开设有导块槽304,导杆槽303与导块槽304的数量相同且位置对应,且导杆槽303与导块槽304相通。Referring to accompanying
参照附图3、图4和图5,旋桨接壳3的内部顶端边缘环形阵列式转动连接有接杆一305,接杆一305的底端均固定连接有接板306,接板306的末端下表面均固定连接有接杆二307,接杆二307的底端转动安装有滑块308,其中接杆二307活动贯穿导杆槽303,而滑块308滑动安装在导块槽304的内部,滑块308的一端设置为尖端,且滑块308的尖端活动插入在卡孔201的内部,滑块308背离尖端的一端与导块槽304的内壁之间连接有弹簧309。Referring to accompanying
参照附图3,内转环板302的外径尺寸与旋桨接壳3的内径尺寸相同,内转环板302的内径尺寸与驱动轴2的直径尺寸相同。Referring to accompanying
根据上述结构,当螺旋桨叶4遭到意外阻挡导致直接停止旋转,此时,驱动轴2连同顶端的内转环板302将与旋桨接壳3之间产生相对旋转,由于接杆一305与旋桨接壳3内壁转接,因此接板306将发生偏转,对应接杆二307将沿着导杆槽303的方向远离内转环板302的圆心移动,而滑块308将沿着导块槽304的方向远离驱动轴2移动,当滑块308脱离卡孔201之后,驱动轴2便与内转环板302之间分离,最终电机便可带动驱动轴2进行空转,上述过程,可在螺旋桨叶4意外停止旋转后,直接使驱动轴2与螺旋桨叶4之间断开传动连接关系,进而避免驱动螺旋桨叶4旋转的电机意外停止,通过使该电机带动驱动轴2空转的方式,大大降低电机工作负荷,降低电机发生损坏的可能,避免电机被直接损坏;另外,在螺旋桨叶4刚刚停止旋转时,内转环板302会在旋桨接壳3内旋转,且过程中滑块308将直线移动并挤压弹簧309,利用此过程使驱动轴2在分离前有一个过渡过程,可避免螺旋桨叶4突然的停止致使驱动轴2与内转环板302转接处发生损坏。According to the above structure, when the propeller blade 4 is accidentally blocked and stops rotating directly, at this time, the
参照附图1和图2,螺旋桨叶4的末端均一体式固定设置有扰流板402,且螺旋桨叶4靠近扰流板402一端的上表面等距开设有分流槽401,扰流板402与螺旋桨叶4之间并背离螺旋桨叶4旋转方向的一侧设置为钝角,消音导流罩1的下方一体式固定设置有拓展罩体101,且拓展罩体101的直径尺寸大于消音导流罩1的直径尺寸。With reference to accompanying
根据上述结构,螺旋桨叶4正常旋转时,会有气流由螺旋桨叶4向边缘的消音导流罩1水平流动,其中分流槽401的设置不仅可以降低螺旋桨叶4旋转时的阻力,还可对水平流动的气流进行分流,降低水平气流对消音导流罩1的冲击,另外,扰流板402相较于螺旋桨4具有一定的倾斜,气流会在螺旋桨上会产生气流运动,气流在运动过程中会产生绕流运动,绕流运动不仅会增加螺旋桨的阻力,同时还会给螺旋桨带来附加的振动和噪音。而扰流板402则起到阻断气流在螺旋桨翼尖位置上的绕流运动,能够减少气流绕流对螺旋桨产生的阻力影响,也能降低水平气流对消音导流罩1的冲击,该技术在现有技术中应用较为成熟,具体可参阅公告文件CN 218112972 U,在此不再做具体的赘述,综上所述,消音导流罩1的设计可有效降低水平高速气流撞击外围空气时所产生的噪音,而又通过降低气流对消音导流罩1冲击力的方式,进一步缩小高速气流之间所产生的噪音,以此来实现飞行降噪的效果,此外,拓展罩体101的设置可改变冲向消音导流罩1的气流,使其由水平气流变化为垂直气流,且此垂直气流的方向竖直向下,从而进一步提高该螺旋桨叶4工作所产生的向下推力,间接提高该无人机的上升力。According to the above-mentioned structure, when the propeller blade 4 rotates normally, there will be an air flow to flow horizontally from the propeller blade 4 to the sound-absorbing
本发明的工作原理为:在螺旋桨叶4正常旋转前提下,当无人机机臂上的电机带动驱动轴2旋转时,其将带动旋桨接壳3、顶接块301以及螺旋桨叶4高速旋转,螺旋桨叶4在旋转时,通过使大量气流向下流动产生推力进而完成无人机飞行的工作,此过程中,会有气流由螺旋桨叶4向边缘的消音导流罩1水平流动,而其中分流槽401的设置不仅可以降低螺旋桨叶4旋转时的阻力,还可对水平流动的气流进行分流,降低水平气流对消音导流罩1的冲击,另外,与螺旋桨叶4末端呈钝角的扰流板402也能降低水平气流对消音导流罩1的冲击,此外,拓展罩体101的设置可改变冲向消音导流罩1的气流,使其由水平气流变化为垂直气流;The working principle of the present invention is: under the premise of the normal rotation of the propeller blade 4, when the motor on the arm of the UAV drives the
当螺旋桨叶4遭到意外阻挡导致直接停止旋转,此时,驱动轴2连同顶端的内转环板302将与旋桨接壳3之间产生相对旋转,由于接杆一305与旋桨接壳3内壁转接,因此接板306将发生偏转,对应接杆二307将沿着导杆槽303的方向远离内转环板302的圆心移动,而滑块308将沿着导块槽304的方向远离驱动轴2移动,当滑块308脱离卡孔201之后,驱动轴2便与内转环板302之间分离,最终电机便可带动驱动轴2进行空转。When the propeller blade 4 is accidentally blocked and stops rotating directly, at this time, the
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本发明中未具体描述和解释说明的结构、装置以及操作方法,如无特别说明和限定,均按照本领域的常规手段进行实施。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications should also be It is regarded as the protection scope of the present invention. The structures, devices and operation methods not specifically described and explained in the present invention, unless otherwise specified and limited, shall be implemented according to conventional means in the art.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310016349.3A CN115924141B (en) | 2023-01-06 | 2023-01-06 | A UAV rotor mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310016349.3A CN115924141B (en) | 2023-01-06 | 2023-01-06 | A UAV rotor mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115924141A CN115924141A (en) | 2023-04-07 |
CN115924141B true CN115924141B (en) | 2023-05-05 |
Family
ID=85835558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310016349.3A Active CN115924141B (en) | 2023-01-06 | 2023-01-06 | A UAV rotor mechanism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115924141B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7413408B1 (en) * | 2007-02-22 | 2008-08-19 | Samuel B Tafoya | Vibration-reducing and noise-reducing spoiler for helicopter rotors, aircraft wings, propellers, and turbine blades |
CN107614379A (en) * | 2015-05-25 | 2018-01-19 | 多特瑞尔技术有限公司 | Shield for aircraft |
CN108202863A (en) * | 2016-12-16 | 2018-06-26 | 深圳光启合众科技有限公司 | Propeller set |
CN108382566A (en) * | 2018-01-22 | 2018-08-10 | 武汉理工大学 | A kind of magnetic suspension rotor structure |
CN109153449A (en) * | 2017-12-21 | 2019-01-04 | 深圳市大疆创新科技有限公司 | Propeller, Power Component and unmanned vehicle |
CN110273933A (en) * | 2019-06-28 | 2019-09-24 | 石愈超 | A kind of shaft coupling |
CN218112972U (en) * | 2022-08-19 | 2022-12-23 | 深圳远行智能航空科技有限公司 | Screw and unmanned aerial vehicle |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6672834B2 (en) * | 2001-12-21 | 2004-01-06 | Turning Point Propellers, Inc. | Removable propeller assembly incorporating breakaway elements |
DE10343055B4 (en) * | 2003-09-16 | 2007-03-29 | Eurocopter Deutschland Gmbh | rotor brake |
-
2023
- 2023-01-06 CN CN202310016349.3A patent/CN115924141B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7413408B1 (en) * | 2007-02-22 | 2008-08-19 | Samuel B Tafoya | Vibration-reducing and noise-reducing spoiler for helicopter rotors, aircraft wings, propellers, and turbine blades |
CN107614379A (en) * | 2015-05-25 | 2018-01-19 | 多特瑞尔技术有限公司 | Shield for aircraft |
CN108202863A (en) * | 2016-12-16 | 2018-06-26 | 深圳光启合众科技有限公司 | Propeller set |
CN109153449A (en) * | 2017-12-21 | 2019-01-04 | 深圳市大疆创新科技有限公司 | Propeller, Power Component and unmanned vehicle |
CN108382566A (en) * | 2018-01-22 | 2018-08-10 | 武汉理工大学 | A kind of magnetic suspension rotor structure |
CN110273933A (en) * | 2019-06-28 | 2019-09-24 | 石愈超 | A kind of shaft coupling |
CN218112972U (en) * | 2022-08-19 | 2022-12-23 | 深圳远行智能航空科技有限公司 | Screw and unmanned aerial vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN115924141A (en) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2717119C1 (en) | Convertiplane | |
US11279477B2 (en) | Rotating electric distributed anti-torque fin | |
CA2682372C (en) | Aircraft with aerodynamic lift generating device | |
CA2894365C (en) | Convertible helicopter ring member | |
EP2251259B1 (en) | Flying body | |
CN109515704B (en) | Ducted plume rotorcraft based on cycloidal propeller technology | |
CN107672802A (en) | Fluting culvert type plume rotor craft | |
US11891163B2 (en) | Axial flow ducted fan with a movable section | |
CN115924141B (en) | A UAV rotor mechanism | |
JP2001097288A (en) | Helicopter ducted fan | |
WO2018103458A1 (en) | Tandem-wing unmanned aerial vehicle | |
RU2212358C1 (en) | Flying vehicle | |
CN117842409A (en) | Rotor wing variable pitch structure and unmanned aerial vehicle | |
CN217146367U (en) | Tilting automatic variable pitch propeller device | |
JP3212692B2 (en) | Rotor blade boundary layer controller | |
AU2020103061A4 (en) | Propeller for tilt-rotor aircraft | |
US11117655B2 (en) | Counter-rotating tail rotor | |
CN102358418A (en) | Power apparatus for aircraft | |
CN114180032A (en) | Variable outlet duct system | |
CN222179883U (en) | Aircraft with a plurality of aircraft body | |
CN213057498U (en) | Combined control multi-rotor aircraft | |
CN222247633U (en) | A magnetic suspension rotor heat dissipation structure and rotor system thereof | |
CN117227963B (en) | Wing structure, aircraft and method of operation | |
CN222040776U (en) | A power drive structure for model aircraft | |
JPH0569894A (en) | Aircraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240522 Address after: 210000 science and technology innovation space 504, building 6-A, No. 75, Tiansheng Road, Changlu street, Jiangbei new area, Nanjing, Jiangsu Province Patentee after: Nanjing Liuwan Technology Co.,Ltd. Country or region after: China Patentee after: Nanjing Yangsuo Automation Co.,Ltd. Address before: 210000 science and technology innovation space 504, building 6-A, No. 75, Tiansheng Road, Changlu street, Jiangbei new area, Nanjing, Jiangsu Province Patentee before: Nanjing Liuwan Technology Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |
Effective date of registration: 20250119 Address after: Room 107, Zone 1, No. 523 Ningliu Road, Changlu Street, Jiangbei New District, Nanjing City, Jiangsu Province 210000 Patentee after: Nanjing Zhanyi Microsystem Technology Co.,Ltd. Country or region after: China Patentee after: Nanjing Dunkong Artificial Intelligence Technology Research and Development Co.,Ltd. Patentee after: Nanjing Jingbin High tech Co.,Ltd. Patentee after: Nanjing Fuyou Electric Intelligent Control Software Co.,Ltd. Patentee after: Nanjing Guzhong Media Co.,Ltd. Patentee after: Nanjing Tanmo Space Technology Co.,Ltd. Patentee after: Nanjing Linyang Jinzhi Manufacturing Technology Co.,Ltd. Patentee after: Nanjing Hongwu Software Technology Co.,Ltd. Patentee after: Nanjing KaFei Software Technology Co.,Ltd. Patentee after: Nanjing Tianqi Aviation Co.,Ltd. Address before: 210000 science and technology innovation space 504, building 6-A, No. 75, Tiansheng Road, Changlu street, Jiangbei new area, Nanjing, Jiangsu Province Patentee before: Nanjing Liuwan Technology Co.,Ltd. Country or region before: China Patentee before: Nanjing Yangsuo Automation Co.,Ltd. |